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Abstract

Morphologically rich languages accentu-
ate two properties of distributional vec-
tor space models: 1) the difficulty of in-
ducing accurate representations for low-
frequency word forms; and 2) insensitivity
to distinct lexical relations that have simi-
lar distributional signatures. These effects
are detrimental for language understanding
systems, which may infer that inexpensive
is a rephrasing for expensive or may not as-
sociate acquire with acquires. In this work,
we propose a novel morph-fitting procedure
which moves past the use of curated seman-
tic lexicons for improving distributional
vector spaces. Instead, our method injects
morphological constraints generated using
simple language-specific rules, pulling in-
flectional forms of the same word close to-
gether and pushing derivational antonyms
far apart. In intrinsic evaluation over four
languages, we show that our approach: 1)
improves low-frequency word estimates;
and 2) boosts the semantic quality of the
entire word vector collection. Finally, we
show that morph-fitted vectors yield large
gains in the downstream task of dialogue
state tracking, highlighting the importance
of morphology for tackling long-tail phe-
nomena in language understanding tasks.

1 Introduction

Word representation learning has become a re-
search area of central importance in natural lan-
guage processing (NLP), with its usefulness demon-
strated across many application areas such as pars-
ing (Chen and Manning, 2014; Johannsen et al.,
2015), machine translation (Zou et al., 2013), and
many others (Turian et al., 2010; Collobert et al.,

2011). Most prominent word representation tech-
niques are grounded in the distributional hypothe-
sis (Harris, 1954), relying on word co-occurrence
information in large textual corpora (Curran, 2004;
Turney and Pantel, 2010; Mikolov et al., 2013;
Mnih and Kavukcuoglu, 2013; Levy and Goldberg,
2014; Schwartz et al., 2015, i.a.).

Morphologically rich languages, in which “sub-
stantial grammatical information. . . is expressed at
word level” (Tsarfaty et al., 2010), pose specific
challenges for NLP. This is not always considered
when techniques are evaluated on languages such
as English or Chinese, which do not have rich mor-
phology. In the case of distributional vector space
models, morphological complexity brings two chal-
lenges to the fore:

1. Estimating Rare Words: A single lemma
can have many different surface realisations.
Naively treating each realisation as a separate word
leads to sparsity problems and a failure to exploit
their shared semantics. On the other hand, lemma-
tising the entire corpus can obfuscate the differ-
ences that exist between different word forms even
though they share some aspects of meaning.

2. Embedded Semantics: Morphology can en-
code semantic relations such as antonymy (e.g. lit-
erate and illiterate, expensive and inexpensive) or
(near-)synonymy (north, northern, northerly).

In this work, we tackle the two challenges jointly
by introducing a resource-light vector space fine-
tuning procedure termed morph-fitting. The pro-
posed method does not require curated knowledge
bases or gold lexicons. Instead, it makes use of the
observation that morphology implicitly encodes
semantic signals pertaining to synonymy (e.g.,
German word inflections katalanisch, katalanis-
chem, katalanischer denote the same semantic con-
cept in different grammatical roles), and antonymy
(e.g., mature vs. immature), capitalising on the
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en_expensive de_teure it_costoso en_slow de_langsam it_lento en_book de_buch it_libro
costly teuren dispendioso fast allmählich lentissimo books sachbuch romanzo

costlier kostspielige remunerativo slowness rasch lenta memoir buches racconto
cheaper aufwändige redditizio slower gemächlich inesorabile novel romandebüt volumetto

prohibitively kostenintensive rischioso slowed schnell rapidissimo storybooks büchlein saggio
pricey aufwendige costosa slowing explosionsartig graduale blurb pamphlet ecclesiaste

expensiveness teures costosa slowing langsamer lenti booked bücher libri
costly teuren costose slowed langsames lente rebook büch libra

costlier teurem costosi slowness langsame lenta booking büche librare
ruinously teurer dispendioso slows langsamem veloce rebooked büches libre

unaffordable teurerer dispendiose idle langsamen rapido books büchen librano

Table 1: The nearest neighbours of three example words (expensive, slow and book) in English, German
and Italian before (top) and after (bottom) morph-fitting.

proliferation of word forms in morphologically
rich languages. Formalised as an instance of the
post-processing semantic specialisation paradigm
(Faruqui et al., 2015; Mrkšić et al., 2016), morph-
fitting is steered by a set of linguistic constraints
derived from simple language-specific rules which
describe (a subset of) morphological processes in
a language. The constraints emphasise similarity
on one side (e.g., by extracting morphological syn-
onyms), and antonymy on the other (by extracting
morphological antonyms), see Fig. 1 and Tab. 2.

The key idea of the fine-tuning process is to pull
synonymous examples described by the constraints
closer together in the transformed vector space,
while at the same time pushing antonymous exam-
ples away from each other. The explicit post-hoc
injection of morphological constraints enables: a)
the estimation of more accurate vectors for low-
frequency words which are linked to their high-
frequency forms by the constructed constraints;1

this tackles the data sparsity problem; and b) spe-
cialising the distributional space to distinguish be-
tween similarity and relatedness (Kiela et al., 2015),
thus supporting language understanding applica-
tions such as dialogue state tracking (DST).2

As a post-processor, morph-fitting allows the
integration of morphological rules with any distri-
butional vector space in any language: it treats an
input distributional word vector space as a black
box and fine-tunes it so that the transformed space
reflects the knowledge coded in the input morpho-
logical constraints (e.g., Italian words rispettoso
and irrispetosa should be far apart in the trans-

1For instance, the vector for the word katalanischem which
occurs only 9 times in the German Wikipedia will be pulled
closer to the more reliable vectors for katalanisch and kata-
lanischer, with frequencies of 2097 and 1383 respectively.

2Representation models that do not distinguish between
synonyms and antonyms may have grave implications in down-
stream language understanding applications such as spoken
dialogue systems: a user looking for ‘an affordable Chinese
restaurant in west Cambridge’ does not want a recommenda-
tion for ‘an expensive Thai place in east Oxford’.

rispettoso

rispettosa

rispettosi

irrispettoso

irrispettosa

irrispettosi

Figure 1: Morph-fitting in Italian. Representations
for rispettoso, rispettosa, rispettosi (EN: respectful),
are pulled closer together in the vector space (solid
lines; ATTRACT constraints). At the same time,
the model pushes them away from their antonyms
(dashed lines; REPEL constraints) irrispettoso, ir-
rispettosa, irrispettosi (EN: disrespectful), obtained
through morphological affix transformation cap-
tured by language-specific rules (e.g., adding the
prefix ir- typically negates the base word in Italian)

formed vector space, see Fig. 1). Tab. 1 illustrates
the effects of morph-fitting by qualitative exam-
ples in three languages: the vast majority of nearest
neighbours are “morphological” synonyms.

We demonstrate the efficacy of morph-fitting
in four languages (English, German, Italian, Rus-
sian), yielding large and consistent improvements
on benchmarking word similarity evaluation sets
such as SimLex-999 (Hill et al., 2015), its multilin-
gual extension (Leviant and Reichart, 2015), and
SimVerb-3500 (Gerz et al., 2016). The improve-
ments are reported for all four languages, and with
a variety of input distributional spaces, verifying
the robustness of the approach.

We then show that incorporating morph-fitted
vectors into a state-of-the-art neural-network DST
model results in improved tracking performance,
especially for morphologically rich languages. We
report an improvement of 4% on Italian, and 6% on
German when using morph-fitted vectors instead of
the distributional ones, setting a new state-of-the-
art DST performance for the two datasets.3

3There are no readily available DST datasets for Russian.
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2 Morph-fitting: Methodology

Preliminaries In this work, we focus on four lan-
guages with varying levels of morphological com-
plexity: English (EN), German (DE), Italian (IT),
and Russian (RU). These correspond to languages
in the Multilingual SimLex-999 dataset. Vocabu-
laries Wen, Wde, Wit, Wru are compiled by retain-
ing all word forms from the four Wikipedias with
word frequency over 10, see Tab. 3. We then extract
sets of linguistic constraints from these (large) vo-
cabularies using a set of simple language-specific
if-then-else rules, see Tab. 2.4 These constraints
(Sect. 2.2) are used as input for the vector space
post-processing ATTRACT-REPEL algorithm (out-
lined in Sect. 2.1).

2.1 The ATTRACT-REPEL Model
The ATTRACT-REPEL model, proposed by Mrkšić
et al. (2017b), is an extension of the PARAGRAM

procedure proposed by Wieting et al. (2015). It
provides a generic framework for incorporating
similarity (e.g. successful and accomplished) and
antonymy constraints (e.g. nimble and clumsy) into
pre-trained word vectors. Given the initial vector
space and collections of ATTRACT and REPEL con-
straints A and R, the model gradually modifies the
space to bring the designated word vectors closer
together or further apart. The method’s cost func-
tion consists of three terms. The first term pulls the
ATTRACT examples (xl, xr) ∈ A closer together.
If BA denotes the current mini-batch of ATTRACT

examples, this term can be expressed as:

A(BA) =
∑

(xl,xr)∈BA

(ReLU (δatt + xltl − xlxr)

+ ReLU (δatt + xrtr − xlxr))

where δatt is the similarity margin which de-
termines how much closer synonymous vectors
should be to each other than to each of their respec-
tive negative examples. ReLU(x) = max(0, x) is
the standard rectified linear unit (Nair and Hinton,
2010). The ‘negative’ example ti for each word
xi in any ATTRACT pair is the word vector clos-
est to xi among the examples in the current mini-
batch (distinct from its target synonym and xi it-
self). This means that this term forces synonymous

4A native speaker can easily come up with these sets of
morphological rules (or at least with a reasonable subset of
them) without any linguistic training. What is more, the rules
for DE, IT, and RU were created by non-native, non-fluent
speakers with a limited knowledge of the three languages,
exemplifying the simplicity and portability of the approach.

English German Italian

(discuss, discussed) (schottisch, schottischem) (golfo, golfi)
(laugh, laughing) (damalige, damaligen) (minato, minata)
(pacifist, pacifists) (kombiniere, kombinierte) (mettere, metto)
(evacuate, evacuated) (schweigt, schweigst) (crescono, cresci)
(evaluate, evaluates) (hacken, gehackt) (crediti, credite)

(dressed, undressed) (stabil, unstabil) (abitata, inabitato)
(similar, dissimilar) (geformtes, ungeformt) (realtà, irrealtà)
(formality, informality) (relevant, irrelevant) (attuato, inattuato)

Table 2: Example synonymous (inflectional; top)
and antonymous (derivational; bottom) constraints.

words from the in-batch ATTRACT constraints to
be closer to one another than to any other word in
the current mini-batch.

The second term pushes antonyms away from
each other. If (xl, xr) ∈ BR is the current mini-
batch of REPEL constraints, this term can be ex-
pressed as follows:

R(BR) =
∑

(xl,xr)∈BR

(ReLU (δrpl + xlxr − xltr)

+ ReLU (δrpl + xlxr − xrtr))

In this case, each word’s ‘negative’ example is the
(in-batch) word vector furthest away from it (and
distinct from the word’s target antonym). The intu-
ition is that we want antonymous words from the
input REPEL constraints to be further away from
each other than from any other word in the current
mini-batch; δrpl is now the repel margin.

The final term of the cost function serves to
retain the abundance of semantic information en-
coded in the starting distributional space. If xinit

i is
the initial distributional vector and V (B) is the set
of all vectors present in the given mini-batch, this
term (per mini-batch) is expressed as follows:

R(BA,BR) =
∑

xi∈V (BA∪BR)

λreg

∥∥∥xinit
i − xi

∥∥∥
2

where λreg is the L2 regularisation constant.5 This
term effectively pulls word vectors towards their
initial (distributional) values, ensuring that rela-
tions encoded in initial vectors persist as long as
they do not contradict the newly injected ones.

2.2 Language-Specific Rules and Constraints

Semantic Specialisation with Constraints The
fine-tuning ATTRACT-REPEL procedure is entirely
driven by the input ATTRACT and REPEL sets of

5We use hyperparameter values δatt = 0.6, δrpl = 0.0,
λreg = 10−9 from prior work without fine-tuning. We train
all models for 10 epochs with AdaGrad (Duchi et al., 2011).
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|W | |A| |R|

English 1,368,891 231,448 45,964
German 1,216,161 648,344 54,644
Italian 541,779 278,974 21,400
Russian 950,783 408,400 32,174

Table 3: Vocabulary sizes and counts of ATTRACT

(A) and REPEL (R) constraints.

constraints. These can be extracted from a variety
of semantic databases such as WordNet (Fellbaum,
1998), the Paraphrase Database (Ganitkevitch et al.,
2013; Pavlick et al., 2015), or BabelNet (Navigli
and Ponzetto, 2012; Ehrmann et al., 2014) as done
in prior work (Faruqui et al., 2015; Wieting et al.,
2015; Mrkšić et al., 2016, i.a.). In this work, we
investigate another option: extracting constraints
without curated knowledge bases in a spectrum of
languages by exploiting inherent language-specific
properties related to linguistic morphology. This
relaxation ensures a wider portability of ATTRACT-
REPEL to languages and domains without readily
available or adequate resources.

Extracting ATTRACT Pairs The core difference
between inflectional and derivational morphology
can be summarised in a few lines as follows: the for-
mer refers to a set of processes through which the
word form expresses meaningful syntactic infor-
mation, e.g., verb tense, without any change to the
semantics of the word. On the other hand, the latter
refers to the formation of new words with seman-
tic shifts in meaning (Schone and Jurafsky, 2001;
Haspelmath and Sims, 2013; Lazaridou et al., 2013;
Zeller et al., 2013; Cotterell and Schütze, 2017).

For the ATTRACT constraints, we focus on in-
flectional rather than on derivational morphology
rules as the former preserve the full meaning of a
word, modifying it only to reflect grammatical roles
such as verb tense or case markers (e.g., (en_read,
en_reads) or (de_katalanisch, de_katalanischer)).
This choice is guided by our intent to fine-tune
the original vector space in order to improve the
embedded semantic relations.

We define two rules for English, widely recog-
nised as morphologically simple (Avramidis and
Koehn, 2008; Cotterell et al., 2016b). These are:
(R1) if w1, w2 ∈Wen, where w2 = w1 + ing/ed/s,
then add (w1, w2) and (w2, w1) to the set of AT-
TRACT constraints A. This rule yields pairs such as
(look, looks), (look, looking), (look, looked).

If w[: −1] is a function which strips the last
character from word w, the second rule is: (R2)

if w1 ends with the letter e and w1 ∈ Wen and
w2 ∈ Wen, where w2 = w1[: −1] + ing/ed, then
add (w1, w2) and (w2, w1) to A. This creates pairs
such as (create, creating) and (create, created). Nat-
urally, introducing more sophisticated rules is pos-
sible in order to cover for other special cases and
morphological irregularities (e.g., sweep / swept),
but in all our EN experiments, A is based on the
two simple EN rules R1 and R2.

The other three languages, with more compli-
cated morphology, yield a larger number of rules.
In Italian, we rely on the sets of rules spanning:
(1) regular formation of plural (libro / libri); (2)
regular verb conjugation (aspettare / aspettiamo);
(3) regular formation of past participle (aspettare
/ aspettato); and (4) rules regarding grammatical
gender (bianco / bianca). Besides these, another
set of rules is used for German and Russian: (5)
regular declension (e.g., asiatisch / asiatischem).

Extracting REPEL Pairs As another source of
implicit semantic signals, W also contains words
which represent derivational antonyms: e.g., two
words that denote concepts with opposite meanings,
generated through a derivational process. We use a
standard set of EN “antonymy” prefixes: APen =
{dis, il, un, in, im, ir, mis, non, anti} (Fromkin et al.,
2013). If w1, w2 ∈ Wen, where w2 is generated
by adding a prefix from APen to w1, then (w1, w2)
and (w2, w1) are added to the set of REPEL con-
straints R. This rule generates pairs such as (ad-
vantage, disadvantage) and (regular, irregular). An
additional rule replaces the suffix -ful with -less,
extracting antonyms such as (careful, careless).

Following the same principle, we use APde =
{un, nicht, anti, ir, in, miss}, APit = {in, ir, im,
anti}, and APru = {не, анти}. For instance, this
generates an IT pair (rispettoso, irrispettoso) (see
Fig. 1). For DE, we use another rule targeting suffix
replacement: -voll is replaced by -los.

We further expand the set of REPEL constraints
by transitively combining antonymy pairs from
the previous step with inflectional ATTRACT pairs.
This step yields additional constraints such as
(rispettosa, irrispettosi) (see Fig. 1). The final A
andR constraint counts are given in Tab. 3. The full
sets of rules are available as supplemental material.

3 Experimental Setup

Training Data and Setup For each of the four
languages we train the skip-gram with negative
sampling (SGNS) model (Mikolov et al., 2013)
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on the latest Wikipedia dump of each language.
We induce 300-dimensional word vectors, with the
frequency cut-off set to 10. The vocabulary sizes
|W | for each language are provided in Tab. 3.6 We
label these collections of vectors SGNS-LARGE.

Other Starting Distributional Vectors We also
analyse the impact of morph-fitting on other col-
lections of well-known EN word vectors. These
vectors have varying vocabulary coverage and are
trained with different architectures. We test stan-
dard distributional models: Common-Crawl GloVe
(Pennington et al., 2014), SGNS vectors (Mikolov
et al., 2013) with various contexts (BOW = bag-of-
words; DEPS = dependency contexts), and train-
ing data (PW = Polyglot Wikipedia from Al-Rfou
et al. (2013); 8B = 8 billion token word2vec cor-
pus), following (Levy and Goldberg, 2014) and
(Schwartz et al., 2015). We also test the symmetric-
pattern based vectors of Schwartz et al. (2016)
(SymPat-Emb), count-based PMI-weighted vectors
reduced by SVD (Baroni et al., 2014) (Count-SVD),
a model which replaces the context modelling func-
tion from CBOW with bidirectional LSTMs (Mela-
mud et al., 2016) (Context2Vec), and two sets of
EN vectors trained by injecting multilingual infor-
mation: BiSkip (Luong et al., 2015) and MultiCCA
(Faruqui and Dyer, 2014).

We also experiment with standard well-known
distributional spaces in other languages (IT and
DE), available from prior work (Dinu et al., 2015;
Luong et al., 2015; Vulić and Korhonen, 2016a).

Morph-fixed Vectors A baseline which utilises
an equal amount of knowledge as morph-fitting,
termed morph-fixing, fixes the vector of each word
to the distributional vector of its most frequent
inflectional synonym, tying the vectors of low-
frequency words to their more frequent inflections.
For each word w1, we construct a set of M + 1
words Ww1 = {w1, w

′
1, . . . , w

′
M} consisting of

the word w1 itself and all M words which co-
occur with w1 in the ATTRACT constraints. We
then choose the word w′

max from the set Ww1 with
the maximum frequency in the training data, and
fix all other word vectors in Ww1 to its word vec-
tor. The morph-fixed vectors (MFIX) serve as our
primary baseline, as they outperformed another
straightforward baseline based on stemming across

6Other SGNS parameters were set to standard values (Ba-
roni et al., 2014; Vulić and Korhonen, 2016b): 15 epochs, 15
negative samples, global learning rate: .025, subsampling rate:
1e− 4. Similar trends in results persist with d = 100, 500.

all of our intrinsic and extrinsic experiments.

Morph-fitting Variants We analyse two vari-
ants of morph-fitting: (1) using ATTRACT con-
straints only (MFIT-A), and (2) using both AT-
TRACT and REPEL constraints (MFIT-AR).

4 Intrinsic Evaluation: Word Similarity

Evaluation Setup and Datasets The first set of
experiments intrinsically evaluates morph-fitted
vector spaces on word similarity benchmarks, using
Spearman’s rank correlation as the evaluation met-
ric. First, we use the SimLex-999 dataset, as well
as SimVerb-3500, a recent EN verb pair similarity
dataset providing similarity ratings for 3,500 verb
pairs.7 SimLex-999 was translated to DE, IT, and
RU by Leviant and Reichart (2015), and they crowd-
sourced similarity scores from native speakers. We
use this dataset for our multilingual evaluation.8

Morph-fitting EN Word Vectors As the first ex-
periment, we morph-fit a wide spectrum of EN dis-
tributional vectors induced by various architectures
(see Sect. 3). The results on SimLex and SimVerb
are summarised in Tab. 4. The results with EN

SGNS-LARGE vectors are shown in Fig. 3a. Morph-
fitted vectors bring consistent improvement across
all experiments, regardless of the quality of the ini-
tial distributional space. This finding confirms that
the method is robust: its effectiveness does not de-
pend on the architecture used to construct the initial
space. To illustrate the improvements, note that the
best score on SimVerb for a model trained on run-
ning text is achieved by Context2vec (ρ = 0.388);
injecting morphological constraints into this vector
space results in a gain of 7.1 ρ points.

Experiments on Other Languages We next ex-
tend our experiments to other languages, testing
both morph-fitting variants. The results are sum-
marised in Tab. 5, while Fig. 3a-3d show results
for the morph-fitted SGNS-LARGE vectors. These
scores confirm the effectiveness and robustness of
morph-fitting across languages, suggesting that the
idea of fitting to morphological constraints is in-
deed language-agnostic, given the set of language-
specific rule-based constraints. Fig. 3 also demon-

7Unlike other gold standard resources such as WordSim-
353 (Finkelstein et al., 2002) or MEN (Bruni et al., 2014),
SimLex and SimVerb provided explicit guidelines to discern
between semantic similarity and association, so that related
but non-similar words (e.g. cup and coffee) have a low rating.

8Since Leviant and Reichart (2015) re-scored the original
EN SimLex, we use their EN SimLex version for consistency.
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Evaluation
Vectors SimLex-999 SimVerb-3500

1. SG-BOW2-PW (300)
(Mikolov et al., 2013) .339→ .439 .277→ .381
2. GloVe-6B (300)
(Pennington et al., 2014) .324→ .438 .286→ .405
3. Count-SVD (500)
(Baroni et al., 2014) .267→ .360 .199→ .301
4. SG-DEPS-PW (300)
(Levy and Goldberg, 2014) .376→ .434 .313→ .418
5. SG-DEPS-8B (500)
(Bansal et al., 2014) .373→ .441 .356→ .473
6. MultiCCA-EN (512)
(Faruqui and Dyer, 2014) .314→ .391 .296→ .354
7. BiSkip-EN (256)
(Luong et al., 2015) .276→ .356 .260→ .333
8. SG-BOW2-8B (500)
(Schwartz et al., 2015) .373→ .440 .348→ .441
9. SymPat-Emb (500)
(Schwartz et al., 2016) .381→ .442 .284→ .373
10. Context2Vec (600)
(Melamud et al., 2016) .371→ .440 .388→ .459

Table 4: The impact of morph-fitting (MFIT-AR
used) on a representative set of EN vector space
models. All results show the Spearman’s ρ corre-
lation before and after morph-fitting. The numbers
in parentheses refer to the vector dimensionality.

Vectors Distrib. MFIT-A MFIT-AR

EN: GloVe-6B (300) .324 .376 .438
EN: SG-BOW2-PW (300) .339 .385 .439
DE: SG-DEPS-PW (300)
(Vulić and Korhonen, 2016a) .267 .318 .325
DE: BiSkip-DE (256)
(Luong et al., 2015) .354 .414 .421
IT: SG-DEPS-PW (300)
(Vulić and Korhonen, 2016a) .237 .351 .391
IT: CBOW5-Wacky (300)
(Dinu et al., 2015) .363 .417 .446

Table 5: Results on multilingual SimLex-999 (EN,
DE, and IT) with two morph-fitting variants.

strates that the morph-fitted vector spaces consis-
tently outperform the morph-fixed ones.

The comparison between MFIT-A and MFIT-
AR indicates that both sets of constraints are im-
portant for the fine-tuning process. MFIT-A yields
consistent gains over the initial spaces, and (con-
sistent) further improvements are achieved by also
incorporating the antonymous REPEL constraints.
This demonstrates that both types of constraints are
useful for semantic specialisation.

Comparison to Other Specialisation Methods
We also tried using other post-processing spe-
cialisation models from the literature in lieu of
ATTRACT-REPEL using the same set of “morpho-
logical” synonymy and antonymy constraints. We
compare ATTRACT-REPEL to the retrofitting model

en:GloVe en:BOW2 de:DEPS de:BiSkip it:DEPS it:CBOW5
Word Vector Space
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Figure 2: A comparison of morph-fitting (the MFIT-
AR variant) with two other standard specialisation
approaches using the same set of morphological
constraints: Retrofitting (RF) (Faruqui et al., 2015)
and Counter-fitting (CF) (Mrkšić et al., 2016).
Spearman’s ρ correlation scores on the multilingual
SimLex-999 dataset for the same six distributional
spaces from Tab. 5.

of (Faruqui et al., 2015) and counter-fitting (Mrkšić
et al., 2017a). The two baselines were trained for
20 iterations using suggested settings. The results
for EN, DE, and IT are summarised in Fig. 2. They
clearly indicate that MFIT-AR outperforms the two
other post-processors for each language. We hy-
pothesise that the difference in performance mainly
stems from context-sensitive vector space updates
performed by ATTRACT-REPEL. Conversely, the
other two models perform pairwise updates which
do not consider what effect each update has on the
example pair’s relation to other word vectors (for a
detailed comparison, see (Mrkšić et al., 2017b)).

Besides their lower performance, the two other
specialisation models have additional disadvan-
tages compared to the proposed morph-fitting
model. First, retrofitting is able to incorporate
only synonymy/ATTRACT pairs, while our re-
sults demonstrate the usefulness of both types of
constraints, both for intrinsic evaluation (Tab. 5)
and downstream tasks (see later Fig. 3). Second,
counter-fitting is computationally intractable with
SGNS-LARGE vectors, as its regularisation term in-
volves the computation of all pairwise distances
between words in the vocabulary.

Further Discussion The simplicity of the used
language-specific rules does come at a cost of occa-
sionally generating incorrect linguistic constraints
such as (tent, intent), (prove, improve) or (press,
impress). In future work, we will study how to fur-
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ther refine extracted sets of constraints. We also
plan to conduct experiments with gold standard
morphological lexicons on languages for which
such resources exist (Sylak-Glassman et al., 2015;
Cotterell et al., 2016b), and investigate approaches
which learn morphological inflections and deriva-
tions in different languages automatically as an-
other potential source of morphological constraints
(Soricut and Och, 2015; Cotterell et al., 2016a;
Faruqui et al., 2016; Kann et al., 2017; Aharoni
and Goldberg, 2017, i.a.).

5 Downstream Task: Dialogue State
Tracking (DST)

Goal-oriented dialogue systems provide conversa-
tional interfaces for tasks such as booking flights
or finding restaurants. In slot-based systems, ap-
plication domains are specified using ontologies
that define the search constraints which users can
express. An ontology consists of a number of slots
and their assorted slot values. In a restaurant search
domain, sets of slot-values could include PRICE =
[cheap, expensive] or FOOD = [Thai, Indian, ...].

The DST model is the first component of mod-
ern dialogue pipelines (Young, 2010). It serves to
capture the intents expressed by the user at each
dialogue turn and update the belief state. This prob-
ability distribution over the possible dialogue states
(defined by the domain ontology) is the system’s
internal estimate of the user’s goals. It is used by
the downstream dialogue manager component to
choose the subsequent system response (Su et al.,
2016). The following example shows the true dia-
logue state in a multi-turn dialogue:

User: What’s good in the southern part of town?
inform(area=south)

System: Vedanta is the top-rated Indian place.
User: How about something cheaper?
inform(area=south, price=cheap)

System: Seven Days is very popular. Great hot pot.
User: What’s the address?
inform(area=south, price=cheap);
request(address)

System: Seven Days is at 66 Regent Street.

The Dialogue State Tracking Challenge (DSTC)
shared task series formalised the evaluation and
provided labelled DST datasets (Henderson et al.,
2014a,b; Williams et al., 2016). While a plethora
of DST models are available based on, e.g., hand-
crafted rules (Wang et al., 2014) or conditional
random fields (Lee and Eskenazi, 2013), the recent
DST methodology has seen a shift towards neural-

network architectures (Henderson et al., 2014c,d;
Zilka and Jurcicek, 2015; Mrkšić et al., 2015; Perez
and Liu, 2017; Liu and Perez, 2017; Vodolán et al.,
2017; Mrkšić et al., 2017a, i.a.).

Model: Neural Belief Tracker To detect intents
in user utterances, most existing models rely on ei-
ther (or both): 1) Spoken Language Understanding
models which require large amounts of annotated
training data; or 2) hand-crafted, domain-specific
lexicons which try to capture lexical and morpho-
logical variation. The Neural Belief Tracker (NBT)
is a novel DST model which overcomes both issues
by reasoning purely over pre-trained word vectors
(Mrkšić et al., 2017a). The NBT learns to compose
these vectors into intermediate utterance and con-
text representations. These are then used to decide
which of the ontology-defined intents (goals) have
been expressed by the user. The NBT model keeps
word vectors fixed during training, so that unseen,
yet related words can be mapped to the right intent
at test time (e.g. northern to north).

Data: Multilingual WOZ 2.0 Dataset Our DST
evaluation is based on the WOZ dataset, released
by Wen et al. (2017). In this Wizard-of-Oz setup,
two Amazon Mechanical Turk workers assumed
the role of the user and the system asking/providing
information about restaurants in Cambridge (oper-
ating over the same ontology and database used
for DSTC2 (Henderson et al., 2014a)). Users typed
instead of speaking, removing the need to deal with
noisy speech recognition. In DSTC datasets, users
would quickly adapt to the system’s inability to
deal with complex queries. Conversely, the WOZ
setup allowed them to use sophisticated language.
The WOZ 2.0 release expanded the dataset to 1,200
dialogues (Mrkšić et al., 2017a). In this work, we
use translations of this dataset to Italian and Ger-
man, released by Mrkšić et al. (2017b).

Evaluation Setup The principal metric we use
to measure DST performance is the joint goal ac-
curacy, which represents the proportion of test set
dialogue turns where all user goals expressed up to
that point of the dialogue were decoded correctly
(Henderson et al., 2014a). The NBT models for
EN, DE and IT are trained using four variants of the
SGNS-LARGE vectors: 1) the initial distributional
vectors; 2) morph-fixed vectors; 3) and 4) the two
variants of morph-fitted vectors (see Sect. 3).

As shown by Mrkšić et al. (2017b), semantic
specialisation of the employed word vectors ben-
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Figure 3: An overview of the results (Spearman’s ρ correlation) for four languages on SimLex-999 (grey
bars, left y axis) and the downstream DST performance (dark bars, right y axis) using SGNS-LARGE vectors
(d = 300), see Tab. 3 and Sect. 3. The left y axis measures the intrinsic word similarity performance,
while the right y axis provides the scale for the DST performance (there are no DST datasets for Russian).

efits DST performance across all three languages.
However, large gains on SimLex-999 do not al-
ways induce correspondingly large gains in down-
stream performance. In our experiments, we inves-
tigate the extent to which morph-fitting improves
DST performance, and whether these gains exhibit
stronger correlation with intrinsic performance.

Results and Discussion The dark bars (against
the right axes) in Fig. 3 show the DST perfor-
mance of NBT models making use of the four
vector collections. IT and DE benefit from both
kinds of morph-fitting: IT performance increases
from 74.1→ 78.1 (MFIT-A) and DE performance
rises even more: 60.6→ 66.3 (MFIT-AR), setting
a new state-of-the-art score for both datasets. The
morph-fixed vectors do not enhance DST perfor-
mance, probably because fixing word vectors to
their highest frequency inflectional form eliminates
useful semantic content encoded in the original
vectors. On the other hand, morph-fitting makes
use of this information, supplementing it with se-
mantic relations between different morphological
forms. These conclusions are in line with the Sim-
Lex gains, where morph-fitting outperforms both
distributional and morph-fixed vectors.

English performance shows little variation
across the four word vector collections investigated
here. This corroborates our intuition that, as a mor-
phologically simpler language, English stands to
gain less from fine-tuning the morphological varia-
tion for downstream applications. This result again
points at the discrepancy between intrinsic and ex-
trinsic evaluation: the considerable gains in Sim-
Lex performance do not necessarily induce similar
gains in downstream performance. Additional dis-
crepancies between SimLex and downstream DST
performance are detected for German and Italian.
While we observe a slight drop in SimLex perfor-
mance with the DE MFIT-AR vectors compared
to the MFIT-A ones, their relative performance is
reversed in the DST task. On the other hand, we
see the opposite trend in Italian, where the MFIT-
A vectors score lower than the MFIT-AR vectors
on SimLex, but higher on the DST task. In sum-
mary, we believe these results show that SimLex is
not a perfect proxy for downstream performance
in language understanding tasks. Regardless, its
performance does correlate with downstream per-
formance to a large extent, providing a useful in-
dicator for the usefulness of specific word vector
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spaces for extrinsic tasks such as DST.

6 Related Work

Semantic Specialisation A standard approach
to incorporating external information into vector
spaces is to pull the representations of similar
words closer together. Some models integrate such
constraints into the training procedure, modify-
ing the prior or the regularisation (Yu and Dredze,
2014; Xu et al., 2014; Bian et al., 2014; Kiela et al.,
2015), or using a variant of the SGNS-style objec-
tive (Liu et al., 2015; Osborne et al., 2016). Another
class of models, popularly termed retrofitting, in-
jects lexical knowledge from available semantic
databases (e.g., WordNet, PPDB) into pre-trained
word vectors (Faruqui et al., 2015; Jauhar et al.,
2015; Wieting et al., 2015; Nguyen et al., 2016;
Mrkšić et al., 2016). Morph-fitting falls into the
latter category. However, instead of resorting to cu-
rated knowledge bases, and experimenting solely
with English, we show that the morphological rich-
ness of any language can be exploited as a source
of inexpensive supervision for fine-tuning vector
spaces, at the same time specialising them to better
reflect true semantic similarity, and learning more
accurate representations for low-frequency words.

Word Vectors and Morphology The use of mor-
phological resources to improve the representations
of morphemes and words is an active area of re-
search. The majority of proposed architectures en-
code morphological information, provided either
as gold standard morphological resources (Sylak-
Glassman et al., 2015) such as CELEX (Baayen
et al., 1995) or as an external analyser such as
Morfessor (Creutz and Lagus, 2007), along with
distributional information jointly at training time
in the language modelling (LM) objective (Luong
et al., 2013; Botha and Blunsom, 2014; Qiu et al.,
2014; Cotterell and Schütze, 2015; Bhatia et al.,
2016, i.a.). The key idea is to learn a morphologi-
cal composition function (Lazaridou et al., 2013;
Cotterell and Schütze, 2017) which synthesises the
representation of a word given the representations
of its constituent morphemes. Contrary to our work,
these models typically coalesce all lexical relations.

Another class of models, operating at the charac-
ter level, shares a similar methodology: such mod-
els compose token-level representations from sub-
component embeddings (subwords, morphemes, or
characters) (dos Santos and Zadrozny, 2014; Ling
et al., 2015; Cao and Rei, 2016; Kim et al., 2016;

Wieting et al., 2016; Verwimp et al., 2017, i.a.).
In contrast to prior work, our model decouples

the use of morphological information, now pro-
vided in the form of inflectional and derivational
rules transformed into constraints, from the actual
training. This pipelined approach results in a sim-
pler, more portable model. In spirit, our work is sim-
ilar to Cotterell et al. (2016b), who formulate the
idea of post-training specialisation in a generative
Bayesian framework. Their work uses gold mor-
phological lexicons; we show that competitive per-
formance can be achieved using a non-exhaustive
set of simple rules. Our framework facilitates the
inclusion of antonyms at no extra cost and natu-
rally extends to constraints from other sources (e.g.,
WordNet) in future work. Another practical differ-
ence is that we focus on similarity and evaluate
morph-fitting in a well-defined downstream task
where the artefacts of the distributional hypothesis
are known to prompt statistical system failures.

7 Conclusion and Future Work

We have presented a novel morph-fitting method
which injects morphological knowledge in the form
of linguistic constraints into word vector spaces.
The method makes use of implicit semantic signals
encoded in inflectional and derivational rules which
describe the morphological processes in a language.
The results in intrinsic word similarity tasks show
that morph-fitting improves vector spaces induced
by distributional models across four languages. Fi-
nally, we have shown that the use of morph-fitted
vectors boosts the performance of downstream lan-
guage understanding models which rely on word
representations as features, especially for morpho-
logically rich languages such as German.

Future work will focus on other potential sources
of morphological knowledge, porting the frame-
work to other morphologically rich languages and
downstream tasks, and on further refinements of
the post-processing specialisation algorithm and
the constraint selection.
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ichart, and Anna Korhonen. 2016. SimVerb-
3500: A large-scale evaluation set of verb similar-
ity. In Proceedings of EMNLP. pages 2173–2182.
https://aclweb.org/anthology/D16-1235.

Zellig S. Harris. 1954. Distributional structure. Word
10(23):146–162.

Martin Haspelmath and Andrea Sims. 2013. Under-
standing morphology.

Matthew Henderson, Blaise Thomson, and Jason D.
Wiliams. 2014a. The Second Dialog State Tracking
Challenge. In Proceedings of SIGDIAL. pages 263–
272. http://aclweb.org/anthology/W/W14/W14-
4337.pdf.

Matthew Henderson, Blaise Thomson, and Jason D.
Wiliams. 2014b. The Third Dialog State Tracking
Challenge. In Proceedings of IEEE SLT . pages 324–
329. https://doi.org/10.1109/SLT.2014.7078595.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014c. Robust dialog state tracking using
delexicalised recurrent neural networks and unsu-
pervised adaptation. In Proceedings of IEEE SLT .
pages 360–365.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014d. Word-based dialog state
tracking with recurrent neural networks. In
Proceedings of SIGDIAL. pages 292–299.
http://aclweb.org/anthology/W/W14/W14-
4340.pdf.

Felix Hill, Roi Reichart, and Anna Korhonen.
2015. SimLex-999: Evaluating semantic
models with (genuine) similarity estimation.
Computational Linguistics 41(4):665–695.
https://doi.org/10.1162/COLI_a_00237.

Sujay Kumar Jauhar, Chris Dyer, and Eduard H. Hovy.
2015. Ontologically grounded multi-sense repre-
sentation learning for semantic vector space mod-
els. In Proceedings of NAACL. pages 683–693.
http://www.aclweb.org/anthology/N15-1070.

Anders Johannsen, Héctor Martínez Alonso, and An-
ders Søgaard. 2015. Any-language frame-semantic
parsing. In Proceedings of EMNLP. pages 2062–
2066. http://aclweb.org/anthology/D15-1245.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. Neural multi-source morphological reinflec-
tion. In Proceedings of EACL. pages 514–524.
http://www.aclweb.org/anthology/E17-1049.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of EMNLP. pages 2044–
2048. http://aclweb.org/anthology/D15-1242.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of AAAI. pages 2741–
2749.

Angeliki Lazaridou, Marco Marelli, Roberto Zam-
parelli, and Marco Baroni. 2013. Compositional-
ly derived representations of morphologically
complex words in distributional semantics.
In Proceedings of ACL. pages 1517–1526.
http://www.aclweb.org/anthology/P13-1149.

Sungjin Lee and Maxine Eskenazi. 2013. Recipe
for building robust spoken dialog state trackers:
Dialog State Tracking Challenge system descrip-
tion. In Proceedings of SIGDIAL. pages 414–
422. http://aclweb.org/anthology/W/W13/W13-
4066.pdf.

Ira Leviant and Roi Reichart. 2015. Separated by
an un-common language: Towards judgment lan-
guage informed vector space modeling. CoRR
abs/1508.00106. http://arxiv.org/abs/1508.00106.

Omer Levy and Yoav Goldberg. 2014.
Dependency-based word embeddings. In
Proceedings of ACL. pages 302–308.
http://www.aclweb.org/anthology/P14-2050.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:

66



Compositional character models for open vocabu-
lary word representation. In Proceedings of EMNLP.
pages 1520–1530. http://aclweb.org/anthology/D15-
1176.

Fei Liu and Julien Perez. 2017. Gated end-to-end mem-
ory networks. In Proceedings of EACL. pages 1–10.
http://www.aclweb.org/anthology/E17-1001.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling,
and Yu Hu. 2015. Learning semantic word
embeddings based on ordinal knowledge con-
straints. In Proceedings of ACL. pages 1501–1511.
http://www.aclweb.org/anthology/P15-1145.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings
of the 1st Workshop on Vector Space Modeling
for Natural Language Processing. pages 151–159.
http://www.aclweb.org/anthology/W15-1521.

Thang Luong, Richard Socher, and Christopher
Manning. 2013. Better word representations
with recursive neural networks for morphol-
ogy. In Proceedings of CoNLL. pages 104–113.
http://www.aclweb.org/anthology/W13-3512.

Oren Melamud, Jacob Goldberger, and Ido Da-
gan. 2016. Context2vec: Learning generic
context embedding with bidirectional LSTM.
In Proceedings of CoNLL. pages 51–61.
http://aclweb.org/anthology/K/K16/K16-1006.pdf.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Proceedings of NIPS. pages 3111–3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Proceedings of NIPS. pages 2265–
2273.
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Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken
dialogue systems. In Proceedings of ACL. pages
2431–2441. http://www.aclweb.org/anthology/P16-
1230.

John Sylak-Glassman, Christo Kirov, David
Yarowsky, and Roger Que. 2015. A language-
independent feature schema for inflectional mor-
phology. In Proceedings of ACL. pages 674–680.
http://www.aclweb.org/anthology/P15-2111.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra
Kuebler, Yannick Versley, Marie Candito, Jennifer
Foster, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(SPMRL) What, how and whither. In Proceed-
ings of the NAACL Workshop on Statistical Pars-
ing of Morphologically-Rich Languages. pages 1–
12. http://www.aclweb.org/anthology/W10-1401.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua
Bengio. 2010. Word representations: A sim-
ple and general method for semi-supervised learn-
ing. In Proceedings of ACL. pages 384–394.
http://www.aclweb.org/anthology/P10-1040.

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: vector space models of se-
mantics. Journal of Artifical Intelligence Research
37(1):141–188. https://doi.org/10.1613/jair.2934.

Lyan Verwimp, Joris Pelemans, Hugo Van hamme, and
Patrick Wambacq. 2017. Character-word LSTM lan-
guage models. In Proceedings of EACL. pages 417–
427. http://www.aclweb.org/anthology/E17-1040.

Miroslav Vodolán, Rudolf Kadlec, and Jan Kleindi-
enst. 2017. Hybrid dialog state tracker with ASR
features. In Proceedings of EACL. pages 205–210.
http://www.aclweb.org/anthology/E17-2033.
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