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Abstract

Harnessing the statistical power of neu-
ral networks to perform language under-
standing and symbolic reasoning is dif-
ficult, when it requires executing effi-
cient discrete operations against a large
knowledge-base. In this work, we intro-
duce a Neural Symbolic Machine (NSM),
which contains (a) a neural “program-
mer”, i.e., a sequence-to-sequence model
that maps language utterances to programs
and utilizes a key-variable memory to han-
dle compositionality (b) a symbolic “com-
puter”, i.e., a Lisp interpreter that performs
program execution, and helps find good
programs by pruning the search space.
We apply REINFORCE to directly opti-
mize the task reward of this structured
prediction problem. To train with weak
supervision and improve the stability of
REINFORCE we augment it with an it-
erative maximum-likelihood training pro-
cess. NSM outperforms the state-of-the-
art on the WEBQUESTIONSSP dataset
when trained from question-answer pairs
only, without requiring any feature engi-
neering or domain-specific knowledge.

1 Introduction

Deep neural networks have achieved impressive
performance in supervised classification and struc-
tured prediction tasks such as speech recognition
(Hinton et al., 2012), machine translation (Bah-
danau et al., 2014; Wu et al., 2016) and more.
However, training neural networks for semantic
parsing (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Liang et al., 2011) or program
induction, where language is mapped to a sym-
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Figure 1: The main challenges of training a semantic parser
from weak supervision: (a) compositionality: we use vari-
ables (vo,v1,v2) to store execution results of intermediate
generated programs. (b) search: we prune the search space
and augment REINFORCE with pseudo-gold programs.

bolic representation that is executed by an execu-
tor, through weak supervision remains challeng-
ing. This is because the model must interact with a
symbolic executor through non-differentiable op-
erations to search over a large program space.

In semantic parsing, recent work handled this
(Dong and Lapata, 2016; Jia and Liang, 2016)
by training from manually annotated programs
and avoiding program execution at training time.
However, annotating programs is known to be ex-
pensive and scales poorly. In program induc-
tion, attempts to address this problem (Graves
et al., 2014; Reed and de Freitas, 2016; Kaiser
and Sutskever, 2015; Graves et al., 2016b; An-
dreas et al., 2016) either utilized low-level mem-
ory (Zaremba and Sutskever, 2015), or required
memory to be differentiable (Neelakantan et al.,
2015; Yin et al., 2015) so that the model can be
trained with backpropagation. This makes it dif-
ficult to use the efficient discrete operations and
memory of a traditional computer, and limited the
application to synthetic or small knowledge bases.

In this paper, we propose to utilize the mem-
ory and discrete operations of a traditional com-

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 23-33
Vancouver, Canada, July 30 - August 4, 2017. (©2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-1003


https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003

puter in a novel Manager-Programmer-Computer
(MPC) framework for neural program induction,
which integrates three components:

1. A “manager” that provides weak supervi-
sion (e.g., ‘NYC’ in Figure 1) through a re-
ward indicating how well a task is accom-
plished. Unlike full supervision, weak super-

vision is easy to obtain at scale (Section 3.1).

A “programmer” that takes natural lan-

guage as input and generates a program that

is a sequence of tokens (Figure 2). The pro-
grammer learns from the reward and must
overcome the hard search problem of finding

correct programs (Section 2.2).

. A “computer” that executes programs in a
high level programming language. Its non-
differentiable memory enables abstract, scal-
able and precise operations, but makes train-
ing more challenging (Section 2.3). To help
the “programmer” prune the search space,
it provides a friendly neural computer in-
terface, which detects and eliminates invalid
choices (Section 2.1).

Within this framework, we introduce the Neu-
ral Symbolic Machine (NSM) and apply it to se-
mantic parsing. NSM contains a neural sequence-
to-sequence (seq2seq) “programmer’” (Sutskever
et al., 2014) and a symbolic non-differentiable
Lisp interpreter (‘“computer”) that executes pro-
grams against a large knowledge-base (KB).

Our technical contribution in this work is three-
fold. First, to support language compositionality,
we augment the standard seq2seq model with a
key-variable memory to save and reuse intermedi-
ate execution results (Figure 1). This is a novel ap-
plication of pointer networks (Vinyals et al., 2015)
to compositional semantics.

Second, to alleviate the search problem of find-
ing correct programs when training from question-
answer pairs,we use the computer to execute par-
tial programs and prune the programmer’s search
space by checking the syntax and semantics of
generated programs. This generalizes the weakly
supervised semantic parsing framework (Liang
et al., 2011; Berant et al., 2013) by leveraging se-
mantic denotations during structural search.

Third, to train from weak supervision and di-
rectly maximize the expected reward we turn
to the REINFORCE (Williams, 1992) algorithm.
Since learning from scratch is difficult for RE-
INFORCE, we combine it with an iterative max-
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imum likelihood (ML) training process, where
beam search is used to find pseudo-gold programs,
which are then used to augment the objective of
REINFORCE.

On the WEBQUESTIONSSP dataset (Yih et al.,
2016), NSM achieves new state-of-the-art results
with weak supervision, significantly closing the
gap between weak and full supervision for this
task. Unlike prior works, it is trained end-to-
end, and does not require feature engineering or
domain-specific knowledge.

2 Neural Symbolic Machines

We now introduce NSM by first describing the
“computer”, a non-differentiable Lisp interpreter
that executes programs against a large KB and pro-
vides code assistance (Section 2.1). We then pro-
pose a seq2seq model (“programmer”) that sup-
ports compositionality using a key-variable mem-
ory to save and reuse intermediate results (Sec-
tion 2.2). Finally, we describe a training procedure
that is based on REINFORCE, but is augmented
with pseudo-gold programs found by an iterative
ML training procedure (Section 2.3).

Before diving into details, we define the seman-
tic parsing task: given a knowledge base K, and
a question x = (w1, wa, ..., wy,), produce a pro-
gram or logical form z that when executed against
K generates the right answer y. Let £ denote a
set of entities (e.g., ABELINCOLN),! and let P de-
note a set of properties (e.g., PLACEOFBIRTH). A
knowledge base K is a set of assertions or triples
(e1,p,e2) € € X P x &, such as (ABELINCOLN,
PLACEOFBIRTH, HODGENVILLE).

2.1 Computer: Lisp Interpreter with Code
Assistance

Semantic parsing typically requires using a set of
operations to query the knowledge base and pro-
cess the results. Operations learned with neural
networks such as addition and sorting do not per-
fectly generalize to inputs that are larger than the
ones observed in the training data (Graves et al.,
2014; Reed and de Freitas, 2016). In contrast, op-
erations implemented in high level programming
languages are abstract, scalable, and precise, thus
generalizes perfectly to inputs of arbitrary size.
Based on this observation, we implement opera-
tions necessary for semantic parsing with an or-

"We also consider numbers (e.g., “1.33”) and date-times
(e.g., “1999-1-17) as entities.



dinary programming language instead of trying to
learn them with a neural network.

We adopt a Lisp interpreter as the “com-
puter”. A program C is a list of expressions
(c1...cn), where each expression is either a spe-
cial token “Return” indicating the end of the pro-
gram, or a list of tokens enclosed by parentheses
“(FAy...Ag)”. F is a function, which takes as
input K arguments of specific types. Table 1 de-
fines the semantics of each function and the types
of its arguments (either a property p or a variable
r). When a function is executed, it returns an en-
tity list that is the expression’s denotation in K,
and save it to a new variable.

By introducing variables that save the interme-
diate results of execution, the program naturally
models language compositionality and describes
from left to right a bottom-up derivation of the full
meaning of the natural language input, which is
convenient in a seq2seq model (Figure 1). This
is reminiscent of the floating parser (Wang et al.,
2015; Pasupat and Liang, 2015), where a deriva-
tion tree that is not grounded in the input is incre-
mentally constructed.

The set of programs defined by our functions is
equivalent to the subset of A-calculus presented in
(Yih et al., 2015). We did not use full Lisp pro-
gramming language here, because constructs like
control flow and loops are unnecessary for most
current semantic parsing tasks, and it is simple to
add more functions to the model when necessary.

To create a friendly neural computer interface,
the interpreter provides code assistance to the pro-
grammer by producing a list of valid tokens at each
step. First, a valid token should not cause a syntax
error: e.g., if the previous token is “(”, the next to-
ken must be a function name, and if the previous
token is “Hop”, the next token must be a variable.
More importantly, a valid token should not cause
a semantic (run-time) error: this is detected using
the denotation saved in the variables. For example,
if the previously generated tokens were “( Hop 17,
the next available token is restricted to properties
{p| Je,e’ : e € r,(e,p,€') € K} that are reach-
able from entities in  in the KB. These checks are
enabled by the variables and can be derived from
the definition of the functions in Table 1. The in-
terpreter prunes the “programmer’’s search space
by orders of magnitude, and enables learning from
weak supervision on a large KB.
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2.2 Programmer: Seq2seq Model with
Key-Variable Memory

Given the “computer”, the “programmer” needs to
map natural language into a program, which is a
sequence of tokens that reference operations and
values in the “computer”. We base our program-
mer on a standard seq2seq model with attention,
but extend it with a key-variable memory that al-
lows the model to learn to represent and refer to
program variables (Figure 2).

Sequence-to-sequence models consist of two
RNNs, an encoder and a decoder. We used a
1-layer GRU (Cho et al., 2014) for both the en-
coder and decoder. Given a sequence of words
w1, Wa... Wy, each word w; is mapped to an em-
bedding ¢; (embedding details are in Section 3).
Then, the encoder reads these embeddings and up-
dates its hidden state step by step using hy;y1 =
GRU(ht7 qt, eEncoder)s where aEncoder are the
GRU parameters. The decoder updates its hid-
den states ug by w1 = GRU (ug, ¢t—1, O pecoder )
where c;_1 is the embedding of last step’s output
token a;—1, and Opecoder are the GRU parame-
ters. The last hidden state of the encoder hrp is
used as the decoder’s initial state. We also adopt a
dot-product attention similar to Dong and Lapata
(2016). The tokens of the program ay, as...a, are
generated one by one using a softmax over the vo-
cabulary of valid tokens at each step, as provided
by the “computer” (Section 2.1).

To achieve compositionality, the decoder must
learn to represent and refer to intermediate vari-
ables whose value was saved in the “computer”
after execution. Therefore, we augment the model
with a key-variable memory, where each entry
has two components: a continuous embedding key
v;, and a corresponding variable token R; refer-
encing the value in the “computer” (see Figure 2).
During encoding, we use an entity linker to link
text spans (e.g., “US”) to KB entities. For each
linked entity we add a memory entry where the key
is the average of GRU hidden states over the entity
span, and the variable token (R;) is the name of a
variable in the computer holding the linked entity
(m.USA) as its value. During decoding, when a
full expression is generated (i.e., the decoder gen-
erates “)”), it gets executed, and the result is stored
as the value of a new variable in the “computer”.
This variable is keyed by the GRU hidden state at
that step. When a new variable R; with key em-
bedding v; is added into the key-variable memory,



(HOpr) = {62|€1 e, (61’p’ 62) € K}
(ArgMaxrp) = {eile; € r,3es € £ : (e1,p,e2) € K, Ve : (e1,p,e) € K ea > e}
(ArgMinrp) = {eile1 € r,dea € £ : (e1,p,e2) € K, Ve : (e1,p,e) € K,ea < e}
( Filterryrap ) = {e1ler € r1,3e2 € ra: (e1,p,e2) € K}

Table 1: Interpreter functions. r represents a variable, p a property in Freebase. > and < are defined on numbers and dates.
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Figure 2: Semantic Parsing with NSM. The key embeddings of the key-variable memory are the output of the sequence model
at certain encoding or decoding steps. For illustration purposes, we also show the values of the variables in parentheses, but the
sequence model never sees these values, and only references them with the name of the variable (“R;”). A special token “GO”
indicates the start of decoding, and “Rerurn” indicates the end of decoding.

the token R; is added into the decoder vocabu-
lary with v; as its embedding. The final answer
returned by the “programmer” is the value of the
last computed variable.

Similar to pointer networks (Vinyals et al.,
2015), the key embeddings for variables are dy-
namically generated for each example. During
training, the model learns to represent variables by
backpropagating gradients from a time step where
a variable is selected by the decoder, through the
key-variable memory, to an earlier time step when
the key embedding was computed. Thus, the en-
coder/decoder learns to generate representations
for variables such that they can be used at the right
time to construct the correct program.

While the key embeddings are differentiable,
the values referenced by the variables (lists of
entities), stored in the “computer”, are symbolic
and non-differentiable. This distinguishes the key-
variable memory from other memory-augmented
neural networks that use continuous differentiable
embeddings as the values of memory entries (We-
ston et al., 2014; Graves et al., 2016a).

2.3 Training NSM with Weak Supervision

NSM executes non-differentiable operations
against a KB, and thus end-to-end backpropa-
gation is not possible. Therefore, we base our
training procedure on REINFORCE (Williams,
1992; Norouzi et al., 2016). When the reward
signal is sparse and the search space is large,
it is common to utilize some full supervision
to pre-train REINFORCE (Silver et al., 2016).
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To train from weak supervision, we suggest an
iterative ML procedure for finding pseudo-gold
programs that will bootstrap REINFORCE.

REINFORCE We can formulate training as a
reinforcement learning problem: given a question
x, the state, action and reward at each time step ¢ €
{0,1,..., T} are (s¢, at, ¢). Since the environment
is deterministic, the state is defined by the question
x and the action sequence: s; = (x, agp.;—1), where
agpt—1 = (ag, ..., a;—1) is the history of actions at
time ¢. A valid action at time ¢ is a; € A(sy),
where A(s;) is the set of valid tokens given by the
“computer”. Since each action corresponds to a
token, the full history ag.7 corresponds to a pro-
gram. The reward r, = I[t = T] - Fi(x,ao.1)
is non-zero only at the last step of decoding, and
is the F score computed comparing the gold an-
swer and the answer generated by executing the
program ag.7. Thus, the cumulative reward of a
program ag.7 is

R(x,a0.7) = ZTt = Fi(z,ao.7).
t

The agent’s decision making procedure at each
time is defined by a policy, mg(s,a) = Py(a; =
alx,apt—1), where 0 are the model parameters.
Since the environment is deterministic, the prob-
ability of generating a program ag.r is

Py(ao.r|z) = Hpe(at |z, a0:¢—1).
t

We can define our objective to be the expected
cumulative reward and use policy gradient meth-



ods such as REINFORCE for training. The objec-
tive and gradient are:

JRL(H) = Z EPG(GO:T|4U) [R(z, ao.7)];

Vo " (0) =Y ) Pylaor | ) - [R(w, agr)—

T ag.T

B(x)] . V@ log Pg(ao;T ‘ x),

where B(z) = >, Pplaor | )R(x, ap.r) is
a baseline that reduces the variance of the gradi-
ent estimation without introducing bias. Having a
separate network to predict the baseline is an in-
teresting future direction.

While REINFORCE assumes a stochastic pol-
icy, we use beam search for gradient estimation.
Thus, in contrast with common practice of ap-
proximating the gradient by sampling from the
model, we use the top-k action sequences (pro-
grams) in the beam with normalized probabilities.
This allows training to focus on sequences with
high probability, which are on the decision bound-
aries, and reduces the variance of the gradient.

Empirically (and in line with prior work), RE-
INFORCE converged slowly and often got stuck
in local optima (see Section 3). The difficulty of
training resulted from the sparse reward signal in
the large search space, which caused model prob-
abilities for programs with non-zero reward to be
very small at the beginning. If the beam size k is
small, good programs fall off the beam, leading to
zero gradients for all programs in the beam. If the
beam size k is large, training is very slow, and the
normalized probabilities of good programs when
the model is untrained are still very small, leading
to (1) near zero baselines, thus near zero gradients
on “bad” programs (2) near zero gradients on good
programs due to the low probability Py(ag.r | x).
To combat this, we present an alternative training
strategy based on maximum-likelihood.

Iterative ML If we had gold programs, we
could directly optimize their likelihood. Since we
do not have gold programs, we can perform an
iterative procedure (similar to hard Expectation-
Maximization (EM)), where we search for good
programs given fixed parameters, and then opti-
mize the probability of the best program found so
far. We do decoding on an example with a large
beam size and declare ab%? () to be the pseudo-
gold program, which achieved highest reward with
shortest length among the programs decoded on x
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in all previous iterations. Then, we can optimize
the ML objective:
(z) | =)

TME9) = "log Py(afes! (1)

A question z is not included if we did not find any
program with positive reward.

Training with iterative ML is fast because there
is at most one program per example and the gra-
dient is not weighted by model probability. while
decoding with a large beam size is slow, we could
train for multiple epochs after each decoding. This
iterative process has a bootstrapping effect that a

better model leads to a better program a’%s(z)
()

through decoding, and a better program agf%t
leads to a better model through training.

Even with a large beam size, some programs are
hard to find because of the large search space. A
common solution to this problem is to use curricu-
lum learning (Zaremba and Sutskever, 2015; Reed
and de Freitas, 2016). The size of the search space
is controlled by both the set of functions used in
the program and the program length. We apply
curriculum learning by gradually increasing both
these quantities (see details in Section 3) when
performing iterative ML.

Nevertheless, iterative ML uses only pseudo-
gold programs and does not directly optimize
the objective we truly care about. This has two
adverse effects: (1) The best program a%s! ()
could be a spurious program that accidentally pro-
duces the correct answer (e.g., using the prop-
erty PLACEOFBIRTH instead of PLACEOFDEATH
when the two places are the same), and thus does
not generalize to other questions. (2) Because
training does not observe full negative programs,
the model often fails to distinguish between to-
kens that are related to one another. For exam-
ple, differentiating PARENTSOF vs. SIBLINGSOF
vs. CHILDRENOF can be challenging. We now
present learning where we combine iterative ML
with REINFORCE.

Augmented REINFORCE To bootstrap REIN-
FORCE, we can use iterative ML to find pseudo-
gold programs, and then add these programs to the
beam with a reasonably large probability. This is
similar to methods from imitation learning (Ross
et al., 2011; Jiang et al., 2012) that define a
proposal distribution by linearly interpolating the
model distribution and an oracle.



Algorithm 1 IML-REINFORCE

Input: question-answer pairs D = {(z;, y;)}, mix ratio
a, reward function R(-), training iterations Nasr., Nrr,
and beam sizes Barr, Brr.
Procedure:
Initialize C;
Initialize model 6 randomly
for n = 1to Ny do
for (z,y)in D do
C < Decode By, programs given x
for jin1...|C| do
if Ry,y(C;) > Ra,y(C;) then C; < C;
0 < ML training with Dpr, = {(z,C5)}
> REINFORCE

() the best program so far for =
> Iterative ML

Initialize model 6 randomly
for n =1to Ngyr, do
Dgr < () is the RL training set
for (z,y)in D do
C < Decode Bry, programs from x
for jin1...C|do
if Rw,y(C]) > Rr,y(C;) then C; — Cj
C«+ Ccu{Cc;}
for jin1...C|do

pi + (1-a) <2

5 Wherep; = Py (Cj | x)
i’ Pyl

if Cj :C; thenﬁj <—ﬁj+a

DRL — DRL @] {(l’, Cj7ﬁj)}
0 < REINFORCE training with Dr,

Algorithm 1 describes our overall training pro-
cedure. We first run iterative ML for N, itera-
tions and record the best program found for every
example x;. Then, we run REINFORCE, where
we normalize the probabilities of the programs in
beam to sum to (1—«) and add « to the probability
of the best found program C*(z;). Consequently,
the model always puts a reasonable amount of
probability on a program with high reward during
training. Note that we randomly initialized the pa-
rameters for REINFORCE, since initializing from
the final ML parameters seems to get stuck in a
local optimum and produced worse results.

On top of imitation learning, our approach is
related to the common practice in reinforcement
learning (Schaul et al., 2016) to replay rare suc-
cessful experiences to reduce the training variance
and improve training efficiency. This is also simi-
lar to recent developments (Wu et al., 2016) in ma-
chine translation, where ML and RL objectives are
linearly combined, because anchoring the model
to some high-reward outputs stabilizes training.

3 Experiments and Analysis

We now empirically show that NSM can learn
a semantic parser from weak supervision over a
large KB. We evaluate on WEBQUESTIONSSP, a
challenging semantic parsing dataset with strong
baselines. Experiments show that NSM achieves
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new state-of-the-art performance on WEBQUES-
TIONSSP with weak supervision, and significantly
closes the gap between weak and full supervisions
for this task.

3.1 The WEBQUESTIONSSP dataset

The WEBQUESTIONSSP dataset (Yih et al., 2016)
contains full semantic parses for a subset of the
questions from WEBQUESTIONS (Berant et al.,
2013), because 18.5% of the original dataset were
found to be “not answerable”. It consists of 3,098
question-answer pairs for training and 1,639 for
testing, which were collected using Google Sug-
gest API, and the answers were originally obtained
using Amazon Mechanical Turk workers. They
were updated in (Yih et al., 2016) by annotators
who were familiar with the design of Freebase and
added semantic parses. We further separated out
620 questions from the training set as a validation
set. For query pre-processing we used an in-house
named entity linking system to find the entities in a
question. The quality of the entity linker is similar
to that of (Yih et al., 2015) at 94% of the gold root
entities being included. Similar to Dong and Lap-
ata (2016), we replaced named entity tokens with
a special token “ENT”. For example, the question
“who plays meg in family guy” is changed to “who
plays ENT in ENT ENT”. This helps reduce over-
fitting, because instead of memorizing the correct
program for a specific entity, the model has to fo-
cus on other context words in the sentence, which
improves generalization.

Following (Yih et al., 2015) we used the last
publicly available snapshot of Freebase (Bollacker
et al., 2008). Since NSM training requires ran-
dom access to Freebase during decoding, we pre-
processed Freebase by removing predicates that
are not related to world knowledge (starting with
“/common/”, “/type/”, “/freebase/”),> and remov-
ing all text valued predicates, which are rarely the
answer. Out of all 27K relations, 434 relations are
removed during preprocessing. This results in a
graph that fits in memory with 23K relations, 82M
nodes, and 417M edges.

3.2 Model Details

For pre-trained word embeddings, we used the
300 dimension GloVe word embeddings trained
on 840B tokens (Pennington et al., 2014). On
the encoder side, we added a projection matrix to

>We kept “/common/topic/notable_types”.



transform the embeddings into 50 dimensions. On
the decoder side, we used the same GloVe embed-
dings to construct an embedding for each property
using its Freebase id, and also added a projection
matrix to transform this embedding to 50 dimen-
sions. A Freebase id contains three parts: domain,
type, and property. For example, the Freebase
id for PARENTSOF is “/people/person/parents”.
“people” is the domain, “person” is the type
and “parents” is the property. The embedding
is constructed by concatenating the average of
word embeddings in the domain and type name
to the average of word embeddings in the prop-
erty name. For example, if the embedding dimen-
sion is 300, the embedding dimension for “/peo-
ple/person/parents” will be 600. The first 300 di-
mensions will be the average of the embeddings
for “people” and “person”, and the second 300
dimensions will be the embedding for “parents”.

The dimension of encoder hidden state, decoder
hidden state and key embeddings are all 50. The
embeddings for the functions and special tokens
(e.g., “UNK”, “GO”) are randomly initialized by a
truncated normal distribution with mean=0.0 and
stddev=0.1. All the weight matrices are initialized
with a uniform distribution in [—@, ?] where d
is the input dimension. Dropout rate is set to 0.5,
and we see a clear tendency for larger dropout rate
to produce better performance, indicating overfit-
ting is a major problem for learning.

3.3 Training Details

In iterative ML training, the decoder uses a beam
of size £ = 100 to update the pseudo-gold pro-
grams and the model is trained for 20 epochs after
each decoding step. We use the Adam optimizer
(Kingma and Ba, 2014) with initial learning rate
0.001. In our experiment, this process usually con-
verges after a few (5-8) iterations.

For REINFORCE training, the best hyperpa-
rameters are chosen using the validation set. We
use a beam of size k¥ = 5 for decoding, and « is
set to 0.1. Because the dataset is small and some
relations are only used once in the whole training
set, we train the model on the entire training set
for 200 iterations with the best hyperparameters.
Then we train the model with learning rate de-
cay until convergence. Learning rate is decayed as
9 = go x 875 where go = 0.001, 8 = 0.5
m = 1000, and ¢, is the number of training steps
at the end of iteration 200.
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Since decoding needs to query the knowledge
base (KB) constantly, the speed bottleneck for
training is decoding. We address this problem
in our implementation by partitioning the dataset,
and using multiple decoders in parallel to han-
dle each partition. We use 100 decoders, which
queries 50 KG servers, and one trainer. The neu-
ral network model is implemented in TensorFlow.
Since the model is small, we didn’t see a signif-
icant speedup by using GPU, so all the decoders
and the trainer are using CPU only.

Inspired by the staged generation process in Yih
et al. (2015), curriculum learning includes two
steps. We first run iterative ML for 10 iterations
with programs constrained to only use the “Hop”
function and the maximum number of expressions
is 2. Then, we run iterative ML again, but use both
“Hop” and “Filter”. The maximum number of ex-
pressions is 3, and the relations used by “Hop” are
restricted to those that appeared in a2 (g) in the
first step.

3.4 Results and discussion

We evaluate performance using the offical evalu-
ation script for WEBQUESTIONSSP. Because the
answer to a question may contain multiple enti-
ties or values, precision, recall and F1 are com-
puted based on the output of each individual ques-
tion, and average F1 is reported as the main eval-
uation metric. Accuracy measures the proportion
of questions that are answered exactly.

A comparison to STAGG, the previous state-of-
the-art model (Yih et al., 2016, 2015), is shown
in Table 2. Our model beats STAGG with weak
supervision by a significant margin on all metrics,
while relying on no feature engineering or hand-
crafted rules. When STAGG is trained with strong
supervision it obtains an F1 of 71.7, and thus NSM
closes half the gap between training with weak and
full supervision.

Model \ Prec. \ Rec. \ F1 \ Acc.

STAGG | 673 | 73.1 | 66.8 | 58.8
NSM 70.8 | 76.0 | 69.0 | 59.5

Table 2: Results on the test set. Average F1 is the main evalu-
ation metric and NSM outperforms STAGG with no domain-
specific knowledge or feature engineering.

Four key ingredients lead to the final perfor-
mance of NSM. The first one is the neural com-
puter interface that provides code assistance by
checking for syntax and semantic errors. We find



that semantic checks are very effective for open-
domain KBs with a large number of properties.
For our task, the average number of choices is re-
duced from 23K per step (all properties) to less
than 100 (the average number of properties con-
nected to an entity).

The second ingredient is augmented REIN-
FORCE training. Table 3 compares augmented
REINFORCE, REINFORCE, and iterative ML on
the validation set. REINFORCE gets stuck in lo-
cal optimum and performs poorly. Iterative ML
training is not directly optimizing the F1 measure,
and achieves sub-optimal results. In contrast, aug-
mented REINFORCE is able to bootstrap using
pseudo-gold programs found by iterative ML and
achieves the best performance on both the training
and validation set.

Settings Train F1 | Valid F1
Iterative ML 68.6 60.1
REINFORCE 55.1 47.8
Augmented REINFORCE 83.0 67.2

Table 3: Average F1 on the validation set for augmented RE-
INFORCE, REINFORCE, and iterative ML.

The third ingredient is curriculum learning dur-
ing iterative ML. We compare the performance of
the best programs found with and without curricu-
lum learning in Table 4. We find that the best pro-
grams found with curriculum learning are substan-
tially better than those found without curriculum
learning by a large margin on every metric.

Settings ‘ Prec. ‘ Rec. ‘ F1 ‘ Acc.
No curriculum | 79.1 | 91.1 | 78.5 | 67.2
Curriculum 88.6 | 96.1 | 89.5 | 79.8

Table 4: Evaluation of the programs with the highest F1 score
besty with and without curriculum learning.

in the beam (ag';
The last important ingredient is reducing over-
fitting. Given the small size of the dataset, over-
fitting is a major problem for training neural net-
work models. We show the contributions of dif-
ferent techniques for controlling overfitting in Ta-
ble 5. Note that after all the techniques have been
applied, the model is still overfitting with training
F1@1=83.0% and validation F1@1=67.2%.
Among the programs generated by the model,
a significant portion (36.7%) uses more than one
expression. From Table 6, we can see that the per-
formance doesn’t decrease much as the composi-
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Settings | AF1@I
—Pretrained word embeddings —5.5
—Pretrained property embeddings —2.7
—Dropout on GRU input and output —24
—Dropout on softmax —1.1
—Anonymize entity tokens —-2.0

Table 5: Contributions of different overfitting techniques on
the validation set.

#Expressions ‘ 0 ‘ 1 ‘ 2 ‘ 3
Percentage 04% | 62.9% | 29.8% | 6.9%
Fl 0.0 73.5 59.9 | 70.3

Table 6: Percentage and performance of model generated
programs with different complexity (number of expressions).

tional depth increases, indicating that the model
is effective at capturing compositionality. We ob-
serve that programs with three expressions use a
more limited set of properties, mainly focusing on
answering a few types of questions such as “who
plays meg in family guy”, “what college did jeff
corwin go to” and “which countries does russia
border”. In contrast, programs with two expres-
sions use a more diverse set of properties, which
could explain the lower performance compared to

programs with three expressions.

Error analysis Error analysis on the validation

set shows two main sources of errors:
1. Search failure: Programs with high reward
are not found during search for pseudo-gold
programs, either because the beam size is not
large enough, or because the set of functions
implemented by the interpreter is insufficient.
The 89.5% F1 score in Table 4 indicates that
at least 10% of the questions are of this kind.

. Ranking failure: Programs with high reward
exist in the beam, but are not ranked at the
top during decoding. Because the training er-
ror is low, this is largely due to overfitting or
spurious programs. The 67.2% F1 score in
Table 3 indicates that about 20% of the ques-
tions are of this kind.

4 Related work

Among deep learning models for program in-
duction, Reinforcement Learning Neural Turing
Machines (RL-NTMs) (Zaremba and Sutskever,
2015) are the most similar to NSM, as a non-
differentiable machine is controlled by a sequence



model. Therefore, both models rely on REIN-
FORCEE for training. The main difference between
the two is the abstraction level of the programming
language. RL-NTM uses lower level operations
such as memory address manipulation and byte
reading/writing, while NSM uses a high level pro-
gramming language over a large knowledge base
that includes operations such as following proper-
ties from entities, or sorting based on a property,
which is more suitable for representing semantics.
Earlier works such as OOPS (Schmidhuber, 2004)
has desirable characteristics, for example, the abil-
ity to define new functions. These remain to be
future improvements for NSM.

We formulate NSM training as an instance of
reinforcement learning (Sutton and Barto, 1998)
in order to directly optimize the task reward of
the structured prediction problem (Norouzi et al.,
2016; Li et al., 2016; Yu et al., 2017). Compared
to imitation learning methods (Daume et al., 2009;
Ross et al., 2011) that interpolate a model dis-
tribution with an oracle, NSM needs to solve a
challenging search problem of training from weak
supervisions in a large search space. Our solu-
tion employs two techniques (a) a symbolic “com-
puter” helps find good programs by pruning the
search space (b) an iterative ML training pro-
cess, where beam search is used to find pseudo-
gold programs. Wiseman and Rush (Wiseman
and Rush, 2016) proposed a max-margin approach
to train a sequence-to-sequence scorer. However,
their training procedure is more involved, and we
did not implement it in this work. MIXER (Ran-
zato et al., 2015) also proposed to combine ML
training and REINFORCE, but they only con-
sidered tasks with full supervisions. Berant and
Liang (Berant and Liang, 2015) applied imita-
tion learning to semantic parsing, but still requires
hand crafted grammars and features.

NSM is similar to Neural Programmer (Nee-
lakantan et al., 2015) and Dynamic Neural Mod-
ule Network (Andreas et al., 2016) in that they
all solve the problem of semantic parsing from
structured data, and generate programs using sim-
ilar semantics. The main difference between these
approaches is how an intermediate result (the
memory) is represented. Neural Programmer and
Dynamic-NMN chose to represent results as vec-
tors of weights (row selectors and attention vec-
tors), which enables backpropagation and search
through all possible programs in parallel. How-
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ever, their strategy is not applicable to a large
KB such as Freebase, which contains about 100M
entities, and more than 20k properties. Instead,
NSM chooses a more scalable approach, where
the “computer” saves intermediate results, and the
neural network only refers to them with variable
names (e.g., “R;” for all cities in the US).

NSM is similar to the Path Ranking Algorithm
(PRA) (Lao et al., 2011) in that semantics is en-
coded as a sequence of actions, and denotations
are used to prune the search space during learning.
NSM is more powerful than PRA by 1) allowing
more complex semantics to be composed through
the use of a key-variable memory; 2) controlling
the search procedure with a trained neural net-
work, while PRA only samples actions uniformly;
3) allowing input questions to express complex re-
lations, and then dynamically generating action
sequences. PRA can combine multiple seman-
tic representations to produce the final prediction,
which remains to be future work for NSM.

5 Conclusion

We propose the Manager-Programmer-Computer
framework for neural program induction. It in-
tegrates neural networks with a symbolic non-
differentiable computer to support abstract, scal-
able and precise operations through a friendly
neural computer interface. Within this frame-
work, we introduce the Neural Symbolic Machine,
which integrates a neural sequence-to-sequence
“programmer” with key-variable memory, and a
symbolic Lisp interpreter with code assistance.
Because the interpreter is non-differentiable and to
directly optimize the task reward, we apply REIN-
FORCE and use pseudo-gold programs found by
an iterative ML training process to bootstrap train-
ing. NSM achieves new state-of-the-art results on
a challenging semantic parsing dataset with weak
supervision, and significantly closes the gap be-
tween weak and full supervision. It is trained end-
to-end, and does not require any feature engineer-
ing or domain-specific knowledge.
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