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Abstract

With the rapid growth of knowledge bases
(KBs) on the web, how to take full advan-
tage of them becomes increasingly impor-
tant. Question answering over knowledge
base (KB-QA) is one of the promising ap-
proaches to access the substantial knowl-
edge. Meanwhile, as the neural network-
based (NN-based) methods develop, NN-
based KB-QA has already achieved im-
pressive results. However, previous work
did not put more emphasis on question
representation, and the question is con-
verted into a fixed vector regardless of its
candidate answers. This simple represen-
tation strategy is not easy to express the
proper information in the question. Hence,
we present an end-to-end neural network
model to represent the questions and their
corresponding scores dynamically accord-
ing to the various candidate answer aspect-
s via cross-attention mechanism. In ad-
dition, we leverage the global knowledge
inside the underlying KB, aiming at inte-
grating the rich KB information into the
representation of the answers. As a result,
it could alleviates the out-of-vocabulary
(OOV) problem, which helps the cross-
attention model to represent the question
more precisely. The experimental result-
s on WebQuestions demonstrate the effec-
tiveness of the proposed approach.

1 Introduction
As the amount of the knowledge bases (KBs)
grows, people are paying more attention to seeking
effective methods for accessing these precious in-
tellectual resources. There are several tailor-made
languages designed for querying KBs, such as

SPARQL (Prudhommeaux and Seaborne, 2008).
However, to handle such query languages, users
are required to not only be familiar with the partic-
ular language grammars, but also be aware of the
architectures of the KBs. By contrast, knowledge
base-based question answering (KB-QA) (Unger
et al., 2014), which takes natural language as
query language, is a more user-friendly solution,
and has become a research focus in recent years.

Given natural language questions, the goal of
KB-QA is to automatically return answers from
the KB. There are two mainstream research direc-
tions for this task: semantic parsing-based (SP-
based) (Zettlemoyer and Collins, 2009, 2012; K-
wiatkowski et al., 2013; Cai and Yates, 2013; Be-
rant et al., 2013; Yih et al., 2015, 2016; Red-
dy et al., 2016) and information retrieval-based
(IR-based) (Yao and Van Durme, 2014; Bordes
et al., 2014a,b, 2015; Dong et al., 2015; Xu et al.,
2016a,b) methods. SP-based methods usually fo-
cus on constructing a semantic parser that could
convert natural language questions into structured
expressions like logical forms. IR-based methods
usually search answers from the KB based on the
information conveyed in questions, where ranking
techniques are often adopted to make correct se-
lections from candidate answers.

Recently, with the progress of deep learning,
neural network-based (NN-based) methods have
been introduced to the KB-QA task (Bordes et al.,
2014b). Different from previous methods, NN-
based methods represent both of the questions and
the answers as semantic vectors. Then the com-
plex process of KB-QA could be converted into
a similarity matching process between an input
question and its candidate answers in a semantic
space. The candidates with the highest similarity
score will be selected as the final answers. Be-
cause they are more adaptive, NN-based methods
have attracted more and more attention, and this
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paper also focuses on using end-to-end neural net-
works to answer questions over knowledge base.

In NN-based methods, the crucial step is to
compute the similarity score between a question
and a candidate answer, where the key is to learn
their representations. Previous methods put more
emphasis on learning representation of the answer
end. For example, Bordes et al. (2014a) consid-
er the importance of the subgraph of the candidate
answer. Dong et al. (2015) make use of the context
and the type of the answer. However, the repre-
sentation of the question end is oligotrophic. Ex-
isting approaches often represent a question into
a single vector using simple bag-of-words (BOW)
model (Bordes et al., 2014a,b), whereas the relat-
edness to the answer end is neglected. We argue
that a question should be represented differently
according to the different focuses of various an-
swer aspects1.

Take the question “Who is the president of
France?” and one of its candidate answers “Fran-
cois Hollande” as an example. When dealing
with the answer entity Francois Holland,
“president” and “France” in the question is more
focused, and the question representation should
bias towards the two words. While facing
the answer type /business/board member,
“Who” should be the most prominent word.
Meanwhile, some questions may value answer
type more than other answer aspects. While in
some other questions, answer relation may be the
most important information we should consider,
which is dynamic and flexible corresponding to d-
ifferent questions and answers. Obviously, this is
an attention mechanism, which reveals the mutual
influences between the representation of questions
and the corresponding answer aspects.

We believe that such kind of representation is
more expressive. Dong et al. (2015) represents
questions using three CNNs with different param-
eters when dealing with different answer aspect-
s including answer path, answer context and an-
swer type. The method is very enlightening and
achieves the best performance on WebQeustion-
s at that time among the end-to-end approach-
es. However, we argue that simply selecting three
independent CNNs is mechanical and inflexible.
Thus, we go one step further, and propose a cross-
attention based neural network to perform KB-

1An answer aspect could be the answer entity itself, the
answer type, the answer context, etc.

QA. The cross-attention model, which stands for
the mutual attention between the question and the
answer aspects, contains two parts: the answer-
towards-question attention part and the question-
towards-answer attention part. The former help
learn flexible and adequate question representa-
tion, and the latter help adjust the question-answer
weight, getting the final score. We illustrate in sec-
tion 3.2 for more details. In this way, we formulate
the cross-attention mechanism to model the ques-
tion answering procedure. Note that our proposed
model is an entire end-to-end approach which only
depends on training data. Some integrated systems
which use extra patterns and resources are not di-
rectly comparable to ours. Our target is to explore
a better solution following the end-to-end KB-QA
technical path.

Moreover, we notice that the representations of
the KB resources (entities and relations) are also
limited in previous work. specifically, they are of-
ten learned barely on the QA training data, which
results in two limitations. 1) The global infor-
mation of the KB is deficient. For example, if
question-answer pair (q, a) appears in the train-
ing data, and the global KB information implies
us that a′ is similar to a2, denoted by (a∼ a′), then
(q, a′) is more probable to be right. However, cur-
rent QA training mechanism cannot guarantee (a
∼ a′) could be learned. 2) The problem of out-of-
vocabulary (OOV) stands out. Due to the limited
coverage of the training data, the OOV problem
is common while testing, and many answer enti-
ties in testing candidate set have never been seen
before. The attention of these resources become
the same because they shared the same OOV em-
bedding, and this will do harm to the proposed at-
tention model. To tackle these two problems, we
additionally incorporates KB itself as training data
for training embeddings besides original question-
answer pairs. In this way, the global structure of
the whole knowledge could be captured, and the
OOV problem could be alleviated naturally.

In summary, the contributions are as follows.
1) We present a novel cross-attention based NN
model tailored to KB-QA task, which considers
the mutual influence between the representation of
questions and the corresponding answer aspects.
2) We leverage the global KB information, aiming
at represent the answers more precisely. It also al-

2The complete KB is able to offer this kind of informa-
tion, e.g., a and a′ share massive context.
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leviates the OOV problem, which is very helpful
to the cross-attention model.
3) The experimental results on the open dataset
WebQuestions demonstrate the effectiveness of
the proposed approach.

2 Overview

The goal of KB-QA task could be formulated as
follows. Given a natural language question q, the
system returns an entity set A as answers. The
architecture of our proposed KB-QA system is
shown in Figure 1, which illustrates the basic flow
of our approach. First, we identify the topic enti-
ty of the question, and generate candidate answer-
s from Freebase. Then, a cross-attention based
neural network is employed to represent the ques-
tion under the influence of the candidate answer
aspects. Finally, the similarity score between the
question and each corresponding candidate answer
is calculated, and the candidates with highest score
will be selected as the final answers3.

Cross-Attention based Neural Network

q: Who is the president of France?

Topic entity
France Candidate 

generation

Candidate Answers

Paris 𝑎1

French 𝑎2

Semi-presidential system

⋮

Answer Aspects

answer entity:/m/05qtj

answer relation: capital

answer type: /location/city town   

answer context:/m/0276jx2, /m

/0jd4j,  /m/0f3vz, …

⋮

S(𝑞, 𝑎1) S(𝑞, 𝑎2 )

⋮ ⋮

⋯

A

Ranking

Freebase

Figure 1: The overview of the proposed KB-QA
system.

We utilize Freebase (Bollacker et al., 2008)
as our knowledge base. It has more than 3
billion facts, and is used as the supporting KB
for many QA tasks. In Freebase, the facts are
represented by subject-predicate-object triples
(s, p, o). For clarity, we call each basic el-
ement a resource, which could be either an
entity or a relation. For example, (/m/0f8l9c,
location.country.capital,/m/05qtj)4

describes the fact that the capital of France is
Paris, where /m/0f8l9c and /m/05qtj are
entities denoting France and Paris respective-

3We also adopt a margin strategy to obtain multiple an-
swers for a question and this will be explained in the next
section.

4Note that the Freebase prefixes are omitted for neatness.

ly, and location.country.capital is a
relation.

3 Our Approach

3.1 Candidate Generation

All the entities in Freebase should be candidate an-
swers ideally, but in practice, this is time consum-
ing and not really necessary. For each question q,
we use Freebase API (Bollacker et al., 2008) to
identify a topic entity, which could be simply un-
derstood as the main entity of the question. For ex-
ample, France is the topic entity of question “Who
is the president of France?”. Freebase API method
is able to resolve as many as 86% questions if we
use the top1 result (Yao and Van Durme, 2014).
After getting the topic entity, we collect all the en-
tities directly connected to it and the ones connect-
ed with 2-hop5. These entities constitute a candi-
date set Cq .

3.2 The Neural Cross-Attention Model

We present a cross-attention based neural network,
which represents the question dynamically accord-
ing to different answer aspects, also considering
their connections. Concretely, each aspect of the
answer focuses on different words of the question
and thus decides how the question is represented.
Then the question pays different attention to each
answer aspect to decide their weights. Figure 2 is
the architecture of our model. We will illustrate
how the system works as follows.

3.2.1 Question Representation
First of all, we have to obtain the representation
of each word in the question. These representa-
tions retain all the information of the question, and
could serve the following steps. Suppose question
q is expressed as q = (x1, x2, ..., xn), where xi de-
notes the ith word. As shown in Figure 2, we first
look up a word embedding matrix Ew ∈ Rd×vw to
get the word embeddings, which is randomly ini-
tialized, and updated during the training process.
Here, d means the dimension of the embeddings
and vw denotes the vocabulary size of natural lan-
guage words.

Then, the embeddings are fed into a long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) networks. LSTM has been proven to

5For example, (/m/0f8l9c, governing officials, govern-
ment.position held.office holder, /m/02qg4z) is a 2-top con-
nection.
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𝑥1𝑞 𝑥2 𝑥6𝑥5𝑥3 𝑥4 𝑎𝑡𝑎𝑟𝑎𝑒 𝑎𝑐

Word Embedding Matrix 𝐸𝑤 KB Embedding Matrix 𝐸𝑘

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6
 𝑞

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6

𝑞1A-Q Attention Model

𝑒𝑐

+ + + = 𝑆(𝑞, 𝑎)

𝛽1 𝛽2 𝛽3 𝛽4

Q-A Attention Model

Mean 

over time

Bidirectional LSTM

𝑒𝑡𝑒𝑟𝑒𝑒

Figure 2: The architecture of the proposed cross-
attention based neural network. Note that only one
aspect(in orange color) is depicted for clarity. The
other three aspects follow the same way.

be effective in many natural language processing
(NLP) tasks such as machine translation (Sutskev-
er et al., 2014) and dependency parsing (Dyer
et al., 2015), and it is adept in harnessing long
sentences. Note that if we use unidirectional L-
STM, the outcome of a specific word contains on-
ly the information of the words before it, whereas
the words after it are not taken into account. To
avoid this, we employ bidirectional LSTM as Bah-
danau (2015) does, which consists of both forward
and backward networks. The forward LSTM han-
dles the question from left to right, and the back-
ward LSTM processes in the reverse order. Thus,
we could acquire two hidden state sequences, one
from the forward one (

−→
h1,
−→
h2, ...,

−→
hn) and the other

from the backward one (
←−
h1,
←−
h2, ...,

←−
hn). We con-

catenate the forward hidden state and the back-
ward hidden state of each word, resulting in hj =
[
−→
hj ;
←−
hj ]. The hidden unit of forward and backward

LSTM is d
2 , so the concatenated vector is of di-

mension d. In this way, we obtain the representa-
tion of each word in the question.

3.2.2 Answer aspect representation

We directly use the embedding for each answer
aspect through the KB embedding matrix Ek ∈
Rd×vk . Here, vk means the vocabulary size of
the KB resources. The embedding matrix is ran-
domly initialized and learned during training, and
could be further enhanced with the help of glob-
al information as described in Section 3.3. Con-
cretely, we employ four kinds of answer aspect-
s: answer entity ae, answer relation ar, answer

type at and answer context ac6. Their embeddings
are denoted as ee, er, et and ec, respectively. It
is worth noting that the answer context consist-
s of multiple KB resources, and we denote it as
(c1, c2, ..., cm). We first acquire their KB embed-
dings (ec1 , ec2 , ..., ecm) throughEk, then calculate

an average embedding by ec = 1
m

m∑
i=1

eci .

3.2.3 Cross-Attention model
The most crucial part of the proposed approach
is the cross-attention mechanism. The cross-
attention mechanism is composed of two parts:
the answer-towards-question attention part and the
question-towards-answer attention part.

The proposed cross-attention model could also
be intuitively interpreted as a re-reading mecha-
nism (Hermann et al., 2015). Our aim is to select
correct answers from a candidate set. When we
judge a candidate answer, suppose we first look at
its type, and we will reread the question to find
out which part of the question should be more fo-
cused (handling attention). Then we go to next
aspect and reread the question again, until the all
the aspects are utilized. After we read all the an-
swer aspects and get all the scores, the final sim-
ilarity score between question and answer should
be a weighted sum of all the scores. We believe
that this mechanism is beneficial for the system to
better understand the question with the help of the
answer aspects, and it may lead to a performance
promotion.
• Answer-towards-question(A-Q) attention

Based on our assumption, each answer aspect
should focus on different words of the same ques-
tion. The extent of attention can be measured
by the relatedness between each word representa-
tion hj and an answer aspect embedding ei. We
propose the following formulas to calculate the
weights.

αij =
exp(ωij)

n∑
k=1

exp(ωik)
(1)

ωij = f(WT [hj ; ei] + b) (2)

Here, αij denotes the weight of attention from an-
swer aspect ei to the jth word in the question,
where ei ∈ {ee, er, et, ec}. f(·) is a non-linear ac-
tivation function, such as hyperbolic tangent trans-
formation here. Let n be the length of the ques-
tion. W ∈ R2d×d is an intermediate matrix and b

6Answer context is the 1-hop entities and predicates
which connect to the answer entity along the answer path.
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is the offset. Both of them are randomly initialized
and updated during training. Subsequently, ac-
cording to the specific answer aspect ei, the atten-
tion weights are employed to calculate a weighted
sum of the hidden representations, resulting in a
semantic vector that represent the question.

qi =

n∑

j=1

αijhj (3)

The similarity score of the question q and this
particular candidate answer aspect ei (ei ∈
{ee, er, et, ec}) could be defined as follows.

S (q, ei) = h(qi, ei) (4)

The scoring function h(·) is computed as the in-
ner product between the sentence representation
qi, which has already carried the attention from the
answer aspect part, and the corresponding answer
aspect ei, and is parametrized into the network and
updated during the training process.
• Question-towards-answer(Q-A) attention

Intuitively, different question should value the
four answer aspect differently. Since we have al-
ready calculated the scores of (q, ei), we define the
final similarity score of the question q and each
candidate answer a as follows.

S (q, a) =
∑

ei∈{ee,er,et,ec}
βeiS (q, ei) (5)

βei =
exp (ωei)∑

ek∈{ee,er,et,ec}
exp (ωek)

(6)

ωei = f
(
WT [q; ei] + b

)
(7)

q =
1

n

∑n

j
hj (8)

Here βei denotes the attention of question toward-
s answer aspects, indicating which answer as-
pect should be more focused in one (q, a) pair.
W ∈ R2d×d is also a intermediate matrix as in
the answer-towards-question attention part, and b
is an offset value.7 q is calculated by averagely
pooling all the bi-directional LSTM hidden state
sequences, resulting a vector which represents the
question to determine which answer aspect should
be more focused.

7Note that the W and b in the two attention part is differ-
ent and independent.

3.2.4 Training
We first construct the training data. Since we have
(q, a) pairs as supervision data, candidate set Cq

can be divided into two subsets, namely, correc-
t answer set Pq and wrong answer set Nq. For
each correct answer a ∈ Pq, we randomly select
k wrong answers a′ ∈ Nq as negative examples.
For some topic entities, there may be not enough
wrong answers to acquire k wrong answers. Un-
der this circumstance, we extend Nq from other
randomly selected candidate set C ′q. With the gen-
erated training data, we are able to make use of
pairwise training. The training loss is given as fol-
lows, which is a hinge loss.

Lq,a,a′ = [γ + S (q, a′)− S (q, a)]+ (9)

where γ is a positive real number that ensures a
margin between positive and negative examples.
And [z]+ means max(0, z). The intuition of this
training strategy is to guarantee the score of posi-
tive question-answer pairs to be higher than nega-
tive ones with a margin. The objective function is
as follows.

min
∑

q

1

|Pq|
∑

a∈Pq

∑

a′∈Nq

Lq,a,a′ (10)

We adopt stochastic gradient descent (SGD) to
minimize the learning process, shuffled mini-
batches are utilized.

3.2.5 Inference
In testing stage, given the candidate answer setCq,
we have to calculate S(q, a) for each a ∈ Cq, and
find out the maximum value Smax.

Smax = argmax
a∈Cq

{S (q, a)} (11)

It is worth noting that many questions have more
than one answer, so it is improper to set the can-
didate answer which have the maximum value as
the final answer. Instead, we take advantage of the
margin γ. If the score of a candidate answer is
within the margin compared with Smax, we put it
in the final answer set.

A = {â|Smax − S (q, â) < γ} (12)

3.3 Combining Global Knowledge
In this section, we elaborate how the global in-
formation of a KB could be leveraged. As stat-
ed before, we try to take into account the com-
plete knowledge information of the KB. To this
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end, we adopt TransE model (Bordes et al., 2013)
and integrate its outcome into our training process.
In TransE, relations are considered as translations
in the embedding space. For consistency, we de-
note each fact as (s, p, o). TransE utilizes pair-
wise training strategy as well. Randomly sampled
corrupted facts (s′, p, o′) are the negative exam-
ples. The distance measure d(s + p, o) is defined
as ‖s+ p− o‖22. And the training loss is given as
follows.

Lk =
∑

(s,p,o)∈S

∑

(s′,p,o′)∈S′
[γk + d (s+ p, o)− d

(
s′ + p, o′

)
]
+

(13)

Where S is the set of KB facts and S′ is the cor-
rupted facts. In our QA task, we filter out the com-
pletely unrelated facts to save time. Specifically,
we first collect all the topic entities of all the ques-
tions as initial set. Then, we expand the set by
adding directly connected and 2-hop entities. Fi-
nally, all the facts containing these entities form
the positive set, and the negative facts are random-
ly corrupted. This is a compromising solution due
to the large scale of Freebase. To employ the glob-
al information in our training process, we adop-
t a multi-task training strategy. Specifically, we
perform KB-QA training and TransE training in
turn. The proposed training process ensures that
the global KB information acts as additional su-
pervision, and the interconnections among the re-
sources are fully considered. In addition, as more
KB resources are involved, the OOV problem is
relieved. Since all the OOV resources have exact-
ly the same attention towards a question, it will
weaken the effectiveness of the attention model.
So the alleviation of OOV is able to bring addi-
tional benefits to the attention model.

4 Experiments

To evaluate the proposed method, we conduct ex-
periments on WebQuestions (Berant et al., 2013)
dataset that includes 3,778 question-answer pairs
for training and 2,032 for testing. The question-
s are collected from Google Suggest API, and the
answers are labeled manually by Amazon MTurk.
All the answers are from Freebase. We use three-
quarter of the training data as training set, and the
left as validate set. We use F1 score as evaluation
matric, and the average result is computed by the
script provided by Berant et al. (2013).

Note that our proposed approach is an en-
tire end-to-end method, which totally depends

on training data. It is worth noting that Yih et
al. (2015; 2016) achieve much higher F1 scores
than other methods. Their staged system is able
to address more questions with constraints and
aggregations. However, their approach applies
numbers of manually designed rules and features,
which come from the observations on the training
set questions. These particular manual efforts re-
duce the adaptability of their approach. Moreover,
there are some integrated systems such as Xu et
al. (2016a; 2016b) achieve higher F1 scores which
leverage Wikipedia free text as external knowl-
edge, so their systems are not directly comparable
to ours.

4.1 Settings

For KB-QA training, we use mini-batch stochastic
gradient descent to minimize the pairwise train-
ing loss. The minibatch size is set to 100. The
learning rate is set to 0.01. Both the word embed-
ding matrix Ew and KB embedding matrix Ev are
normalized after each epoch. The embedding size
d = 512, then the hidden unit size is 256. Mar-
gin γ is set to 0.6. Negative example number k =
2000. We set the embedding dimension to 512 in
TransE training process, and the minibatch size is
also 100. γk is set to 1. All these hyperparameters
of the proposed network is determined according
to the performance on the validate set.

4.2 Results

The effectiveness of the proposed approach
To demonstrate the effectiveness of the pro-

posed approach, we compare our method with
state-of-the-art end-to-end NN-based methods.

Methods Avg F1

Bordes et al., 2014b 29.7

Bordes et al., 2014a 39.2

Yang et al., 2014 41.3

Dong et al., 2015 40.8

Bordes et al., 2015 42.2

our approach 42.9

Table 1: The evaluation results on WebQuestions.

Table 1 shows the results on WebQuestions
dataset. Bordes et al. (2014b) apply BOW method
to obtain a single vector for both questions and
answers. Bordes et al. (2014a) further improve
their work by proposing the concept of subgraph
embeddings. Besides the answer path, the sub-
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graph contains all the entities and relations con-
nected to the answer entity. The final vector is
also obtained by bag-of-words strategy. Yang et
al. (2014) follow the SP-based manner, but uses
embeddings to map entities and relations into K-
B resources, then the question can be converted
into logical forms. They jointly consider the t-
wo mapping processes. Dong et al. (2015) use
three columns of Convolutional Neural Network-
s (CNNs) to represent questions corresponding to
three aspects of the answers, namely the answer
context, the answer path and the answer type. Bor-
des et al. (2015) put KB-QA into the memory net-
works framework (Sukhbaatar et al., 2015), and
achieves the state-of-the-art performance of end-
to-end methods. Our approach employs bidirec-
tional LSTM, cross-attention model and global K-
B information.

From the results, we observe that our approach
achieves the best performance of all the end-to-end
methods on WebQuestions. Bordes et al. (2014b;
2014a; 2015) all utilize BOW model to represent
the questions, while ours takes advantage of the at-
tention of answer aspects to dynamically represent
the questions. Also note that Bordes et al. (2015)
uses additional training data such as Reverb (Fad-
er et al., 2011) and their original dataset Simple-
Questions. Dong et al. (2015) employs three fixed
CNNs to represent questions, while ours is able
to express the focus of each unique answer aspec-
t to the words in the question. Besides, our ap-
proach employs the global KB information. So,
we believe that the results faithfully show that the
proposed approach is more effective than the other
competitive methods.
Model Analysis

In this part, we further discuss the impacts of
the components of our model. Table 2 indicates
the effectiveness of different parts in the model.

Methods Avg F1

LSTM 38.2

Bi LSTM 39.1

Bi LSTM+A-Q-ATT 41.6

Bi LSTM+C-ATT 41.8

Bi LSTM+GKI 40.4

Bi LSTM+A-Q-ATT+GKI 42.6

Bi LSTM+C-ATT+GKI 42.9

Table 2: The ablation results of our models.

LSTM employs unidirectional LSTM, and us-

es the last hidden state as the question repre-
sentation. Bi LSTM adopts a bidirectional LST-
M. A-Q-ATT denotes the answer-towards-question
attention part, and C-ATT stands for our cross-
attention. GKI means global knowledge informa-
tion. Bi LSTMS+C-ATT+GKI is our full proposed
approach. From the results, we could observe the
following.

1) Bi LSTM+C-ATT dramatically improves the
F1 score by 2.7 points compared with Bi LSTM,
0.2 points higher than Bi LSTM+A-Q-ATT. Simi-
larly, Bi LSTM+C-ATT+GKI significantly outper-
forms Bi LSTM+GKI by 2.5 points, improving
Bi LSTM+A-Q-ATT+GKI by 0.3 points. The re-
sults prove that the proposed cross-attention mod-
el is effective.

2) Bi LSTM+GKI performs better than
Bi LSTM, and achieves an improvement of 1.3
points. Similarly, Bi LSTM+C-ATT+GKI im-
proves Bi LSTM+C-ATT by 1.1 points, which
indicates that the proposed training strategy
successfully leverages the global information of
the underlying KB.

3) Bi LSTM+C-ATT+GKI achieves the best
performance as we expected, and improves the o-
riginal Bi LSTM dramatically by 3.8 points. This
directly shows the power of the attention model
and the global KB information.

To illustrate the effectiveness of the atten-
tion mechanism clearly, we present the attention
weights of a question in the form of heat map as
shown in Figure 3.

where is the carpathian mountain range located

answer entity

answer type

answer relation

answer context

Figure 3: The visualized attention heat map. An-
swer entity: /m/06npd(Slovakia), answer
relation: partially containedby, answer
type: /location/country, answer context:
(/m/04dq9kf, /m/01mp, ...)

From this example we observe that our meth-
ods is able to capture the attention properly. It is
instructive to figure out the attention part of the
question when dealing with different answer as-
pects. The heat map will help us understand which
parts are most useful for selecting correct answer-
s. For instance, from Figure 3, we can see that
location.country is paying great attention
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to “Where”, indicating that “Where” is much more
important than the other parts in the question when
dealing with this type. In other words, the other
parts are not that crucial since “Where” is strongly
implying that the question is asking about a loca-
tion. As for Q-A attention part, we see that answer
type and answer relation are more important than
other answer aspects in this example.

4.3 Error Analysis

We randomly sample 100 imperfectly answered
questions and categorize the errors into two main
classes as follows.
Wrong attention

In some occasions (18 in 100 questions, 18%),
we find the generated attention weights unrea-
sonable. For instance, for question “What are
the songs that Justin Bieber wrote?”, answer type
/music/composition pays the most atten-
tion on “What” rather than “songs”. We think this
is due to the bias of the training data, and we be-
lieve these errors could be solved by introducing
more instructive training data.
Complex questions and label errors

Another challenging problem is the complex
questions (35%). For example, “When was the
last time Knicks won the championship?” is actu-
ally to ask the last championship, but the predicted
answers give all the championships. This is due
to that the model cannot learn what “last” mean
in the training process. In addition, the label mis-
takes also influence the evaluation (3%), such as,
“What college did John Nash teach at?”, where the
labeled answer is Princeton University,
but Massachusetts Institute of
Technology should also be an answer, and the
proposed method is able to answer it correctly.
Other errors include topic entity generation error
and the multiple answers error (giving more
answers than expected). We guess these errors
are caused by the simple implementations of
the related steps in our method, and we will not
explain them in detail.

5 Related Work

The past years have seen a growing amount of re-
search on KB-QA, shaping an interaction paradig-
m that allows end users to profit from the expres-
sive power of Semantic Web data while at the same
time hiding their complexity behind an intuitive
and easy-to-use interface. At the same time the

growing amount of data has led to a heterogeneous
data landscape where QA systems struggle to keep
up with the volume, variety and veracity of the un-
derlying knowledge.

5.1 Neural Network-based KB-QA
In recent years, deep neural networks have been
applied to many NLP tasks, showing promising re-
sults. Bordes et al. (2014b) was the first to intro-
duce NN-based method to solve KB-QA problem.
The questions and KB triples were represented by
vectors in a low dimensional space. Thus the co-
sine similarity could be used to find the most pos-
sible answer. BOW method was employed to ob-
tain a single vector for both the questions and the
answers. Pairwise training was utilized, and the
negative examples were randomly selected from
the KB facts. Bordes et al. (2014a) further im-
proved their work by proposing the concept of
subgraph embeddings. The key idea was to in-
volve as much information as possible in the an-
swer end. Besides the answer triple, the subgraph
contained all the entities and relations connected
to the answer entity. The final vector was also ob-
tained by bag-of-words strategy.

Yih et al. (2014) focused on single-relation
questions. The KB-QA task was divided into t-
wo steps. Firstly, they found the topic entity of
the question. Then, the rest of the question was
represented by CNNs and used to match relation-
s. Yang et al. (2014) tackled entity and relation
mapping as joint procedures. Actually, these two
methods followed the SP-based manner, but they
took advantage of neural networks to obtain inter-
mediate mapping results.

The most similar work to ours is Dong et
al. (2015). They considered the different aspects
of answers, using three columns of CNNs to repre-
sent questions respectively. The difference is that
our approach uses cross-attention mechanism for
each unique answer aspect, so the question repre-
sentation is not fixed to only three types. More-
over, we utilize the global KB information.

Xu et al. (2016a; 2016b) proposed integrated
systems to address KB-QA problems incorporat-
ing Wikipedia free text, in which they used multi-
channel CNNs to extract relations.

5.2 Attention-based Model
The attention mechanism has been widely used
in different areas. Bahdanau et al. (2015) first
applied attention model in NLP. They improved
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the encoder-decoder Neural Machine Translation
(NMT) framework by jointly learning align and
translation. They argued that representing source
sentence by a fixed vector is unreasonable, and
proposed a soft-align method, which could be
understood as attention mechanism. Rush et
al. (2015) implemented sentence-level summa-
rization task. They utilized local attention-based
model that generated each word of the summa-
ry conditioned on the input sentence. Wang et
al. (2016) proposed an inner attention mechanis-
m that the attention was imposed directly to the
input. And their experiment on answer selection
showed the advantage of inner attention compared
with traditional attention methods.

Yin et al. (2016) tackled simple question an-
swering by an attentive convolutional neural net-
work. They stacked an attentive max-pooling
above convolution layer to model the relationship
between predicates and question patterns. Our ap-
proach differs from previous work in that we use
attentions to help represent questions dynamical-
ly, not generating current word from vocabulary
as before.

6 Conclusion

In this paper, we focus on KB-QA task. Firstly,
we consider the impacts of the different answer
aspects when representing the question, and pro-
pose a novel cross-attention model for KB-QA.
Specifically, we employ the focus of the answer
aspects to each question word and the attention
weights of the question towards the answer aspect-
s. This kind of dynamic representation is more
precise and flexible. Secondly, we leverage the
global KB information, which could take full ad-
vantage of the complete KB, and also alleviate the
OOV problem for the attention model. The ex-
tensive experiments demonstrate that the proposed
approach could achieve better performance com-
pared with state-of-the-art end-to-end methods.
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