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Abstract

Despite sequences being core to NLP,
scant work has considered how to handle
noisy sequence labels from multiple anno-
tators for the same text. Given such anno-
tations, we consider two complementary
tasks: (1) aggregating sequential crowd la-
bels to infer a best single set of consen-
sus annotations; and (2) using crowd an-
notations as training data for a model that
can predict sequences in unannotated text.
For aggregation, we propose a novel Hid-
den Markov Model variant. To predict se-
quences in unannotated text, we propose
a neural approach using Long Short Term
Memory. We evaluate a suite of meth-
ods across two different applications and
text genres: Named-Entity Recognition in
news articles and Information Extraction
from biomedical abstracts. Results show
improvement over strong baselines. Our
source code and data are available online1.

1 Introduction

Many important problems in Natural Language
Processing (NLP) may be viewed as sequence la-
beling tasks, such as part-of-speech (PoS) tagging,
named-entity recognition (NER), and Information
Extraction (IE). As with other machine learning
tasks, automatic sequence labeling typically re-
quires annotated corpora on which to train pre-
dictive models. While such annotation was tra-
ditionally performed by domain experts, crowd-
sourcing has become a popular means to acquire
large labeled datasets at lower cost, though anno-
tations from laypeople may be lower quality than
those from domain experts (Snow et al., 2008). It

1 Soure code and biomedical abstract data:
www.github.com/thanhan/seqcrowd-acl17,
www.byronwallace.com/EBM_abstracts_data

is therefore essential to model crowdsourced la-
bel quality, both to estimate individual annotator
reliability and to aggregate individual annotations
to induce a single set of “reference standard” con-
sensus labels. While many models have been pro-
posed for aggregating crowd labels for binary or
multiclass classification problems (Sheshadri and
Lease, 2013), far less work has explored crowd-
based annotation of sequences (Finin et al., 2010;
Hovy et al., 2014; Rodrigues et al., 2014).

In this paper, we investigate two complemen-
tary challenges in using sequential crowd labels:
how to best aggregate them (Task 1); and how to
accurately predict sequences in unannotated text
given training data from the crowd (Task 2). For
aggregation, one might want to induce a single set
of high-quality consensus annotations for various
purposes: (i) for direct use at run-time (when a
given application requires human-level accuracy
in identifying sequences); (ii) for sharing with oth-
ers; or (iii) for training a predictive model.

When human-level accuracy in tagging of se-
quences is not crucial, automatic labeling of unan-
notated text is typically preferable, as it is more ef-
ficient, scalable, and cost-effective. Given a train-
ing set of crowd labels, how can we best predict
sequences in unannotated text? Should we: (i)
consider Task 1 as a pre-processing step and train
the model using consensus labels; or (ii) instead
directly train the model on all of the individual an-
notations, as done by Yang et al. (2010)? We in-
vestigate both directions in this work.

Our approach is to augment existing sequence
labeling models such as HMMs (Rabiner and
Juang, 1986) and LSTMs (Hochreiter and Schmid-
huber, 1997; Lample et al., 2016) by introduc-
ing an explicit ”crowd component”. For HMMs,
we model this crowd component by including ad-
ditional parameters for worker label quality and
crowd label variables. For the LSTM, we intro-
duce a vector representation for each annotator. In
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both cases, the crowd component models both the
noise from labels and the label quality from each
annotator. We find that principled combination of
the “crowd component” with the “sequence com-
ponent” yields strong improvement.

For evaluation, we consider two practical ap-
plications in two text genres: NER in news and
IE from medical abstracts. Recognizing named-
entities such as people, organizations or loca-
tions can be viewed as a sequence labeling task
in which each label specifies whether each word
is Inside, Outside or Beginning (IOB) a named-
entity. For this task, we consider the English por-
tion of the CoNLL-2003 dataset (Tjong Kim Sang
and De Meulder, 2003), using crowd labels col-
lected by Rodrigues et al. (2014).

For the IE application, we use a set of biomedi-
cal abstracts that describe Randomized Controlled
Trials (RCTs). The crowdsourced annotations
comprise labeled text spans that describe the pa-
tient populations enrolled in the corresponding
RCTs. For example, an abstract may contain the
text: we recruited and enrolled diabetic patients.
Identifying these sequences is useful for down-
stream systems that process biomedical literature,
e.g., clinical search engines (Huang et al., 2006;
Schardt et al., 2007; Wallace et al., 2016).

Contributions. We present a systematic inves-
tigation and evaluation of alternative methods for
handling and utilizing crowd labels for sequen-
tial annotation tasks. We consider both how to
best aggregate sequential crowd labels (Task 1)
and how to best predict sequences in unannotated
text given a training set of crowd annotations (Task
2). As part of this work, we propose novel models
for working with noisy sequence labels from the
crowd. Reported experiments both benchmark ex-
isting state-of-the-art approaches (sequential and
non-sequential) and show that our proposed mod-
els achieve best-in-class performance. As noted in
the Abstract, we have also shared our sourcecode
and data online for use by the community.

2 Related Work

We briefly review two separate threads of relevant
prior work: (1) sequence labeling models; and (2)
aggregation of crowdsourcing annotations.

Sequence labeling. Early work on learning for
sequential tasks used HMMs (Bikel et al., 1997).
HMMs are a class of generative probabilistic mod-
els comprising two components: an emission

model from a hidden state to an observation and
a transition model from a hidden state to the next
hidden state. Later work focused on discriminative
models such as Maximum Entropy Models (Chieu
and Ng, 2002) and Conditional Random Fields
(CRFs) (Lafferty et al., 2001). These were able
to achieve strong predictive performance by ex-
ploiting arbitrary features, but they may not be the
best choice for label aggregation. Also, compared
to the simple HMM model, discriminative sequen-
tially structured models require more complex op-
timization and are generally more difficult to ex-
tend. Here we argue for the generative HMMs
for our first task of aggregating crowd labels. The
generative nature of HMMs is a good fit for exist-
ing crowd modeling techniques and also enables
very efficient parameter estimation.

In addition to the supervised setting, previ-
ous work has studied unsupervised HMMs, e.g.,
for PoS induction (Goldwater and Griffiths, 2007;
Johnson, 2007). These works are similar to our
work in trying to infer the hidden states without
labeled data. Our graphical model is different in
incorporating signal from the crowd labels.

For Task 2 (training predictive models), we con-
sider CRFs and LSTMs. CRFs are undirected,
conditional models that can exploit arbitrary fea-
tures. They have achieved strong performance on
many sequence labeling tasks (McCallum and Li,
2003), but they depend on hand-crafted features.
Recent work has considered end-to-end neural ar-
chitectures that learn features, e.g., Convolutional
Neural Networks (CNNs) (Collobert et al., 2011;
Kim, 2014; Zhang and Wallace, 2015) and LSTMs
(Lample et al., 2016). Here we modify the LSTM
model proposed by Lample et al. (2016) by aug-
menting the network with ‘crowd worker vectors’.

Crowdsourcing. Acquiring labeled data is crit-
ical for training supervised models. Snow et al.
(2008) proposed using Amazon Mechanical Turk
to collect labels in NLP quickly and at low cost,
albeit with some degradation in quality. Subse-
quent work has developed models for improving
aggregate label quality (Raykar et al., 2010; Felt
et al., 2015; Kajino et al., 2012; Bi et al., 2014;
Liu et al., 2012; Hovy et al., 2013). Sheshadri and
Lease (2013) survey and benchmark methods.

However, these models are almost all in the
binary or multiclass classification setting; only a
few have considered sequence labeling. Dredze
et al. (2009) proposed a method for learning a CRF
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model from multiple labels (although the identi-
ties of the annotators or workers were not used).
Rodrigues et al. (2014) extended this approach to
account for worker identities, providing a joint
”crowd-CRF” model. They collected a dataset of
crowdsourced labels for a portion of the CoNLL
2003 dataset. Using this, they showed that their
model outperformed Dredze et al. (2009)’s model
and other baselines. However, due to the technical
difficulty of the joint approach with CRFs, they re-
sorted to strong modeling assumptions. For exam-
ple, their model assumes that for each word, only
one worker provides the correct answer while all
others label the word completely randomly. While
this assumption captures some aspects of label
quality, it is potentially problematic, such as for
‘easy words’ labeled correctly by all workers.

More recently, ? proposed HMM models for
aggregating crowdsourced discourse segmentation
labels. However, they did not consider the general
sequence labeling setting. Their method includes
task-specific assumptions, e.g., that discourse seg-
ment lengths follow some empirical distribution
estimated from data. In the absence of a gold stan-
dard, they evaluated by checking that workers ac-
curacies are consistent and by comparing their two
models to each other. We include their approach
along with Rodrigues et al. (2014) as a baseline in
our evaluation.

3 Methods

We present our Task 1 HMM approach in Section
3.1 and our Task 2 LSTM approach in Section 3.2.

3.1 HMMs with Crowd Workers

Model: We first define a standard HMM with hid-
den states hi, observations vi, transition parameter
vectors τ hi

and emission parameter vectors Ωhi
:

hi+1|hi ∼ Discrete(τ hi
) (1)

vi|hi ∼ Discrete(Ωhi
) (2)

The discrete distributions here are governed by
Multinomials. In the context of our task, vi is the
word at position i and hi is the true, latent class of
vi (e.g., entity or non-entity).

For the crowd component, assume there are n
classes, and let lij be the label for word i provided
by worker j. Further, let C(j) be the confusion
matrix for worker j, i.e., C

(j)
k is a vector of size n

in which element k′ is the probability of worker j

lij
Discrete

C(j)

hihi−1 hi+1

m workers

Discrete

vi

Ω

Figure 1: The factor graph for our HMM-Crowd
model. Dotted rectangles are gates, where the
value of hi is used to select the parameters for the
Multinomial governing the Discrete distribution.

providing the label k′ for a word of true class k:

lij |hi ∼ Discrete(C
(j)
hi

) (3)

Figure 1 shows the factor graph of this model,
which we call HMM-Crowd. Note that we assume
that individual crowdworker labels are condition-
ally independent given the (hidden) true label.

A common problem with crowdsourcing mod-
els is data sparsity. For workers who provide only
a few labels, it is hard to derive a good estimate
of their confusion matrices. This is exacerbated
when the label distribution is imbalanced, e.g.,
most words are not part of a named entity, con-
centrating the counts in a few confusion matrix
entries. Solutions for this problem include hierar-
chical models of ‘worker communities’ (Venanzi
et al., 2014) or correlations between confusion ma-
trix entries (Nguyen et al., 2016). Although ef-
fective, these methods are also quite computation-
ally expensive. For our models, to keep parame-
ter estimation efficient, we use a simpler solution
of ‘collapsing’ the confusion matrix into a ‘confu-
sion vector’. For worker j, instead of having the
n × n matrix C(j), we use the n × 1 vector C′(j)

where C′(j)
k is the probability of worker j labeling

a word with true class k correctly. We also smooth
the estimate of C′ with prior counts as in (Liu and
Wang, 2012; Kim and Ghahramani, 2012).
Learning: We use the Expectation Maximization
(EM) algorithm (Dempster et al., 1977) to learn
the parameters (τ ,Ω,C′), given the observations
(all the words V and all the worker labels L).

In the E-step, given the current estimates of the
parameters, we take a forward and a backward
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pass in the HMM to infer the hidden states, i.e. to
calculate p(hi|V,L) and p(hi, hi+1|V,L) for all
appropriate i. Let α(hi) = p(hi, v1:i, l1:i) where
v1:i are the words from position 1 to i and l1:i are
the crowd labels for these words from all work-
ers. Similarly, let β(hi) = p(vi+1:n, li+1:n|hi).
We have the recursions:

α(hi) =
∑

hi−1

p(vi|hi)p(hi|hi−1)
∏

j

p(lij |hi)α(hi−1)

(4)

β(hi) =
∑

hi+1

p(hi+1|hi)p(vi+1|hi+1)

∏

j

p(li+1,j |hi+1)β(hi+1) (5)

These are the standard α and β recursions for
HMMs augmented with the crowd model: the
product

∏
j over the workers j who have provided

labels for word i (or i + 1). The posteriors
can then be easily evaluated: p(hi|V,L) ∝
α(hi)β(hi) and p(hi, hi+1|V,L) ∝
α(hi)p(hi+1|hi)p(vi+1|hi+1)β(hi+1)

In the standard M-step, the parameters are es-
timated using maximum likelihood. However, we
found a Variational Bayesian (VB) update proce-
dure for the HMM parameters similar to (John-
son, 2007; Beal, 2003) provides some improve-
ment and stability. We first define the Dirichlet
priors over the transition and emission parameters:

p(τ hi
) = Dir(at) (6)

p(Ωhi
) = Dir(ae) (7)

With these priors, the variational M-step updates
the parameters as follows2:

τ h′|h =
exp{Ψ(Eh′|h + at)}
exp{Ψ(Eh + nat)}

(8)

Ωv|h =
exp{Ψ(Ev|h + ae)}
exp{Ψ(Eh +mae)}

(9)

where Ψ is the Digamma function, n is the num-
ber of states and m is the number of observa-
tions. E denotes the expected counts, calculated
from the posteriors inferred in the E-step. Eh′|h
is the expected number of times the HMM transi-
tioned from state h to state h′, where the expec-
tation is with respect to the posterior distribution
p(hi, hi+1|V,L) that we infer in the E step:

Eh′|h =
∑

i

p(hi = h, hi+1 = h′|V,L) (10)

2See Beal (2003) for the derivation and Johnson (2007)
for further discussion for the Variational Bayesian approach.

Similarly, Eh is the expected number of times the
HMM is at state h: Eh =

∑
i p(hi = h|V,L) and

Ev|h is the expected number of times the HMM
emits the observation v from the state h: Ev|h =∑

i,vi=v p(hi = h|V,L).
For the crowd parameters C′(j), we use the

(smoothed) maximum likelihood estimate:

C
′(j)
k =

E
(j)
k|k + ac

E
(j)
k + nac

(11)

where ac is the smoothing parameter and E
(j)
k|k is

the expected number of times that worker j cor-
rectly labeled a word of true class k as k while E

(j)
k

is the expected total number of words belonging to
class k worker j has labeled. Again, the expecta-
tion in E is taken under the posterior distributions
that we infer in the E step.

3.2 Long Short Term Memory with Crowds
For Task 2, we extend the LSTM architecture
(Hochreiter and Schmidhuber, 1997) for NER
(Lample et al., 2016) to account for noisy crowd-
sourced labels (this can be easily adapted to other
sequence labeling tasks). In this model, the sen-
tence input is first fed into an LSTM block (which
includes character- and word-level bi-directional
LSTM units). The LSTM block’s output then be-
comes input to a (fully connected) hidden layer,
which produces a vector of tags scores for each
word. This tag score vector is the word-level pre-
diction, representing the likelihood of the word be-
ing from each tag. All the tags scores are then fed
into a ‘CRF layer’ that ‘connects’ the word-level
predictions in the sentence and produces the final
output: the most likely sequence of tags.

We introduce a crowd representation in which a
worker vector represents the noise associated with
her labels. In other words, the parameters in the
original architecture learns the correct sequence
labeling model while the crowd vectors add noise
to its predictions to ‘explain’ the lower quality of
the labels. We assume a perfect worker has a zero
vector as her representation while an unreliable
worker is represented by a large magnitude vector.
At test time, we ignore the crowd component and
make predictions by feeding the unlabeled sen-
tence into the original LSTM architecture. At train
time, an example consists of the labeled sentence
and the ID of the worker who provided the labels.
Worker IDs are mapped to vector representations
and incorporated into the LSTM architecture.
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LSTM

Hidden Layer

Tags Scores

CRF

+

Crowd Vector

Worker ID

Sentence
...

Figure 2: The LSTM-Crowd model. The Crowd
Vector is added (element-wise) to the Tags Scores.

LSTM

Hidden Layer

Tags Scores

CRF

Crowd Vector

Worker ID

Sentence
...

Figure 3: The LSTM-Crowd-cat model. The
crowd vectors provide additional input for the Hid-
den Layer (they are effectively concatenated to the
output of the LSTM block).

We propose two strategies for incorporating the
crowd vector into the LSTM: (1) adding the crowd
vector to the tags scores and (2) concatenating the
crowd vector to the output of the LSTM block.

LSTM-Crowd. The first strategy is illustrated
in Figure 2. We set the dimension of the crowd
vectors to be equal to the number of tags and
the addition is element-wise. In this strategy, the
crowd vectors have a nice interpretation: the tag-
conditional noise for the worker. This is useful for
worker evaluation and intelligent task routing (i.e.
assigning the right work to the right worker).

LSTM-Crowd-cat. The second strategy is il-
lustrated in Figure 3. We set the crowd vectors to
be additional inputs for the Hidden Layer (along
with the LSTM block output). In this way, we are
free to set the dimension of the crowd vectors and
we have a more flexible model of worker noise.
This comes with a cost of reduced interpretability
and additional parameters in the hidden layer.

For both strategies, the crowd vectors are ran-
domly initialized and learned in the same LSTM
architecture using Back Propagation (Rumelhart
et al., 1985) and Stochastic Gradient Descent
(SGD) (Bottou, 2010).

Dataset Application Size Gold Crowd
CoNLL’03 NER 1393 All 400
Medical IE 5000 200 All

Table 1: Datasets used for each application. We
list the total number of articles/abstracts and the
number which have Gold/Crowd labels.

4 Evaluation Setup

4.1 Datasets & Tuning

NER. We use the English portion of the CoNLL-
2003 dataset (Tjong Kim Sang and De Meulder,
2003), which includes over 21,000 annotated sen-
tences from 1,393 news articles split into 3 sets:
train, validation and test. We also use crowd la-
bels collected by Rodrigues et al. (2014) for 400
articles in the train set3. For Task 1 (aggregating
crowd labels), to avoid overfitting, we split these
400 articles into 50% validation and 50% test4.
For Task 2 (predicting sequences on unannotated
text), we follow Rodrigues et al. (2014) in using
the CoNLL validation and test sets.

Biomedical IE. We use 5,000 medical paper
abstracts describing randomized control trials
(RCTs) involving people. Each abstract is an-
notated by roughly 5 Amazon Mechanical Turk
workers. Annotators were asked to mark all text
spans in a given abstract which identify the pop-
ulation enrolled in the clinical trial. The anno-
tations are therefore binary: inside or outside a
span. In addition to annotations collected from
laypeople via Mechanical Turk, we also use gold
annotations by medical students for a small set of
200 abstracts, which we split into 50% validation
and 50% test. For Task 1, we run methods being
compared on all 5,000 abstracts, but we evaluate
them only using the validation/test set. For Task 2,
the validation and test sets are held out. Table 1
presents key statistics of datasets used.

Tuning: In all experiments, validation set results
are used to tune the models hyper-parameters. For
HMM-Crowd, we have a smoothing parameter
and two Dirichlet priors. For our two LSTMs, we
have a L2 regularization parameter. For LSTM-
Crowd-cat, we also have the crowd vector dimen-

3http://www.fprodrigues.com/software/
crf-ma-sequence-labeling-with-multiple-annotators/

4Rodrigues et al. (2014)’s results on the ‘training set’ are
not directly comparable to ours since they do not partition the
crowd labels into validation and test sets.
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sion. For each hyper-parameter, we consider a few
(less then 5) different parameter settings for light
tuning. We report results achieved on the test set.

4.2 Baselines
Task 1. For aggregating crowd labels, we consider
the following baselines:

• Majority Voting (MV) at the token level. Ro-
drigues et al. (2014) show that this generally
performs better than MV at the entity level.

• Dawid and Skene (1979) weighted voting at
the token level. We tested both a popular
public implementation5 of Dawid-Skene and
our own and found that ours performed better
(likely due to smoothing), so we report it.

• MACE (Hovy et al., 2013), using the authors’
public implementation6.

• Dawid-Skene then HMM. We propose a sim-
ple heuristic to aggregate sequential crowd
labels: (1) use Dawid and Skene (1979) to in-
duce consensus labels from individual crowd
labels; (2) train a HMM using the input text
and consensus labels; and then (3) use the
trained HMM to predict and output labels for
the input text. We also tried using a CRF or
LSTM as the sequence labeler but found the
HMM performed best. This is not surprising:
CRFs and LSTM are good at predicting un-
seen sequences, whereas the predictions here
are on the seen training sequences.

• Rodrigues et al. (2014)’s CRF with Multiple
Annotators (CRF-MA). We use the source
code provided by the authors.

• ?’s Interval-dependent (ID) HMM using the
authors’ source code7. Since they assume
binary labels, we can only apply this to the
biomedical IE task.

For non-sequential aggregation baselines, we eval-
uate majority voting (MV) and Dawid and Skene
(1979) as perhaps the most widely known and
used in practice. A recent benchmark evalua-
tion of aggregation methods for (non-sequential)
crowd labels found that classic Dawid-Skene was
the most consistently strong performing method

5https://github.com/ipeirotis/Get-Another-Label
6http://www.isi.edu/publications/licensed-sw/mace/
7https://academiccommons.columbia.edu/catalog/ac:199939

among those considered, despite its age, while
majority voting was often outperformed by other
methods (Sheshadri and Lease, 2013).

Dawid and Skene (1979) models a confusion
matrix for each annotator, using EM estimation of
these matrices as parameters and the true token la-
bels as hidden variables. This is roughly equiv-
alent to our proposed HMM-Crowd model (Sec-
tion 3), but without the HMM component.

Task 2. To predict sequences on unannotated text
when trained on crowd labels, we consider two
broad approaches: (1) directly train the model on
all individual crowd annotations; and (2) induce
consensus labels via Task 1 and train on them.

For approach (1), we report as baselines:

• Rodrigues et al. (2014)’s CRF-MA

• Lample et al. (2016)’s LSTM trained on all
crowd labels (ignoring worker IDs)

For approach (2), we report as baselines:

• Majority Voting (MV) then Conditional Ran-
dom Field (CRF). We train the CRF using the
CRF Suite package (Okazaki, 2007) with the
same features as in Rodrigues et al. (2014),
who also report this baseline.

• Lample et al. (2016)’s LSTM trained on
Dawid-Skene (DS) consensus labels.

4.3 Metrics
NER. We use the CoNLL 2003 metrics of entity-
level precision, recall and F1. The predicted entity
must match the gold entity exactly (i.e. no partial
credit is given for partial matches).

Biomedical IE. The above metrics are overly
strict for the biomedical IR task, in which an-
notated sequences are typically far longer than
named-entities. We therefore ‘relax’ the metric to
credit partial matches as follows. For each pre-
dicted positive contiguous text span, we calculate:

Precision =
# true positive words

# words in this predicted span

For example, for a predicted span of 10 words, if 6
words are truly positive, the Precision is 60%. We
evaluate this ‘local’ precision for each predicted
span and then take the average as the ‘global’ pre-
cision. Similarly, for each gold span, we calculate:

Recall =
# words in a predicted span
# words in this gold span
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Method Precision Recall F1
Majority Vote 78.35 56.57 65.71
MACE 65.10 69.81 67.37
Dawid-Skene (DS) 78.05 65.78 71.39
CRF-MA 80.29 51.20 62.53
DS then HMM 76.81 71.41 74.01
HMM-Crowd 77.40 72.29 74.76

Table 2: NER results for Task 1 (crowd label ag-
gregation). Rows 1-3 show non-sequential meth-
ods while Rows 4-6 show sequential methods.

The recall scores for all the gold spans are again
averaged to get a global recall score.

For the biomedical IE task, because we have
gold labels for only a small set of 200 abstracts,
we create 100 bootstrap re-samples of the (pre-
dicted and gold) spans and perform the evaluation
for each re-sample. We then report the mean and
standard deviation over these 100 re-samples.

5 Evaluation Results

5.1 Named-Entity Recognition (NER)

Table 2 presents Task 1 results for aggregat-
ing crowd labels. For the non-sequential aggre-
gation baselines, we see that Dawid and Skene
(1979) outperforms both majority voting and
MACE (Hovy et al., 2013). For sequential
methods, our heuristic ‘Dawid-Skene then HMM’
method performs surprisingly well, nearly as well
as HMM-Crowd. However, we will see that this
heuristic does not work as well for biomedical IR.

Rodrigues et al. (2014)’s CRF-MA achieves the
highest Precision of all methods, but surprisingly
the lowest F1. We use their public implementa-
tion but observe different results from what they
report (we observed similar results when using all
the crowd data without validation/test split as they
do). We suspect their released source code may be
optimized for Task 2, though we could not reach
the authors to verify this.

Table 3 reports NER results for Task 2: predict-
ing sequences on unannotated text when trained on
crowd labels. Results for Rodrigues et al. (2014)’s
CRF-MA are reproduced using their public imple-
mentation and match their reported results. While
CRF-MA outperforms ‘Majority Vote then CRF’
as the authors reported, and achieves the highest
Recall of all methods, its F1 results are generally
not competitive with other methods.

Methods based on Lample et al. (2016)’s LSTM
generally outperform the CRF methods. Adding a
crowd component to the LSTM yields marked im-
provement of 2.5-3 points F1 vs. the LSTM trained
on individual crowd annotations or consensus MV
annotations. LSTM-Crowd (trained on individual
labels) and ‘HMM-Crowd then LSTM’ (LSTM
trained on HMM consensus labels) offer different
paths to achieving comparable, best results.

5.2 Biomedical Information Extraction (IE)

Tables 4 and 5 present Biomedical IE results for
Tasks 1 and 2, respectively. We were unable to run
Rodrigues et al. (2014)’s CRF-MA public imple-
mentation on the Biomedical IE dataset (due to an
‘Out of Memory Error’ with 8gb max heapsize).

For Task 1, Majority Vote achieves nearly 92%
Precision but suffers from very low Recall. As
with NER, HMM-Crowd achieves the highest Re-
call and F1, showing 2 points F1 improvement
here over non-sequential Dawid and Skene (1979).
In contrast with the NER results, our heuristic
‘Dawid-Skene then HMM’ performs much worse
for Biomedical IE. In general, we expect heuristics
to be less robust than principled methods.

For Task 2, as with NER, we again see that
LSTM-Crowd (trained on individual labels) and
‘HMM-Crowd then LSTM’ (LSTM trained on
HMM consensus labels) offer different paths
to achieving fairly comparable results. While
LSTM-Crowd-cat again achieves slightly lower
F1, simply training Lample et al. (2016)’s LSTM
directly on all crowd labels performs much better
than seen earlier with NER, likely due to the rela-
tively larger size of this dataset (see Table 1). To
further investigate, we study the performances of
these LSTM models as a function of training data
available. In Figure 4, we see that as the amount
of training data decreases, our crowd-augmented
LSTM models produce greater relative improve-
ment compared to the original LSTM architecture.

Table 6 presents an example from Task 1 of
a sentence with its gold span, annotations and
the outputs from Dawid-Skene and HMM-Crowd.
Dawid-Skene aggregates labels based only on the
crowd labels while our HMM-Crowd combines
that with a sequence model. HMM-Crowd is able
to return the longer part of the correct span.
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Method Precision Recall F1
CRF-MA (Rodrigues et al., 2014) 49.40 85.60 62.60
LSTM (Lample et al., 2016) 83.19 57.12 67.73
LSTM-Crowd 82.38 62.10 70.82
LSTM-Crowd-cat 79.61 62.87 70.26
Majority Vote then CRF 45.50 80.90 58.20
Dawid-Skene then LSTM 72.30 61.17 66.27
HMM-Crowd then CRF 77.40 61.40 68.50
HMM-Crowd then LSTM 76.19 66.24 70.87
LSTM on Gold Labels (upper-bound) 85.27 83.19 84.22

Table 3: NER results on Task 2: predicting sequences on unannotated text when trained on crowd labels.
Rows 1-4 train the predictive model using individual crowd labels, while Rows 5-8 first aggregate crowd
labels then train the model on the induced consensus labels. The last row indicates an upper-bound from
training on gold labels. LSTM-Crowd and LSTM-Crowd-cat are described in Section 3.

Method Precision Recall F1 std
Majority Vote 91.89 48.03 63.03 2.6
MACE 45.01 88.49 59.63 1.7
Dawid-Skene 77.85 66.77 71.84 1.7
Dawid-Skene then HMM 72.49 58.77 64.86 2.0
ID HMM (?) 78.99 68.10 73.11 1.9
HMM-Crowd 72.81 75.14 73.93 1.8

Table 4: Biomedical IE results for Task 1: aggregating sequential crowd labels to induce consensus
labels. Rows 1-3 indicate non-sequential baselines. Results are averaged over 100 bootstrap re-samples.
We report the standard deviation of F1, std, due to this dataset having fewer gold labels for evaluation.

Method Precision Recall F1 std
LSTM (Lample et al., 2016) 77.43 61.13 68.27 1.9
LSTM-Crowd 73.83 63.93 68.47 1.6
LSTM-Crowd-cat 68.08 68.41 68.20 1.8
Majority Vote then CRF 93.71 33.16 48.92 2.8
Dawid-Skene then LSTM 70.21 65.26 67.59 1.7
HMM-Crowd then CRF 79.54 54.76 64.81 2.0
HMM-Crowd then LSTM 73.65 64.64 68.81 1.9

Table 5: Biomedical IE results for Task 2. Rows 1-3 correspond to training on all labels, while Rows
4-7 first aggregate crowd labels then train the sequence labeling model on consensus annotations.
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Gold ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea
in ambulatory pediatric patients requiring an emergency room visit

Annotations ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea

(2 out of 5) in ambulatory pediatric patients requiring an emergency room visit

Dawid-Skene ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea
in ambulatory pediatric patients requiring an emergency room visit

HMM-Crowd ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea
in ambulatory pediatric patients requiring an emergency room visit

Table 6: An example from the medical abstract dataset for task 1: inferring true labels. Out of 5 an-
notations, only 2 have identified a positive span (the other 3 are empty). Dawid-Skene is able to assign
higher weights to the minority of 2 annotations to return a part of the correct span. HMM-Crowd returns
a longer part of the span, which we believe is due to useful signal from its sequence model.

Figure 4: F1 scores in Task 2 for biomedical IE
with varying percentages of training data.

6 Conclusions and Future Work

Given a dataset of crowdsourced sequence labels,
we presented novel methods to: (1) aggregate se-
quential crowd labels to infer a best single set of
consensus annotations; and (2) use crowd annota-
tions as training data for a model that can predict
sequences in unannotated text. We evaluated our
approaches on two datasets representing different
domains and tasks: general NER and biomedical
IE. Results showed that our methods show im-
provement over strong baselines.

We expect our methods to be applicable to and
similarly benefit other sequence labeling tasks,
such as POS tagging and chunking (Hovy et al.,
2014). Our methods also provide an estimate of
each worker’s label quality, which can be trans-
fered between tasks and is useful for error analy-
sis and intelligent task routing (Bragg et al., 2014).
We also plan to investigate extension of the crowd
component in our HMM method with hierarchical
models, as well as a fully-Bayesian approach.
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