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Abstract

Semantic representation is receiving grow-
ing attention in NLP in the past few years,
and many proposals for semantic schemes
(e.g., AMR, UCCA, GMB, UDS) have
been put forth. Yet, little has been done to
assess the achievements and the shortcom-
ings of these new contenders, compare
them with syntactic schemes, and clarify
the general goals of research on semantic
representation. We address these gaps by
critically surveying the state of the art in
the field.

1 Introduction

Schemes for Semantic Representation of Text
(SRT) aim to reflect the meaning of sentences and
texts in a transparent way. There has recently been
an influx of proposals for semantic representa-
tions and corpora, e.g. GMB (Basile et al., 2012),
AMR (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013b) and Universal Decomposi-
tional Semantics (UDS; White et al., 2016). Nev-
ertheless, no detailed assessment of the relative
merits of the different schemes has been carried
out, nor their comparison to previous sentential
analysis schemes, notably syntactic ones. An un-
derstanding of the achievements and gaps of se-
mantic analysis in NLP is crucial to its future
prospects.

In this paper we begin to chart the various pro-
posals for semantic schemes according to the con-
tent they support. As not many semantic queries
on texts can at present be answered with near
human-like reliability without using manual sym-
bolic annotation, we will mostly focus on schemes

that represent semantic distinctions explicitly.1

We begin by discussing the goals of SRT in Sec-
tion 2. Section 3 surveys major represented mean-
ing components, including predicate-argument re-
lations, discourse relations and logical structure.
Section 4 details the various concrete proposals for
SRT schemes and annotated resources, while Sec-
tions 5 and 6 discuss criteria for their evaluation
and their relation to syntax, respectively.

We find that despite the major differences in
terms of formalism and interface with syntax, in
terms of their content there is a great deal of con-
vergence of SRT schemes. Principal differences
between schemes are mostly related to their ability
to abstract away from formal and syntactic vari-
ation, namely to assign similar structures to dif-
ferent constructions that have a similar meaning,
and to assign different structures to constructions
that have different meanings, despite their surface
similarity. Other important differences are in the
level of training they require from their annota-
tors (e.g., expert annotators vs. crowd-sourcing)
and in their cross-linguistic generality. We discuss
the complementary strengths of different schemes,
and suggest paths for future integration.

2 Defining Semantic Representation

The term semantics is used differently in different
contexts. For the purposes of this paper we define
a semantic representation as one that reflects the
meaning of the text as it is understood by a lan-
guage speaker. A semantic representation should
thus be paired with a method for extracting infor-
mation from it that can be directly evaluated by
humans. The extraction process should be reliable
and computationally efficient.

1Note that even a string representation of text can be re-
garded as semantic given a reliable enough parser.
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We stipulate that a fundamental component of
the content conveyed by SRTs is argument struc-
ture – who did what to whom, where, when and
why, i.e., events, their participants and the rela-
tions between them. Indeed, the fundamental sta-
tus of argument structure has been recognized by
essentially all approaches to semantics both in the-
oretical linguistics (Levin and Hovav, 2005) and in
NLP, through approaches such as Semantic Role
Labeling (SRL; Gildea and Jurafsky, 2002), for-
mal semantic analysis (e.g., Bos, 2008), and Ab-
stract Meaning Representation (AMR; Banarescu
et al., 2013). Many other useful meaning compo-
nents have been proposed, and are discussed at a
greater depth in Section 3.

Another approach to defining an SRT is through
external (extra-textual) criteria or applications.
For instance, a semantic representation can be de-
fined to support inference, as in textual entailment
(Dagan et al., 2006) or natural logic (Angeli and
Manning, 2014). Other examples include defin-
ing a semantic representation in terms of support-
ing knowledge base querying (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005), or defin-
ing semantics through a different modality, for in-
stance interpreting text in terms of images that cor-
respond to it (Kiros et al., 2014), or in terms of em-
bodied motor and perceptual schemas (Feldman
et al., 2010).

A different approach to SRT is taken by Vector
Space Models (VSM), which eschew the use of
symbolic structures, instead modeling all linguis-
tic elements as vectors, from the level of words
to phrases and sentences. Proponents of this ap-
proach generally invoke neural network methods,
obtaining impressive results on a variety of tasks
including lexical tasks such as cross-linguistic
word similarity (Ammar et al., 2016), machine
translation (Bahdanau et al., 2015), and depen-
dency parsing (Andor et al., 2016). VSMs are
also attractive in being flexible enough to model
non-local and gradient phenomena (e.g., Socher
et al., 2013). However, more research is needed to
clarify the scope of semantic phenomena that such
models are able to reliably capture. We therefore
only lightly touch on VSMs in this survey.

Finally, a major consideration in semantic anal-
ysis, and one of its great potential advantages, is
its cross-linguistic universality. While languages
differ in terms of their form (e.g., in their phonol-
ogy, lexicon, and syntax), they have often been as-

sumed to be much closer in terms of their semantic
content (Bar-Hillel, 1960; Fodor, 1975). See Sec-
tion 5 for further discussion.

A terminological note: within formal linguis-
tics, semantics is often the study of the relation
between symbols (e.g., words, syntactic construc-
tions) and what they signify. In this sense, seman-
tics is the study of the aspects of meaning that are
overtly expressed by the lexicon and grammar of
a language, and is thus tightly associated with a
theory of the syntax-semantics interface. We note
that this definition of semantics is somewhat dif-
ferent from the one intended here, which defines
semantic schemes as theories of meaning.

3 Semantic Content

We turn to discussing the main content types en-
coded by semantic representation schemes. Due
to space limitations, we focus only on text seman-
tics, which studies the meaning relationships be-
tween lexical items, rather than the meaning of the
lexical items themselves.2 We also defer discus-
sion of more targeted semantic distinctions, such
as sentiment, to future work.

We will use the following as a running example:

(1) Although Ann was leaving, she gave the
present to John.

Events. Events (sometimes called frames,
propositions or scenes) are the basic building
blocks of argument structure representations.
An event includes a predicate (main relation,
frame-evoking element), which is the main
determinant of what the event is about. It also
includes arguments (participants, core elements)
and secondary relations (modifiers, non-core
elements). Example 1 is usually viewed as having
two events, evoked by “leaving” and “gave”.

Schemes commonly provide an ontology or a
lexicon of event types (also a predicate lexicon),
which categorizes semantically similar events
evoked by different lexical items. For instance,
FrameNet defines frames as schematized story
fragments evoked by a set of conceptually simi-
lar predicates. In (1), the frames evoked by “leav-
ing” and “gave” are DEPARTING and GIVING, but
DEPARTING may also be evoked by “depart” and
“exit”, and GIVING by “donate” and “gift”.

2 We use the term “Text Semantics”, rather than the com-
monly used “Sentence Semantics” to include inter-sentence
semantic relations as well.
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The events discussed here should not be con-
fused with events as defined in Information Ex-
traction and related tasks such as event co-
reference (Humphreys et al., 1997), which corre-
spond more closely to the everyday notion of an
event, such as a political or financial event, and
generally consist of multiple events in the sense
discussed here. The representation of such events
is recently receiving considerable interest within
NLP, e.g. the Richer Event Descriptions frame-
work (RED; Ikuta et al., 2014).

Predicates and Arguments. While predicate-
argument relations are universally recognized as
fundamental to semantic representation, the inter-
pretation of the terms varies across schemes. Most
SRL schemes cover a wide variety of verbal pred-
icates, but differ in which nominal and adjecti-
val predicates are covered. For example, Prop-
Bank (Palmer et al., 2005), one of the major re-
sources for SRL, covers verbs, and in its recent
versions also eventive nouns and multi-argument
adjectives. FrameNet (Ruppenhofer et al., 2016)
covers all these, but also covers relational nouns
that do not evoke an event, such as “president”.
Other lines of work address semantic arguments
that appear outside sentence boundaries, or that do
not explicitly appear anywhere in the text (Gerber
and Chai, 2010; Roth and Frank, 2015).

Core and Non-core Arguments. Perhaps the
most common distinction between argument types
is between core and non-core arguments (Dowty,
2003). While it is possible to define the dis-
tinction distributionally as one between obligatory
and optional arguments, here we focus on the se-
mantic dimension, which distinguishes arguments
whose meaning is predicate-specific and are nec-
essary components of the described event (core),
and those which are predicate-general (non-core).
For example, FrameNet defines core arguments
as conceptually necessary components of a frame,
that make the frame unique and different from
other frames, and peripheral arguments as those
that introduce additional, independent or distinct
relations from that of the frame such as time,
place, manner, means and degree (Ruppenhofer
et al., 2016, pp. 23-24).

Semantic Roles. Semantic roles are categories
of arguments. Many different semantic role inven-
tories have been proposed and used in NLP over
the years, the most prominent being FrameNet
(where roles are shared across predicates that

evoke the same frame type, such as “leave” and
“depart”), and PropBank (where roles are verb-
specific). PropBank’s role sets were extended by
subsequent projects such as AMR. Another promi-
nent semantic role inventory is VerbNet (Kip-
per et al., 2008) and subsequent projects (Bonial
et al., 2011; Schneider et al., 2015), which define
a closed set of abstract semantic roles (such as
AGENT, PATIENT and INSTRUMENT) that apply
to all predicate arguments.

Co-reference and Anaphora. Co-reference al-
lows to abstract away from the different ways to
refer to the same entity, and is commonly included
in semantic resources. Coreference interacts with
argument structure annotation, as in its absence
each argument is arbitrarily linked to one of its
textual instances. Most SRL schemes would mark
“Ann” in (1) as an argument of “leaving” and
“she” as an argument of “gave”, although on se-
mantic grounds “Ann” is an argument of both.

Some SRTs distinguish between the cases of ar-
gument sharing which is encoded by the syntax
and is thus explicit (e.g., in “John went home and
took a shower”, “John” is both an argument of
“went home” and of “took a shower”), and cases
where the sharing of arguments is inferred (as in
(1)). This distinction may be important for text un-
derstanding, as the inferred cases tend to be more
ambiguous (“she” in (1) might not refer to “Ann”).
Other schemes, such as AMR, eschew this distinc-
tion and use the same terms to represent all cases
of coreference.

Temporal Relations. Most temporal semantic
work in NLP has focused on temporal relations
between events, either by timestamping them ac-
cording to time expressions found in the text, or
by predicting their relative order in time. Im-
portant resources include TimeML, a specification
language for temporal relations (Pustejovsky et al.,
2003), and the TempEval series of shared tasks
and annotated corpora (Verhagen et al., 2009,
2010; UzZaman et al., 2013). A different line of
work explores scripts: schematic, temporally or-
dered sequences of events associated with a cer-
tain scenario (Chambers and Jurafsky, 2008, 2009;
Regneri et al., 2010). For instance, going to a
restaurant includes sitting at a table, ordering, eat-
ing and paying, generally in this order.

Related to temporal relations, are causal rela-
tions between events, which are ubiquitous in lan-
guage, and central for a variety of applications,
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including planning and entailment. See (Mirza
et al., 2014) and (Dunietz et al., 2015) for recently
proposed annotation schemes for causality and its
sub-types. Mostafazadeh et al. (2016) integrated
causal and TimeML-style temporal relations into
a unified representation.

The internal temporal structure of events has
been less frequently tackled. Moens and Steed-
man (1988) defined an ontology for the tempo-
ral components of an event, such as its prepara-
tory process (e.g., “climbing a mountain”), or
its culmination (“reaching its top”). Statistical
work on this topic is unfortunately scarce, and
mostly focuses on lexical categories such as aspec-
tual classes (Siegel and McKeown, 2000; Palmer
et al., 2007; Friedrich et al., 2016; White et al.,
2016), and tense distinctions (Elson and McKe-
own, 2010). Still, casting events in terms of their
temporal components, characterizing an annota-
tion scheme for doing so and rooting it in theo-
retical foundations, is an open challenge for NLP.

Spatial Relations. The representation of spatial
relations is pivotal in cognitive theories of mean-
ing (e.g., Langacker, 2008), and in application
domains such as geographical information sys-
tems or robotic navigation. Important tasks in this
field include Spatial Role Labeling (Kordjamshidi
et al., 2012) and the more recent SpaceEval (Puste-
jovsky et al., 2015). The tasks include the identi-
fication and classification of spatial elements and
relations, such as places, paths, directions and mo-
tions, and their relative configuration.

Discourse Relations encompass any semantic
relation between events or larger semantic units.
For example, in (1) the leaving and the giving
events are sometimes related through a discourse
relation of type CONCESSION, evoked by “al-
though”. Such information is useful, often essen-
tial for a variety of NLP tasks such as summariza-
tion, machine translation and information extrac-
tion, but is commonly overlooked in the develop-
ment of such systems (Webber and Joshi, 2012).

The Penn Discourse Treebank (PeDT; Milt-
sakaki et al., 2004) annotates discourse units, and
classifies the relations between them into a hier-
archical, closed category set, including high-level
relation types like TEMPORAL, COMPARISON and
CONTINGENCY and finer-grained ones such as
JUSTIFICATION and EXCEPTION. Another com-
monly used resource is the RST Discourse Tree-

bank (Carlson et al., 2003), which places more fo-
cus on higher-order discourse structures, resulting
in deeper hierarchical structures than the PeDT’s,
which focuses on local discourse structure.

Another discourse information type explored in
NLP is discourse segmentation, where texts are
partitioned into shallow structures of discourse
units categorized either according to their topic or
according to their function within the text. An ex-
ample is the segmentation of scientific papers into
functional segments and their labeling with cate-
gories such as BACKGROUND and DISCUSSION

(Liakata et al., 2010). See (Webber et al., 2011)
for a survey of discourse structure in NLP.

Discourse relations beyond the scope of a single
sentence are often represented by specialized se-
mantic resources and not by general ones, despite
the absence of a clear boundary line between them.
This, however, is beginning to change with some
schemes, e.g., GMB and UCCA, already support-
ing cross-sentence semantic relations.3

Logical Structure. Logical structure, including
quantification, negation, coordination and their as-
sociated scope distinctions, is the cornerstone of
semantic analysis in much of theoretical linguis-
tics, and has attracted much attention in NLP as
well. Common representations are often based
on variants of predicate calculus, and are use-
ful for applications that require mapping text into
an external, often executable, formal language,
such as a querying language (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005) or robot in-
structions (Artzi and Zettlemoyer, 2013). Logi-
cal structures are also useful for recognizing en-
tailment relations between sentences, as some en-
tailments can be computed from the text’s logi-
cal structure by formal provers (Bos and Markert,
2005; Lewis and Steedman, 2013).

Inference and Entailment. A primary motiva-
tion for many semantic schemes is their abil-
ity to support inference and entailment. Indeed,
means for predicting logical entailment are built
into many forms of semantic representations. A
different approach was taken in the tasks of Rec-
ognizing Textual Entailment (Dagan et al., 2013),
and Natural Logic (van Eijck, 2005), which con-
siders an inference valid if a reasonable annota-
tor would find the hypothesis likely to hold given

3AMR will also support discourse structure in its future
versions (N. Schneider; personal communication).
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the premise, even if it cannot be deduced from it.
See (Manning, 2006) for a discussion of this point.
Such inference relations are usually not included
in semantic treebanks, but annotated in specialized
resources (e.g., Dagan et al., 2006; Bowman et al.,
2015).

4 Semantic Schemes and Resources

This section briefly surveys the different schemes
and resources for SRT. We focus on design princi-
ples rather than specific features, as the latter are
likely to change as the schemes undergo continu-
ous development. In general, schemes discussed
in Section 3 are not repeated here.

Semantic Role Labeling. SRL schemes diverge
in their event types, the type of predicates they
cover, their granularity, their cross-linguistic ap-
plicability, their organizing principles and their
relation with syntax. Most SRL schemes define
their annotation relative to some syntactic struc-
ture, such as parse trees of the PTB in the case of
PropBank, or specialized syntactic categories de-
fined for SRL purposes in the case of FrameNet.
Other than PropBank, FrameNet and VerbNet
discussed above, other notable resources include
Semlink (Loper et al., 2007) that links correspond-
ing entries in different resources such as Prop-
Bank, FrameNet, VerbNet and WordNet, and the
Preposition Supersenses project (Schneider et al.,
2015), which focuses on roles evoked by preposi-
tions. See (Palmer et al., 2010, 2013) for a review
of SRL schemes and resources. SRL schemes
are often termed “shallow semantic analysis” due
to their focus on argument structure, leaving out
other relations such as discourse events, or how
predicates and arguments are internally structured.

AMR. AMR covers predicate-argument rela-
tions, including semantic roles (adapted from
PropBank) that apply to a wide variety of pred-
icates (including verbal, nominal and adjectival
predicates), modifiers, co-reference, named enti-
ties and some time expressions.

AMR does not currently support relations above
the sentence level, and is admittedly English-
centric, which results in an occasional conflation
of semantic phenomena that happen to be sim-
ilarly realized in English, into a single seman-
tic category. AMR thus faces difficulties when
assessing the invariance of its structures across
translations (Xue et al., 2014). As an example,

consider the sentences “I happened to meet Jack
in the office”, and “I asked to meet Jack in the
office”. While the two have similar syntactic
forms, the first describes a single “meeting” event,
where “happened” is a modifier, while the second
describes two distinct events: asking and meet-
ing. AMR annotates both in similar terms, which
may be suitable for English, where aspectual rela-
tions are predominantly expressed as subordinat-
ing verbs (e.g., “begin”, “want”), and are syntac-
tically similar to primary verbs that take an infini-
tival complement (such as “ask to meet” or “learn
to swim”). However, this approach is less suitable
cross-linguistically. For instance, when translating
the sentences to German, the divergence between
the semantics of the two sentences is clear: in the
first “happened” is translated to an adverb: “Ich
habe Jack im Büro zufällig getroffen” (lit. “I have
Jack in-the office by-chance met”), and in the sec-
ond “asked” is translated to a verb: “Ich habe ge-
beten, Jack im Büro zu treffen” (lit. “I have asked,
Jack in-the office to meet”).

UCCA. UCCA (Universal Conceptual Cogni-
tive Annotation) (Abend and Rappoport, 2013a,b)
is a cross-linguistically applicable scheme for se-
mantic annotation, building on typological the-
ory, primarily on Basic Linguistic Theory (Dixon,
2010). UCCA’s foundational layer of categories
focuses on argument structures of various types
and relations between them. In its current state,
UCCA is considerably more coarse-grained than
the above mentioned schemes (e.g., it does not
include semantic role information). However, its
distinctions tend to generalize well across lan-
guages (Sulem et al., 2015). For example, unlike
AMR, it distinguishes between primary and aspec-
tual verbs, so cases such as “happened to meet”
are annotated similarly to cases such as “met by
chance”, and differently from “asked to meet”.

Another design principle UCCA evokes is sup-
port for annotation by non-experts. To do so
the scheme reformulates some of the harder dis-
tinctions into more intuitive ones. For instance,
the core/non-core distinction is replaced in UCCA
with the distinction between pure relations (Ad-
verbials) and those evoking an object (Partici-
pants), which has been found easier for annotators
to apply.

UDS. Universal Decompositional Semantics
(White et al., 2016) is a multi-layered scheme,
which currently includes semantic role anno-
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tation, word senses and aspectual classes (e.g.,
realis/irrealis). UDS emphasizes accessible
distinctions, which can be collected through
crowd-sourcing. However, the skeletal structure
of UDS representations is derived from syntactic
dependencies, and only includes verbal argument
structures that can be so extracted. Notably,
many of the distinctions in UDS are defined using
feature bundles, rather than mutually exclusive
categories. For instance, a semantic role may be
represented as having the features +VOLITION

and +AWARENESS, rather than as having the
category AGENT.

The Prague Dependency Treebank (PDT) Tec-
togrammatical Layer (PDT-TL) (Sgall, 1992;
Böhmová et al., 2003) covers a rich variety of
functional and semantic distinctions, such as argu-
ment structure (including semantic roles), tense,
ellipsis, topic/focus, co-reference, word sense dis-
ambiguation and local discourse information. The
PDT-TL results from an abstraction over PDT’s
syntactic layers, and its close relation with syntax
is apparent. For instance, the PDT-TL encodes the
distinction between a governing clause and a de-
pendent clause, which is primarily syntactic in na-
ture, so in the clauses “John came just as we were
leaving” and “We were leaving just as John came”
the governing and dependent clause are swapped,
despite their semantic similarity.

CCG-based Schemes. CCG (Steedman, 2000)
is a lexicalized grammar (i.e., nearly all semantic
content is encoded in the lexicon), which defines
a theory of how lexical information is composed
to form the meaning of phrases and sentences (see
Section 6.2), and has proven effective in a vari-
ety of semantic tasks (Zettlemoyer and Collins,
2005, 2007; Kwiatkowski et al., 2010; Artzi and
Zettlemoyer, 2013, inter alia). Several projects
have constructed logical representations by asso-
ciating CCG with semantic forms (by assigning
logical forms to the leaves). For example, Boxer
(Bos, 2008) and GMB, which builds on Boxer, use
Discourse Representation Structures (Kamp and
Reyle, 1993), while Lewis and Steedman (2013)
used Davidsonian-style λ-expressions, accompa-
nied by lexical categorization of the predicates.
These schemes encode events with their argument
structures, and include an elaborate logical struc-
ture, as well as lexical and discourse information.

HPSG-based Schemes. Related to CCG-based
schemes are SRTs based on Head-driven Phrase

Structure Grammar (HPSG; Pollard and Sag,
1994), where syntactic and semantic features are
represented as feature bundles, which are it-
eratively composed through unification rules to
form composite units. HPSG-based SRT schemes
commonly use the Minimal Recursion Semantics
(Copestake et al., 2005) formalism. Annotated
corpora and manually crafted grammars exist for
multiple languages (Flickinger, 2002; Oepen et al.,
2004; Bender and Flickinger, 2005, inter alia),
and generally focus on argument structural and
logical semantic phenomena. The Broad-coverage
Semantic Dependency Parsing shared task and
corpora (Oepen et al., 2014, 2015) include corpora
annotated with the PDT-TL, and dependencies ex-
tracted from the HPSG grammars Enju (Miyao,
2006) and the LinGO English Reference Grammar
(ERG; Flickinger, 2002).

Like the PDT-TL, projects based on CCG,
HPSG, and other expressive grammars such as
LTAG (Joshi and Vijay-Shanker, 1999) and LFG
(Kaplan and Bresnan, 1982) (e.g., GlueTag (Frank
and van Genabith, 2001)), yield semantic repre-
sentations that are coupled with syntactic ones.
While this approach provides powerful tools for
inference, type checking, and mapping into exter-
nal formal languages, it also often results in dif-
ficulties in abstracting away from some syntactic
details. For instance, the dependencies derived
from ERG in the SDP corpus use the same label
for different senses of the English possessive con-
struction, regardless of whether they correspond
to ownership (e.g., “John’s dog”) or to a different
meaning, such as marking an argument of a nomi-
nal predicate (e.g., “John’s kick”). See Section 6.

OntoNotes is a useful resource with multiple
inter-linked layers of annotation, borrowed from
different schemes. The layers include syntactic,
SRL, co-reference and word sense disambiguation
content. Some properties of the predicate, such as
which nouns are eventive, are encoded as well.

To summarize, while SRT schemes differ in the
types of content they support, schemes evolve to
continuously add new content types, making these
differences less consequential. The fundamental
difference between the schemes is the extent that
they abstract away from syntax. For instance,
AMR and UCCA abstract away from syntax as
part of their design, while in most other schemes
syntax and semantics are more tightly coupled.
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Schemes also differ in other aspects discussed in
Sections 5 and 6.

5 Evaluation

Human evaluation is the ultimate criterion for val-
idating an SRT scheme given our definition of se-
mantics as meaning as it is understood by a lan-
guage speaker. Determining how well an SRT
scheme corresponds to human interpretation of
a text is ideally carried out by asking annota-
tors to make some semantic prediction or anno-
tation according to pre-specified guidelines, and
to compare this to the information extracted from
the SRT. Question Answering SRL (QASRL; He
et al., 2015) is an SRL scheme which solicits non-
experts to answer mostly wh-questions, convert-
ing their output to an SRL annotation. Hartshorne
et al. (2013) and Reisinger et al. (2015) use crowd-
sourcing to elicit semantic role features, such as
whether the argument was volitional in the de-
scribed event, in order to evaluate proposals for
semantic role sets.

Another evaluation approach is task-based eval-
uation. Many semantic representations in NLP are
defined with an application in mind, making this
type of evaluation natural. For instance, a major
motivation for AMR is its applicability to machine
translation, making MT a natural (albeit hitherto
unexplored) testbed for AMR evaluation. Another
example is using question answering to evaluate
semantic parsing into knowledge-base queries.

Another common criterion for evaluating a se-
mantic scheme is invariance, where semantic
analysis should be similar across paraphrases or
translation pairs (Xue et al., 2014; Sulem et al.,
2015). For instance, most SRL schemes abstract
away from the syntactic divergence between the
sentences (1) “He gave a present to John” and (2)
“It was John who was given a present” (although
a complete analysis would reflect the difference of
focus between them).

Importantly, these evaluation criteria also ap-
ply in cases where the representation is automat-
ically induced, rather than manually defined. For
instance, vector space representations are gener-
ally evaluated either through task-based evalua-
tion, or in terms of semantic features computed
from them, whose validity is established by human
annotators (e.g., Agirre et al., 2013, 2014).

Finally, where semantic schemes are induced
through manual annotation (and not through au-

tomated procedures), a common criterion for de-
termining whether the guidelines are sufficiently
clear, and whether the categories are well-defined
is to measure agreement between annotators, by
assigning them the same texts and measuring the
similarity of the resulting structures. Measures
include the SMATCH measure for AMR (Cai
and Knight, 2013), and the PARSEVAL F-score
(Black et al., 1991) adapted for DAGs for UCCA.

SRT schemes diverge in the background and
training they require from their annotators. Some
schemes require extensive training (e.g., AMR),
while others can be (at least partially) collected
by crowdsourcing (e.g., UDS). Other examples in-
clude FrameNet, which requires expert annotators
for creating new frames, but employs less trained
in-house annotators for applying existing frames
to texts; QASRL, which employs non-expert an-
notators remotely; and UCCA, which uses in-
house non-experts, demonstrating no advantage to
expert over non-expert annotators after an initial
training period. Another approach is taken by
GMB, which uses online collaboration where ex-
pert collaborators participate in manually correct-
ing automatically created representations. They
further employ gamification strategies for collect-
ing some aspects of the annotation.

Universality. One of the great promises of se-
mantic analysis (over more surface forms of anal-
ysis) is its cross-linguistic potential. However,
while the theoretical and applicative importance of
universality in semantics has long been recognized
(Goddard, 2011), the nature of universal seman-
tics remains unknown. Recently, projects such as
BabelNet (Ehrmann et al., 2014), UBY (Gurevych
et al., 2012) and Open Multilingual Wordnet4,
constructed huge multi-lingual semantic nets, by
linking resources such as Wikipedia and WordNet
and processing them using modern NLP. However,
such projects currently focus on lexical semantic
and encyclopedic information rather than on text
semantics.

Symbolic SRT schemes such as SRL schemes
and AMR have also been studied for their cross-
linguistic applicability (Padó and Lapata, 2009;
Sun et al., 2010; Xue et al., 2014), indicating par-
tial portability across languages. Translated ver-
sions of PropBank and FrameNet have been con-
structed for multiple languages (e.g., Akbik et al.,
2016; Hartmann and Gurevych, 2013). How-

4http://compling.hss.ntu.edu.sg/omw/
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ever, as both PropBank and FrameNet are lexi-
calized schemes, and as lexicons diverge wildly
across languages, these schemes require consid-
erable adaptation when ported across languages
(Kozhevnikov and Titov, 2013). Ongoing research
tackles the generalization of VerbNet’s unlexical-
ized roles to a universally applicable set (e.g.,
Schneider et al., 2015). Few SRT schemes place
cross-linguistically applicability as one of their
main criteria, examples include UCCA, and the
LinGO Grammar Matrix (Bender and Flickinger,
2005), both of which draw on typological theory.

Vector space models, which embed words and
sentences in a vector space, have also been applied
to induce a shared cross-linguistic space (Klemen-
tiev et al., 2012; Rajendran et al., 2015; Wu et al.,
2016). However, further evaluation is required in
order to determine what aspects of meaning these
representations reflect reliably.

6 Syntax and Semantics

6.1 Syntactic and Semantic Generalization

Syntactic distinctions are generally guided by
a combination of semantic and distributional
considerations, where emphasis varies across
schemes.

Consider phrase-based syntactic structures,
common examples of which, such as the Penn
Treebank for English (Marcus et al., 1993) and
the Penn Chinese Treebank (Xue et al., 2005), are
adaptations of X-bar theory. Constituents are com-
monly defined in terms of distributional criteria,
such as whether they can serve as conjuncts, be
passivized, elided or fronted (Carnie, 2002, pp.
50-53). Moreover, phrase categories are defined
according to the POS category of their headword,
such as Noun Phrase, Verb Phrase or Preposition
Phrase, which are also at least partly distributional,
motivated by their similar morphological and syn-
tactic distribution. In contrast, SRT schemes tend
to abstract away from these realizational differ-
ences and directly reflect the argument structure of
the sentence using the same set of categories, irre-
spective of the POS of the predicate, or the case
marking of its arguments.

Distributional considerations are also apparent
with functional syntactic schemes (the most com-
monly used form of which in NLP are lexicalist
dependency structures), albeit to a lesser extent.
A prominent example is Universal Dependencies
(UD; Nivre et al., 2016), which aims at produc-

ing a cross-linguistically consistent dependency-
based annotation, and whose categories are moti-
vated by a combination of distributional and se-
mantic considerations. For example, UD would
distinguish between the dependency type between
“John” and “brother” in “John, my brother, ar-
rived” and “John, who is my brother, arrived”, de-
spite their similar semantics. This is due to the
former invoking an apposition, and the latter a rel-
ative clause, which are different in their distribu-
tion.

As an example of the different categorization
employed by UD and by purely semantic schemes
such as AMR and UCCA consider (1) “founding
of the school”, (2) “president of the United States”
and (3) “United States president”. UD is faithful
to the syntactic structure and represents (1) and (2)
similarly, while assigning a different structure to
(3). In contrast, AMR and UCCA perform a se-
mantic generalization and represents examples (2)
and (3) similarly and differently from (1).

6.2 The Syntax-Semantics Interface

A common assumption on the interface between
syntax and semantics is that semantics of phrases
and sentences is compositional – it is determined
recursively by the meaning of its immediate con-
stituents and their syntactic relationships, which
are generally assumed to form a closed set (Mon-
tague, 1970, and much subsequent work). Thus,
the interpretation of a sentence can be computed
bottom-up, by establishing the meaning of indi-
vidual words, and recursively composing them, to
obtain the full sentential semantics. The order and
type of these compositions are determined by the
syntactic structure.

Compositionality is employed by linguistically
expressive grammars, such as those based on
CCG and HPSG, and has proven to be a power-
ful method for various applications. See (Ben-
der et al., 2015) for a recent discussion of the ad-
vantages of compositional SRTs. Nevertheless,
a compositional account meets difficulties when
faced with multi-word expressions and in account-
ing for cases like “he sneezed the napkin off the
table”, where it is difficult to determine whether
“sneezed” or “off” account for the constructional
meaning. Construction Grammar (Fillmore et al.,
1988; Goldberg, 1995) answers these issues by
using an open set of construction-specific com-
positional operators, and supporting lexical en-
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tries of varying lengths. Several ongoing projects
address the implementation of the principles of
Construction Grammar into explicit grammars, in-
cluding Sign-based Construction Grammar (Fill-
more et al., 2012), Embodied Construction Gram-
mar (Feldman et al., 2010) and Fluid Construction
Grammar (Steels and de Beules, 2006).

The achievements of machine learning methods
in many areas, and optimism as to its prospects,
have enabled the approaches to semantics dis-
cussed in this paper. Machine learning allows
to define semantic structures on purely semantic
grounds and to let algorithms identify how these
distinctions are mapped to surface/distributional
forms. Some of the schemes discussed in this pa-
per take this approach in its pure form (e.g., AMR
and UCCA).

7 Conclusion
Semantic representation in NLP is undergoing
rapid changes. Traditional semantic work has ei-
ther used shallow methods that focus on specific
semantic phenomena, or adopted formal seman-
tic theories which are coupled with a syntactic
scheme through a theory of the syntax-semantics
interface. Recent years have seen increasing inter-
est in an alternative approach that defines semantic
structures independently from any syntactic or dis-
tributional criteria, much due to the availability of
semantic treebanks that implement this approach.

Semantic schemes diverge in whether they are
anchored in the words and phrases of the text (e.g.,
all types of semantic dependencies and UCCA) or
not (e.g., AMR and logic-based representations).
We do not view this as a major difference, be-
cause most unanchored representations (including
AMR) retain their close affinity with the words
of the sentence, possibly because of the absence
of a workable scheme for lexical decomposition,
while dependency structures can be converted into
logic-based representations (Reddy et al., 2016).
In practice, anchoring facilitates parsing, while
unanchored representations are more flexible to
use where words and semantic components are not
in a one-to-one correspondence.

Our survey concludes that the main distinguish-
ing factors between schemes are their relation to
syntax, their degree of universality, and the exper-
tise and training they require from annotators, an
important factor in addressing the annotation bot-
tleneck. We hope this survey of the state of the
art in semantic representation will promote discus-

sion, expose more researchers to the most press-
ing questions in semantic representation, and lead
to the wide adoption of the best components from
each scheme.
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Candela, Ido Dagan and Florence d’Alché Buc,
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Sebastian Padó and Mirella Lapata. 2009. Cross-
lingual annotation projection of semantic roles.
Journal of Artificial Intelligence Research 36:307–
340.

Alexis Palmer, Elias Ponvert, Jason Baldridge, and
Carlota Smith. 2007. A sequencing model for sit-
uation entity classification. In Proc. of ACL. pages
896–903.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-
pus of semantic roles. Computational Linguistics
31(1):71–106.

Martha Palmer, Daniel Gildea, and Nianwen Xue.
2010. Semantic Role Labeling. Synthesis lectures
on human language technologies. Morgan & Clay-
pool Publishers.

Martha Palmer, Ivan Titov, and Shumin Wu. 2013.
Semantic role labeling tutorial at naacl 2013.
http://ivan-titov.org/teaching/
srl-tutorial-naacl13/.

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.
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Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
TACL 4:127–140.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proc. of ACL. pages 979–988.

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin Van
Durme. 2015. Semantic proto-roles. TACL 3:475–
488.

Michael Roth and Anette Frank. 2015. Inducing im-
plicit arguments from comparable texts: A frame-
work and its applications. Computational Linguis-
tics 41:625–664.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L.
Petruck, Christopher R. Johnson, Collin F. Baker,
and Jan Scheffczyk. 2016. FrameNet II: Extended
Theory and Practice. The Berkeley FrameNet
Project.

88



Nathan Schneider, Vivek Srikumar, Jena D. Hwang,
and Martha Palmer. 2015. A hierarchy with, of, and
for preposition supersenses. In Proc. of LAW. pages
112–123.

Petr Sgall. 1992. Underlying Structure of Sentences
and Its Relations to Semantics. In T. Reuthe, edi-
tor, Wiener Slawistischer Almanach. Sonderband 33,
Wien: Gesellschaft zur Förderung slawistischer Stu-
dien, pages 273–282.

Eric Siegel and Kathy McKeown. 2000. Learning
methods to combine linguistic indicators: Improv-
ing aspectual classification and revealing linguistic
insights. Computational Linguistics 26:595–628.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with composi-
tional vector grammars. In Proc. of ACL. pages 455–
465.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

Luc Steels and Joachim de Beules. 2006. A (very) brief
introduction to fluid construction grammar. In Proc.
of the 3rd Workshop on Scalable Natural Language
Understanding. pages 73–80.

Elior Sulem, Omri Abend, and Ari Rappoport. 2015.
Conceptual annotations preserve structure across
translations: A French-English case study. In ACL
2015 Workshop on Semantics-Driven Statistical Ma-
chine Translation (S2MT). pages 11–22.

Lin Sun, Anna Korhonen, Thierry Poibeau, and Cédric
Messiant. 2010. Investigating the cross-linguistic
potential of verbnet: style classification. In Proc.
of COLING. pages 1056–1064.

Richmond Thomason, editor. 1974. Formal Philoso-
phy: Papers of Richard Montague. Yale University
Press, New Haven, CT.

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. Semeval-2013 task 1: Tempeval-3:
Evaluating time expressions, events, and temporal
relations. In *SEM-SemEval ’13. pages 1–9.

Jan van Eijck. 2005. Natural logic for natural language.
In Balder ten Cate and Henk Zeevat, editors, Logic,
Language, and Computation. Springer, Berlin, Lec-
ture Notes in Computer Science 4363, pages 216–
230.

Marc Verhagen, Roser Sauri, Tomasso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proc. of the 5th International Work-
shop on Semantic Evaluation. ACL, pages 57–62.

Mark Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Jessica Moszkowitcz, and James
Pustejovsky. 2009. The tempeval challenge: Iden-
tifying temporal relations in text. Language Re-
sources and Evaluation 43:161–179.

Bonnie Webber, Markus Egg, and Valia Kordoni. 2011.
Discourse structure and language technology. Natu-
ral Language Engineering 18(4):437–490.

Bonnie Webber and Aravind Joshi. 2012. Discourse
structure and computation: Past, present and future.
In Proceedings of the ACL-2012 Special Workshop
on Rediscovering 50 Years of Discoveries. pages 42–
54.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016.
Universal decompositional semantics on universal
dependencies. In Proc. of EMNLP. pages 1713–
1723.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural lan-
guage engineering 11(02):207–238.

Nianwen Xue, Odrej Bojar, Jan Hajic, Martha Palmer,
Zdenka Uresova, and Xiuhong Zhang. 2014. Not an
intelingua, but close: comparison of English AMRs
to Chinese and Czech. In Proc. of LREC. pages
1765–1772.

John Zelle and Ray Mooney. 1996. Learning to
parse database queries using inductive logic pro-
gramming. In Proc. of the 14th National Conference
on Artificial Intelligence. pages 1050–1055.

Luke Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with Probabilistic Categorial Gram-
mars. In Proc. of UAI. pages 658–666.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proc. of EMNLP-CoNLL. pages
678–687.

89


	The State of the Art in Semantic Representation

