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Abstract

Labeled sequence transduction is a task
of transforming one sequence into another
sequence that satisfies desiderata speci-
fied by a set of labels. In this paper we
propose multi-space variational encoder-
decoders, a new model for labeled se-
quence transduction with semi-supervised
learning. The generative model can use
neural networks to handle both discrete
and continuous latent variables to exploit
various features of data. Experiments
show that our model provides not only a
powerful supervised framework but also
can effectively take advantage of the un-
labeled data. On the SIGMORPHON
morphological inflection benchmark, our
model outperforms single-model state-of-
art results by a large margin for the major-
ity of languages.!

1 Introduction

This paper proposes a model for labeled sequence
transduction tasks, tasks where we are given an
input sequence and a set of labels, from which
we are expected to generate an output sequence
that reflects the content of the input sequence and
desiderata specified by the labels. Several exam-
ples of these tasks exist in prior work: using labels
to moderate politeness in machine translation re-
sults (Sennrich et al., 2016), modifying the output
language of a machine translation system (John-
son et al., 2016), or controlling the length of a
summary in summarization (Kikuchi et al., 2016).
In particular, however, we are motivated by the
task of morphological reinflection (Cotterell et al.,

'An implementation of our model are avail-
able at https://github.com/violet—zct/
MSVED-morph-reinflection.
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Figure 1: Standard supervised labeled sequence transduction,
and our proposed semi-supervised method.

2016), which we will use as an example in our de-
scription and test bed for our models.

In morphologically rich languages, different af-
fixes (i.e. prefixes, infixes, suffixes) can be com-
bined with the lemma to reflect various syntac-
tic and semantic features of a word. The ability
to accurately analyze and generate morphologi-
cal forms is crucial to creating applications such
as machine translation (Chahuneau et al., 2013;
Toutanova et al., 2008) or information retrieval
(Darwish and Oard, 2007) in these languages. As
shown in 1, re-inflection of an inflected form given
the target linguistic labels is a challenging sub-
task of handling morphology as a whole, in which
we take as input an inflected form (in the exam-
ple, “playing”) and labels representing the desired
form (“pos=Verb, tense=Past”)and must gen-
erate the desired form (“played”).

Approaches to this task include those utilizing
hand-crafted linguistic rules and heuristics (Taji
et al., 2016), as well as learning-based approaches
using alignment and extracted transduction rules
(Durrett and DeNero, 2013; Alegria and Etxeber-
ria, 2016; Nicolai et al., 2016). There have also
been methods proposed using neural sequence-
to-sequence models (Faruqui et al., 2016; Kann
et al., 2016; Ostling, 2016), and currently ensem-
bles of attentional encoder-decoder models (Kann
and Schiitze, 2016a,b) have achieved state-of-art
results on this task. One feature of these neu-
ral models however, is that they are trained in a
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largely supervised fashion (top of Fig. 1), using
data explicitly labeled with the input sequence and
labels, along with the output representation. Need-
less to say, the ability to obtain this annotated data
for many languages is limited. However, we can
expect that for most languages we can obtain large
amounts of unlabeled surface forms that may al-
low for semi-supervised learning over this unla-
beled data (entirety of Fig. 1).?

In this work, we propose a new frame-
work for labeled sequence transduction prob-
lems: multi-space variational encoder-decoders
(MSVED, §3.3). MSVEDs employ continuous
or discrete latent variables belonging to multiple
separate probability distributions® to explain the
observed data. In the example of morphological
reinflection, we introduce a vector of continuous
random variables that represent the lemma of the
source and target words, and also one discrete ran-
dom variable for each of the labels, which are on
the source or the target side.

This model has the advantage of both providing
a powerful modeling framework for supervised
learning, and allowing for learning in an unsuper-
vised setting. For labeled data, we maximize the
variational lower bound on the marginal log like-
lihood of the data and annotated labels. For un-
labeled data, we train an auto-encoder to recon-
struct a word conditioned on its lemma and mor-
phological labels. While these labels are unavail-
able, a set of discrete latent variables are associ-
ated with each unlabeled word. Afterwards we can
perform posterior inference on these latent vari-
ables and maximize the variational lower bound
on the marginal log likelihood of data.

Experiments on the SIGMORPHON morpho-
logical reinflection task (Cotterell et al., 2016) find
that our model beats the state-of-the-art for a sin-
gle model in the majority of languages, and is par-
ticularly effective in languages with more compli-
cated inflectional phenomena. Further, we find
that semi-supervised learning allows for signifi-
cant further gains. Finally, qualitative evaluation
of lemma representations finds that our model is
able to learn lemma embeddings that match with
human intuition.

2Faruqui et al. (2016) have attempted a limited form of
semi-supervised learning by re-ranking with a standard n-
gram language model, but this is not integrated with the learn-
ing process for the neural model and gains are limited.

3Analogous to multi-space hidden Markov models
(Tokuda et al., 2002)
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2 Labeled Sequence Transduction

In this section, we first present some notations re-
garding labeled sequence transduction problems in
general, then describe a particular instantiation for
morphological reinflection.

Notation: Labeled sequence transduction prob-
lems involve transforming a source sequence x(*)
into a target sequence x(), with some labels
describing the particular variety of transforma-
tion to be performed. We use discrete variables
yit), yét), - ,y&? to denote the labels associated
with each target sequence, where K is the total
number of labels. Let y(*) = [y%t), yét), e ,yg?}
denote a vector of these discrete variables. Each
discrete variable y,(f) represents a categorical fea-
ture pertaining to the target sequence, and has a
set of possible labels. In the later sections, we also
use y(t) and y,(:) to denote discrete latent variables
corresponding to these labels.

Given a source sequence x®) and a set of as-
sociated target labels y(t), our goal is to gener-
ate a target sequence x(*) that exhibits the fea-
tures specified by y(*) using a probabilistic model
p(x®|x() y(®). The best target sequence x*) is
then given by:

£ = arg max p(x®|x®), y®)). (1)
x(®
Morphological Reinflection Problem: In mor-

phological reinflection, the source sequence x(*)
consists of the characters in an inflected word
(e.g., “played”), while the associated labels y®

describe some linguistic features (e.g., yr(,f))s

Verb, yggse = Past) that we hope to realize
in the target. The target sequence x(*) is there-
fore the characters of the re-inflected form of the
source word (e.g., “played”) that satisfy the lin-

guistic features specified by y®. For this task,

each discrete variable y,(:) has a set of possible la-
bels (e.g. pos=V, pos=ADJ, etc) and follows a
multinomial distribution.

3 Proposed Method

3.1 Preliminaries: Variational Autoencoder

As mentioned above, our proposed model uses
probabilistic latent variables in a model based
on neural networks. The variational autoencoder
(Kingma and Welling, 2014) is an efficient way
to handle (continuous) latent variables in neural



(b) Labeled MSVAE (c) MSVAE (d) Labeled MSVED (e) MSVED

Figure 2: Graphical models of (a) VAE, (b) labeled MSVAE,
(c) MSVAE, (d) labeled MSVED, and (e) MSVED. White
circles are latent variables and shaded circles are observed
variables. Dashed lines indicate the inference process while
the solid lines indicate the generative process.

models. We describe it briefly here, and inter-
ested readers can refer to Doersch (2016) for de-
tails. The VAE learns a generative model of the
probability p(x|z) of observed data x given a la-
tent variable z, and simultaneously uses a recog-
nition model ¢(z|x) at learning time to estimate z
for a particular observation x (Fig. 2(a)). ¢(-) and
p(-) are modeled using neural networks parameter-
ized by ¢ and 6 respectively, and these parameters
are learned by maximizing the variational lower
bound on the marginal log likelihood of data:

log pp(x) > Ejry, (aix) [108 Po(x2)] —
KL(g4(z|x)|[p(2)) (2)

The KL-divergence term (a standard feature of
variational methods) ensures that the distributions
estimated by the recognition model g4 (z|x) do
not deviate far from our prior probability p(z) of
the values of the latent variables. To optimize
the parameters with gradient descent, Kingma
and Welling (2014) introduce a reparameterization
trick that allows for training using simple back-
propagation w.r.t. the Gaussian latent variables z.
Specifically, we can express z as a deterministic
variable z = g4(€,x) where € is an independent
Gaussian noise variable ¢ ~ N(0,1). The mean
 and the variance o2 of z are reparameterized by
the differentiable functions w.r.t. ¢. Thus, instead
of generating z from ¢, (z|x), we sample the aux-
iliary variable € and obtain z = iy (x) +og(z) 0

which enables gradients to backpropagate through

0.
3.2 Multi-space Variational Autoencoders

As an intermediate step to our full model, we
next describe a generative model for a single se-
quence with both continuous and discrete latent
variables, the multi-space variational auto-encoder
(MSVAE). MSVAEs are a combination of two
threads of previous work: deep generative mod-
els with both continuous/discrete latent variables
for classification problems (Kingma et al., 2014;

Maalge et al., 2016) and VAEs with only continu-
ous variables for sequential data (Bowman et al.,
2016; Chung et al., 2015; Zhang et al., 2016;
Fabius and van Amersfoort, 2014; Bayer and Os-
endorfer, 2014). In MSVAEs, we have an ob-
served sequence x, continuous latent variables z
like the VAE, as well as discrete variables y.

In the case of the morphology example, x can be
interpreted as an inflected word to be generated. y
is a vector representing its linguistic labels, either
annotated by an annotator in the observed case, or
unannotated in the unobserved case. z is a vector
of latent continuous variables, e.g. a latent embed-
ding of the lemma that captures all the information
about x that is not already represented in labels y.

MSVAE: Because inflected words can be naturally
thought of as “lemma-+morphological labels”, to
interpret a word, we resort to discrete and continu-
ous latent variables that represent the linguistic la-
bels and the lemma respectively. In this case when
the labels of the sequence y is not observed, we
perform inference over possible linguistic labels
and these inferred labels are referenced in gener-
ating x.

The generative model py(x,y,z) =
p(2)p=(y)po(x|y, z) is defined as:

p(z) = N (z[0.1) 3)
+(y) = [ Cat(yxlms) )
K

po(x|y,z) = f(x;y,2,0). (5)

Like the standard VAE, we assume the prior of
the latent variable z is a diagonal Gaussian dis-
tribution with zero mean and unit variance. We
assume that each variable in y is independent,
resulting in a factorized distribution in Eq. 4,
where Cat(yg|m) is a multinomial distribution
with parameters 7. For the purposes of this study,
we set these to a uniform distribution 73 ; =
Tl f(x;y,z,0) calculates the likelihood of x,
a function parametrized by deep neural networks.
Specifically, we employ an RNN decoder to gener-
ate the target word conditioned on the lemma vari-
able z and linguistic labels y, detailed in §5.

When inferring the latent variables from the
given data x, we assume the joint distribution of
latent variables z and y has a factorized form, i.e.
q(z,y|x) = q(z|x)q(y|x) as shown in Fig. 2(c).
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The inference model is defined as follows:

qs(2[x) = N (2lug(x), diag(03(x)))  (6)
as(y1x) = [ ] g0 (vilx)
k

= [ Cat(yx|ms(x)) (7

k

where the inference distribution over z is a diago-
nal Gaussian distribution with mean and variance
parameterized by neural networks. The inference
model ¢(y|x) on labels y has the form of a dis-
criminative classifier that generates a set of multi-
nomial probability vectors 74(x) over all labels
for each tag y;. We represent each multinomial
distribution ¢(yy|x) with an MLP.

The MSVAE is trained by maximizing the fol-
lowing variational lower bound ¢/ (x) on the objec-
tive for unlabeled data:

Po(X,y,2)
q¢(y, z|x)
= IEywq(j,(yIX) [Ez~q¢(z\x) [log py(x|z,y)]
— KL(gy(2/x)||p(z)) + log p=(y)
—log gy(y|x)] = U(x) (8)

Note that this introduction of discrete variables
requires more sophisticated optimization algo-
rithms, which we will discuss in §4.1.

Labeled MSVAE: When y is observed as shown
in Fig. 2(b), we maximize the following varia-
tional lower bound on the marginal log likelihood
of the data and the labels:

log po(x) > E(y z)~g,(y.2lx) 108

p@(xa}IvZ)
log po(x,y) > By (o1 log 20 Y22)
Egy(zx)[l0g po(x|y, z) + log p=(y)]
— KL (g4 (2[x)|[p(z)) )

which is a simple extension to Eq. 2.

Note that when labels are not observed, the in-
ference model g4 (y|x) has the form of a discrim-
inative classifier, thus we can use observed labels
as the supervision signal to learn a better classifier.
In this case we also minimize the following cross
entropy as the classification loss:

D(X, y) = IE:(x,y)r\zpl(x,y) [_ log q¢(Y|X)] (10)

where p;(x,y) is the distribution of labeled data.
This is a form of multi-task learning, as this addi-
tional loss also informs the learning of our repre-
sentations.
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3.3 Multi-space Variational
Encoder-Decoders

Finally, we discuss the full proposed method:
the multi-space variational encoder-decoder
(MSVED), which generates the target x(!) from
the source x(*) and labels y(*). Again, we discuss
two cases of this model: labels of the target
sequence are observed and not observed.
MSVED: The graphical model for the MSVED is
given in Fig. 2 (e). Because the labels of target se-
quence are not observed, once again we treat them
as discrete latent variables and make inference
on the these labels conditioned on the target se-
quence. The generative process for the MSVED is
very similar to that of the MSVAE with one impor-
tant exception: while the standard MSVAE condi-
tions the recognition model ¢(z|x) on x, then gen-
erates x itself, the MSVED conditions the recogni-
tion model ¢(z|x(*)) on the source x(*), then gen-
erates the target x(*). Because only the recogni-
tion model is changed, the generative equations for
po(x®), y®) z) are exactly the same as Eqs. 3-5
with x() swapped for x and y*) swapped for y.
The variational lower bound on the conditional log
likelihood, however, is affected by the recognition
model, and thus is computed as:

log pg(x™]x*)

Do (X(t) ) y(t)7 Z|X(5))

2By, log

#)ao 0 x(0) 08 T 2, x0)

=Ey (1) g (y ) ) (B (afcty 108 20 (x |y 1), 2)]

— KL(gy(2[x)||p(2)) + log p=(y")

—log go(yx")] = L, xW[x)) 1
Labeled MSVED: When the complete form of
X(S), y(t), and x®) is observed in our training data,
the graphical model of the labeled MSVED model
is illustrated in Fig. 2 (d). We maximize the vari-
ational lower bound on the conditional log likeli-
hood of observing x*) and y® as follows:

log pg (X(t) ,y® ,X(S))
po(x", y "), z|x(*))
gy (2[x())

> E

2 Byrgy(alx) 108

=E, g, (apxn l0g po(x |y, 2) +log pr (y")] -

KL (gy(2[x)[p(z)) = £;(x"), yDx*) (12)
4 Learning MSVED

Now that we have described our overall model, we
discuss details of the learning process that prove



useful to its success.

4.1 Learning Discrete Latent Variables

One challenge in training our model is that it is not
trivial to perform back-propagation through dis-
crete random variables, and thus it is difficult to
learn in the models containing discrete tags such
as MSVAE or MSVED.* To alleviate this problem,
we use the recently proposed Gumbel-Softmax
trick (Maddison et al., 2014; Gumbel and Lieblein,
1954) to create a differentiable estimator for cate-
gorical variables.

The Gumbel-Max trick (Gumbel and Lieblein,
1954) offers a simple way to draw samples from
a categorical distribution with class probabili-
ties my, m, - - - by using the argmax operation as
follows: one_hot(arg max;[g; + logm;]), where
g1, g2, - - are i.i.d. samples drawn from the Gum-
bel(0,1) distribution.” When making inferences on
the morphological labels y1, y2, - - -, the Gumbel-
Max trick can be approximated by the continuous
softmax function with temperature 7 to generate a
sample vector ¥; for each label i:

-~ exp((log(mij) +9:5)/7)
TN exp((log(mi) + gir) /T

(13)

where IV; is the number of classes of label 7. When
T approaches zero, the generated sample y; be-
comes a one-hot vector. When 7 > 0, ¥; is smooth
w.r.t m;. In experiments, we start with a relatively
large temperature and decrease it gradually.

4.2 Learning Continuous Latent Variables

MSVED aims at generating the target sequence
conditioned on the latent variable z and the tar-
get labels y(). This requires the encoder to
generate an informative representation z encod-
ing the content of the x(*). However, the varia-
tional lower bound in our loss function contains
the KL-divergence between the approximate pos-
terior gy (z|x) and the prior p(z), which is rel-
atively easy to learn compared with learning to
generate output from a latent representation. We
observe that with the vanilla implementation the
KL cost quickly decreases to near zero, setting
¢4(2|x) equal to standard normal distribution. In

* Kingma et al. (2014) solve this problem by marginaliz-
ing over all labels, but this is infeasible in our case where we
have an exponential number of label combinations.

>The Gumbel (0,1) distribution can be sampled by
first drawing v Uniform(0,1) and computing g

— log(—log(u)).

~
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this case, the RNN decoder can easily rely on the
true output of last time step during training to de-
code the next token, which degenerates into an
RNN language model. Hence, the latent variables
are ignored by the decoder and cannot encode any
useful information. The latent variable z learns an
undesirable distribution that coincides with the im-
posed prior distribution but has no contribution to
the decoder. To force the decoder to use the latent
variables, we take the following two approaches
which are similar to Bowman et al. (2016).
KL-Divergence Annealing: We add a coefficient
A to the KL cost and gradually anneal it from zero
to a predefined threshold \y,. At the early stage
of training, we set A to be zero and let the model
first figure out how to project the representation
of the source sequence to a roughly right point in
the space and then regularize it with the KL cost.
Although we are not optimizing the tight varia-
tional lower bound, the model balances well be-
tween generation and regularization. This tech-
nique can also be seen in (Kocisky et al., 2016;
Miao and Blunsom, 2016).

Input Dropout in the Decoder: Besides anneal-
ing the KL cost, we also randomly drop out the
input token with a probability of 5 at each time
step of the decoder during learning. The previous
ground-truth token embedding is replaced with a
zero vector when dropped. In this way, the RNN
decoder could not fully rely on the ground-truth
previous token, which ensures that the decoder
uses information encoded in the latent variables.

5 Architecture for Morphological
Reinflection

Training details: For the morphological reinflec-
tion task, our supervised training data consists of
source x(9), target x(*), and target tags y(*). We
test three variants of our model trained using dif-
ferent types of data and different loss functions.
First, the single-directional supervised model (SD-
Sup) is purely supervised: it only decodes the
target word from the given source word with the
loss function £;(x®, y®|x(*)) from Eq. 12. Sec-
ond, the bi-directional supervised model (BD-
Sup) is trained in both directions: decoding the
target word from the source word and decoding
the source word from the target word, which cor-
responds to the loss function £;(x®), y® |x(%)) 4
L, (x®)|x®) using Eqs. 11-12. Finally, the semi-
supervised model (Semi-sup) is trained to maxi-



Proposed MSVED Baseline MED
Language #LD #ULD | SD-Sup BD-Sup Semi-sup | Single Ensemble
Turkish 12,798 29,608 | 93.25 95.667  97.25¢ 89.56 95.00
Hungarian 19,200 34,025 | 97.00 98.547 99,16 96.46 98.37
Spanish 12,799 72,151 | 88.32 91.50 93.74 94.741F 96.69
Russian 12,798 67,691 | 75.77 83.07 86.80% 83.55" 87.13
Navajo 12,635 6,839 | 85.00 95.37"  98.25¢ 63.62 83.00
Maltese 19,200 46,918 | 84.83 88.217  88.46' 79.59 84.25
Arabic 12,797 53,791 | 79.13 92.62F  93.37¢ 72.58 82.80
Georgian 12,795 46,562 | 89.31 93.63"  95.97¢ 91.06 96.21
German 12,777 56,246 | 75.55 84.08 90.28* 89.11F 92.41
Finnish 12,800 74,687 | 75.59 85.11 91.20* 85.63" 93.18
Avg. Acc - 84.38  90.78"  93.45% | 84.59 90.90

Table 1: Results for Task 3 of SIGMORPHON 2016 on Morphology Reinflection. { represents the best single supervised
model score, I represents the best model including semi-supervised models, and bold represents the best score overall. #LD
and #ULD are the number of supervised data and unlabeled words respectively.
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Figure 3: Model architecture for labeled and unlabeled data.
For the encoder-decoder model, only one direction from the
source to target is given. The classification model is not illus-
trated in the diagram.

mize the variational lower bounds and minimize
the classification cross-entropy error of 10.

LxE,x®) y®)

Ly, (X(s) |X(t))
®) (14)

xX)=a-UX)+
S)) —D(x(t),y

The weight a controls the relative weight between
the loss from unlabeled data and labeled data.

We use Monte Carlo methods to estimate the
expectation over the posterior distribution ¢(z|x)
and ¢(y|x) inside the objective function 14.
Specifically, we draw Gumbel noise and Gaussian
noise one at a time to compute the latent variables
y and z.

The overall model architecture is shown in
Fig. 3. Each character and each label is associ-
ated with a continuous vector. We employ Gated
Recurrent Units (GRUs) for the encoder and de-

[x!
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coder. Let EZ and E denote the hidden state of the
forward and backward encoder RNN at time step
t. u is the hidden representation of x(*) concate-
nating the last hidden state from both directions
ie. [h?, 7| where T is the word length. u is
used as the input for the inference model on z. We
represent z(u) and o2 (u) as MLPs and sample z
from NV (p(u), diag(c?(u))),usingz = pu + o oe,
where € ~ N(0,I). Similarly, we can obtain the
hidden representation of x(*) and use this as input
to the inference model on each label ygt) which is
also an MLP following a softmax layer to generate
the categorical probabilities of target labels.

In decoding, we use 3 types of information in
calculating the probability of the next character :
(1) the current decoder state, (2) a tag context vec-
tor using attention (Bahdanau et al., 2015) over
the tag embeddings, and (3) the latent variable z.
The intuition behind this design is that we would
like the model to constantly consider the lemma
represented by z, and also reference the tag cor-
responding to the current morpheme being gen-
erated at this point. We do not marginalize over
the latent variable z however, instead we use the
mode p of z as the latent representation for z. We
use beam search with a beam size of 8 to perform
search over the character vocabulary at each de-
coding time step.

Other experimental setups: All hyperparame-
ters are tuned on the validation set, and include
the following: For KL cost annealing, A, is set
to be 0.2 for all language settings. For character
drop-out at the decoder, we empirically set 3 to
be 0.4 for all languages. We set the dimension of
character embeddings to be 300, tag label embed-
dings to be 200, RNN hidden state to be 256, and



latent variable z to be 150. We set o the weight
for the unsupervised loss to be 0.8. We train the
model with Adadelta (Zeiler, 2012) and use early-
stop with a patience of 10.

6 Experiments

6.1 Background: SIGMORPHON 2016

SIGMORPHON 2016 is a shared task on mor-
phological inflection over 10 different morpholog-
ically rich languages. There are a total of three
tasks, the most difficult of which is task 3, which
requires the system to output the reinflection of an
inflected word.® The training data format in task
3 is in triples: (source word, target labels, target
word). In the test phase, the system is asked to
generate the target word given a source word and
the target labels. There are a total of three tracks
for each task, divided based the amount of super-
vised data that can be used to solve the problem,
among which track 2 has the strictest limitation of
only using data for the corresponding task. As this
is an ideal testbed for our method, which can learn
from unlabeled data, we choose track 2 and task 3
to test our our model’s ability to exploit this data.

As a baseline, we compare our results with the
MED system (Kann and Schiitze, 2016a) which
achieved state-of-the-art results in the shared task.
This system used an encoder-decoder model with
attention on the concatenated source word and tar-
get labels. Its best result is obtained from an en-
semble of five RNN encoder-decoders (Ensem-
ble). To make a fair comparison with our mod-
els, which don’t use ensembling, we also calcu-
lated single model results (Single).

All models are trained using the labeled training
data provided for task 3. For our semi-supervised
model (Semi-sup), we also leverage unlabeled
data from the training and validation data for tasks
1 and 2 to train variational auto-encoders.

6.2 Results and Analysis

From the results in Tab. 1, we can glean a number
of observations. First, comparing the results of our
full Semi-sup model, we can see that for all lan-
guages except Spanish, it achieves accuracies bet-
ter than the single MED system, often by a large
margin. Even compared to the MED ensembled
model, our single-model system is quite compet-
itive, achieving higher accuracies for Hungarian,

STask 1 is inflection of a lemma word and task 2 is rein-
flection but also provides the source word labels.
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Language Prefix Stem Suffix
Turkish 0.21 1.12 98.75
Hungarian 0.00 0.08  99.79
Spanish 0.09 325  90.74
Russian 0.66 7.70  85.00
Navajo 77.64 18.38  26.40
Maltese 48.81 11.05 98.74
Arabic 68.52 37.04 88.24
Georgian 4.46 0.41 92.47
German 0.84 3.32 89.19
Finnish 0.02 1233 96.16

Table 2: Percentage of inflected word forms that have mod-
ified each part of the lemma (Cotterell et al., 2016) (some
words can be inflected zero or multiple times, thus sums may
not add to 100%).
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Figure 4: Performance on test data w.r.t. the percentage of
suffixing inflection. Points with the same x-axis value corre-
spond to the same language results.

Navajo, Maltese, and Arabic, as well as achieving
average accuracies that are state-of-the-art.

Next, comparing the different varieties of our
proposed models, we can see that the semi-
supervised model consistently outperforms the
bidirectional model for all languages. And simi-
larly, the bidirectional model consistently outper-
forms the single direction model. From these re-
sults, we can conclude that the unlabeled data is
beneficial to learn useful latent variables that can
be used to decode the corresponding word.

Examining the linguistic characteristics of the
models in which our model performs well pro-
vides even more interesting insights. Cotterell
et al. (2016) estimate how often the inflection
process involves prefix changes, stem-internal
changes or suffix changes, the results of which
are shown in Tab. 2. Among the many languages,
the inflection processes of Arabic, Maltese and
Navajo are relatively diverse, and contain a large
amount of all three forms of inflection. By ex-
amining the experimental results together with the
morphological inflection process of different lan-
guages, we found that among all the languages,
Navajo, Maltese and Arabic obtain the largest
gains in performance compared with the ensem-
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Figure 5: Two examples of attention weights on target lin-
guistic labels: Arabic (Left) and Navajo (Right). When a tag
equals None, it means the word does not have this tag.

mood=None
pos=ADJ
per=None

poss=None per=4

aspect=None
aspect=

IPFV/PROG

bled MED system. To demonstrate this visually, in
Fig. 4, we compare the semi-supervised MSVED
with the MED single model w.r.t. the percentage
of suffixing inflection of each language, showing
this clear trend.

This strongly demonstrates that our model is ag-
nostic to different morphological inflection forms
whereas the conventional encoder-decoder with
attention on the source input tends to perform bet-
ter on suffixing-oriented morphological inflection.
We hypothesize that for languages that the inflec-
tion mostly comes from suffixing, transduction is
relatively easy because the source and target words
share the same prefix and the decoder can copy the
prefix of the source word via attention. However,
for languages in which different inflections of a
lemma go through different morphological pro-
cesses, the inflected word and the target word may
differ greatly and thus it is crucial to first analyze
the lemma of the inflected word before generat-
ing the corresponding the reinflection form based
on the target labels. This is precisely what our
model does by extracting the lemma representa-
tion z learned by the variational inference model.

6.3 Analysis on Tag Attention

To analyze how the decoder attends to the linguis-
tic labels associated with the target word, we ran-
domly pick two words from the Arabic and Navajo
test set and plot the attention weight in Fig. 5.
The Arabic word ‘“al-’imaratiyyatu” is an adjec-
tive which means “Emirati”’, and its source word in
the test data is “’imaratiyyin” 7. Both of these are
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declensions of “’imaratiyy”. The source word is

"https://en.wiktionary.org/wiki/$D8%
A5%D9%85%D8%A7%D8%B1%D8%A7%D8SAASDI%8A
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Figure 6: Visualization of latent variables z for Maltese with
35 pseudo-lemma groups in the figure.

singular, masculine, genitive and indefinite, while
the required inflection is plural, feminine, nomi-
native and definite. We can see from the left heat
map that the attention weights are turned on at sev-
eral positions of the word when generating corre-
sponding inflections. For example, “al-” in Ara-
bic is the definite article that marks definite nouns.
The same phenomenon can also be observed in the
Navajo example, as well as other languages, but
due to space limitation, we don’t provide detailed
analysis here.

6.4 Visualization of Latent Lemmas

To investigate the learned latent representations,
in this section we visualize the z vectors, ex-
amining whether the latent space groups together
words with the same lemma. Each sample in SIG-
MORPHON 2016 contains source word and tar-
get words which share the same lemma. We run a
heuristic process to assign pairs of words to groups
that likely share a lemma by grouping together
word pairs for which at least one of the words in
each pair shares a surface form. This process is
not error free — errors may occur in the case where
multiple lemmas share the same surface form — but
in general the groupings will generally reflect lem-
mas except in these rare erroneous cases, SO we
dub each of these groups a pseudo-lemma.

In Fig. 6, we randomly pick 1500 words from
Maltese and visualize the continuous latent vec-
tors of these words. We compute the latent vec-
tors as /i4(x) in the variational posterior inference
(Eq. 6) without adding the variance. As expected,
words that belong to the same pseudo-lemma (in
the same color) are projected into adjacent points
in the two-dimensional space. This demonstrates
that the continuous latent variable captures the
canonical form of a set of words and demonstrates
the effectiveness of the proposed representation.



Language Src Word Tgt Labels Gold Tgt MED Ours
kocama pos=N,poss=PSS18S,case=ESS,num=SG kocamda kocama kocamda
Turkish yaratmamdan pos=N,case=NOM,num=SG yaratma yaratma yaratman
bitimizde pos=N,tense=PST,per=1,num=SG bittik bitiydik bittim
ndammhomli pos=V,polar=NEG,tense=PST,num=SG  tindammhiex ndammejthiex tindammhiex
Maltese tqozzhieli pos=V,polar=NEG,tense=PST,num=SG tqozzx tqozzx qazzejtx
tissikkmuhomli pos=V,polar=POS, tense=PST,num=PL ssikkmulna tissikkmulna  tissikkmulna
verovapaatta pos=ADIJ,case=PRT,num=PL verovapaita verovappaita verovapaita
Finnish turrumme pos=V,mood=POT,tense=PRS,num=PL turtunemme turtunemme turrunemme
sukunimin pos=N,case=PRIV,num=PL sukunimitt sukunimeitta  sukunimeitta

Table 3: Randomly picked output examples on the test data. Within each block, the first, second and third lines are outputs that
ours is correct and MED’s is wrong, ours is wrong and MED’s is correct, both are wrong respectively.

6.5 Analyzing Effects of Size of Unlabeled
Data

From Tab. 1, we can see that semi-supervised
learning always performs better than supervised
learning without unlabeled data. In this section,
we investigate to what extent the size of unlabeled
data can help with performance. We process a
German corpus from a 2017 Wikipedia dump and
obtain more than 100,000 German words. These
words are ranked in order of occurrence frequency
in Wikipedia. The data contains a certain amount
of noise since we did not apply any special pro-
cessing. We shuffle all unlabeled data from both
the Wikipedia and the data provided in the shared
task used in previous experiments, and increase
the number of unlabeled words used in learning
by 10,000 each time, and finally use all the un-
labeled data (more than 150,000 words) to train
the model. Fig. 7 shows that the performance
on the test data improves as the amount of unla-
beled data increases, which implies that the un-
supervised learning continues to help improve the
model’s ability to model the latent lemma repre-
sentation even as we scale to a noisy, real, and rela-
tively large-scale dataset. Note that the growth rate
of the performance grows slower as more data is
added, because although the number of unlabeled
data is increasing, the model has seen most word
patterns in a relatively small vocabulary.

6.6 Case Study on Reinflected Words

In Tab. 3, we examine some model outputs on the
test data from the MED system and our model re-
spectively. It can be seen that most errors of MED
and our models can be ascribed to either over-copy
or under-copy of characters. In particular, from the
complete outputs we observe that our model tends
to be more aggressive in its changes, resulting in
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Figure 7: Performance on the German test data w.r.t. the

amount of unlabeled Wikipedia data.

it performing more complicated transformations,
both successfully (such as Maltese “ndammhomli”
to “tindammhiex”) and unsuccessfully (“tqozzx”
to “qazzejtx”). In contrast, the attentional encoder-
decoder model is more conservative in its changes,
likely because it is less effective in learning an ab-
stracted representation for the lemma, and instead
copies characters directly from the input.

7 Conclusion and Future Work

In this work, we propose a multi-space variational
encoder-decoder framework for labeled sequence
transduction problem. The MSVED performs well
in the task of morphological reinflection, outper-
forming the state of the art, and further improv-
ing with the addition of external unlabeled data.
Future work will adapt this framework to other
sequence transduction scenarios such as machine
translation, dialogue generation, question answer-
ing, where continuous and discrete latent variables
can be abstracted to guide sequence generation.
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