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Abstract

We demonstrate a simple and easy-to-use
system to produce logical semantic rep-
resentations of sentences. Our software
operates by composing semantic formu-
las bottom-up given a CCG parse tree. It
uses flexible semantic templates to spec-
ify semantic patterns. Templates for En-
glish and Japanese accompany our soft-
ware, and they are easy to understand, use
and extend to cover other linguistic phe-
nomena or languages. We also provide
scripts to use our semantic representations
in a textual entailment task, and a visu-
alization tool to display semantically aug-
mented CCG trees in HTML.

1 Introduction

We are motivated by NLP problems that bene-
fit from any degree of computer language un-
derstanding or semantic parsing. Two prominent
examples are Textual Entailment and Question-
Answering, where the most successful ap-
proaches (Abzianidze, 2015; Berant et al., 2013)
require symbolic representations of the semantics
of sentences. We are inspired by the theoreti-
cal developments in the formal semantics litera-
ture, where higher-order logical (HOL) formulas
are used to derive meaning representations (MR);
despite what is typically believed in the NLP com-
munity, Mineshima et al. (2015) demonstrated that
HOL can be used effectively at a reasonable speed.

In this paper, we describe ccg2lambda, our
system to obtain MRs given derivations (trees) of a
Combinatory Categorial Grammar (CCG) (Steed-
man, 2000). In order to obtain the MRs, our sys-
tem is guided by the combinatory characteristics
of CCG derivations and a list of manually de-
signed semantic templates. The linguistic intu-

itions behind the design of those semantic tem-
plates and the evaluation of the MRs that they pro-
duce is detailed in Mineshima et al. (2015), and
is not repeated here. In that paper, we tackled a
Textual Entailment task, where the meanings of
premises and conclusions were represented sym-
bolically, and their entailment relation was judged
with a theorem prover of higher-order logics. With
this system, we obtained a state-of-the-art perfor-
mance on the FraCaS dataset (Cooper et al., 1994).
ccg2lambda and the accompanying semantic

templates are open source1. Semantic templates
are already available for English and Japanese,
and they are easily extensible to other linguistic
phenomena and other languages for which CCG
parsers are available. Here we describe how to use
ccg2lambda and how to specify semantic tem-
plates for other researchers to extend our work.

2 Related Work

The most similar system to ours is Boxer (Bos et
al., 2004), which outputs first order formulas given
CCG trees. Our system can additionally produce
higher-order formulas, which are more expressive
and potentially accurate (Mineshima et al., 2015).

There are three prominent textbook systems
for computational semantics, that of Bird et al.
(2009), Blackburn and Bos (2005) and van Ei-
jck and Unger (2010). These three systems, to-
gether with the Lambda Calculator2 (Champollion
et al., 2007) are excellent educational resources
that are very accessible to beginner linguists in
general, and semanticists in particular. The devel-
opment of ccg2lambda is inspired by these sys-
tems, in that we aimed to produce a software that is
easy to understand, use and extend with only basic
knowledge of formal semantics and lambda calcu-

1https://github.com/mynlp/ccg2lambda
2http://lambdacalculator.com/

85



lus. However, these systems are mainly developed
for educational purposes and are not connected to
fully fledged parsers, hence not immediately us-
able as a component of larger NLP systems.

We have developed ccg2lambda to process
trees that are produced by wide-coverage CCG
parsers (e.g. C&C and Jigg3). Other seman-
tic parsers such as those developed by Bos et al.
(2004), Abzianidze (2015) and Lewis and Steed-
man (2013) also connect to wide-coverage CCG
parsers, but they do not emphasize easy accessi-
bility or extensibility. NL2KR (Vo et al., 2015) is
an interactive system with powerful generalization
capabilities, but it does not allow fine-grained lexi-
con specifications (only CCG categories) and does
not output machine readable semantics. Instead,
ccg2lambda produces XML machine-readable
MRs, which make our system easy to integrate in
larger logic or statistical NLP systems.

3 System Overview

Although our main system contribution is a se-
mantic parser, we use the problem of textual en-
tailment as an end-to-end task. Figure 1 schemati-
cally shows the several components of our system.

The first stage is to parse sentences into CCG
trees (see Figure 2 for an example). Our system
currently supports the C&C parser (Clark and Cur-
ran, 2004) for English, and Jigg (Noji and Miyao,
2016) for Japanese.

The second stage is the semantic composition,
where MRs are constructed compositionally over
CCG trees using lambda calculus, thus allowing
higher-order logics if necessary. To this end, our
system is guided by the compositional rules of the
CCG tree and the semantic templates provided by
the user. In Section 4 we describe in detail how
these semantic templates are specified and how
they control the semantic outputs. The output
of this stage is a Stanford CoreNLP-style XML
file (Manning et al., 2014) where each sentence
has three XML nodes: <tokens>, <ccg> and
<semantics>. Thus, sentence semantics can
simply be read off the root node of the CCG tree.

In the case of recognizing textual entailment,
the third stage is the theorem construction, defini-
tion of predicate types, and execution with a logic
prover. This stage is not essential to our system,
but it is added to this paper to show the usefulness
of our semantic representations in an NLP task.

3https://github.com/mynlp/jigg

4 Semantic Composition

ccg2lambda receives CCG trees and outputs
(possibly higher-order) logic formulas. To that
end, we use i) the combinatory characteristics of
CCG trees to guide the semantic compositions,
and ii) a list of semantic templates to assign a pre-
cise meaning to CCG constituents.

See Figure 2 for an example of CCG deriva-
tion for the sentence “Some woman ordered tea”,
augmented with its semantics. Nodes have CCG
syntactic categories (e.g. N or S\NP ), which is
what our system receives as input. On the same
figure, we have added the logical semantic repre-
sentations (e.g. λx.woman(x)) below the syntac-
tic categories. Our system outputs these logical
formulas. For clarity, leaves also display the to-
ken base forms. The symbols <,> and lex stand
for left and right function application rules, and
the type-shift rule in C&C, respectively. These
rules and the syntactic categories guide the seman-
tic composition, provided with semantic templates
that describe the specific semantics.

4.1 Semantic templates

Semantic templates are defined declaratively in
a YAML4 file, typically by a formal semanticist
after an appropriate linguistic analysis. A tem-
plate applies to a node of the CCG derivation
tree if certain conditions are met. Each template
has two required attributes: semantics and (syn-
tactic) category. The attribute semantics is a
lambda term in NLTK semantics format (Garrette
and Klein, 2009). In case a template applies on a
CCG leaf (that is, a word), the lambda term in the
template is applied on the base form of the word,
and β-reduction is performed. For example, the
semantic template
− semantics : \E.\x.E(x)
category : N

applying on a leaf whose base word is “woman”
and its syntactic category is N , would produce
the expression (λE.λx.E(x))(woman) which is
β-reduced to λx.woman(x). Here, the base form
“woman” substitutes all occurrences of the vari-
able E in the semantics expression.

In case a template applies on a CCG inner node
(a node with children), the lambda abstraction is
applied on the semantics of the children, in order.

4http://www.yaml.org/spec/
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Figure 1: System pipeline for recognizing textual entailment. Syntactic structures of sentences are ob-
tained with a CCG parser. Then, we perform the semantic composition using semantic templates. The
resulting meaning representations are used to perform various logical inferences with a theorem prover.

Some
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lex
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λQ2.Q2(λx.∃y.(tea(y) ∧ order(x, y)))

>

S
∃x.(woman(x) ∧ ∃y.(tea(y) ∧ order(x, y)))

<

Figure 2: CCG derivation tree of the sentence “Some woman ordered tea”, with its semantics (simplified
for illustrative purposes). The actual output of ccg2lambda with our provided templates is in Figure 6.

For example, in Figure 2, the template
− semantics : \E.\F.∃y.(E(y) ∧ F (y))
category : NP
rule : lex

produces a type-raise from N to NP , and when
applied to the CCG node whose child’s semantics
are λy.tea(y), it will produce, after β-reduction,
the formula λF.∃y.(tea(y) ∧ F (y)). Here, the
child’s semantics λy.tea(y) substitute all occur-
rences of the variable E. The newly composed se-
mantic representation λF.∃y.(tea(y)∧F (y)) now
expects another predicate (a verb) as an argument
F (i.e. “order”), which will be filled in the next
step of the composition.

The category attribute of a semantic template
may also specify conditions on the feature struc-
tures of CCG nodes (which are provided by the
CCG parser), in which case templates apply if the
syntactic category matches and the feature struc-
ture subsumes that of the CCG node. For example,
if the semantic template specifies a syntactic cat-
egory NP[dcl = true], it matches a CCG node
with a category NP[dcl = true] or a category
NP[dcl = true, adj = true].

Other conditions for matching templates to
CCG nodes can be specified by adding more at-
tributes to the semantic template. In the exam-
ple above, the attribute rule : lex is used to
specify the combination rule of that inner CCG
node. In practice, any XML attribute of a CCG

node can be used to specify matching conditions,
which means that users of ccg2lambda can en-
rich CCG trees with arbitrary annotations such as
Named Entities or Events and use them as match-
ing conditions when defining semantic templates
without modifying the software. It is also possible
to specify attributes of the children of the target
CCG node. These conditions are always prefixed
by the string child, followed by the branch in-
dex 0 or 1. For example, a semantic template with
the attribute child1 child0 pos : NN matches
a node whose right child’s (child1) left child’s
(child0) POS tag is an NN. Moreover, paths to
child nodes can be left unspecified, by using the
keyword child any X : Y; in this case, any child
whose attribute X has value Y will be matched by
the template. If more than one template matches a
CCG node, the first appearing template is selected.

4.2 System Usage and Output

The command for the semantic composition is:
# python semparse.py ccgtrees.xml

templates.yaml semantics.xml

where ccgtrees.xml is a Jigg’s XML style
CCG tree, templates.yaml contains the
semantic templates, and semantics.xml is the
XML output of the system. We also provide a
script to convert C&C XML trees into Jigg’s XML
style. The output of semparse.py follows the
conventions of Stanford coreNLP (see Figure 3).
However, we follow Jigg’s style to represent
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1 <r o o t>
2 <s e n t e n c e s>
3 <s e n t e n c e>
4 <t o k e n s>
5 <t o k e n base=” t e a ” s u r f =” t e a ” pos=”NN” />
6 <t o k e n . . . />
7 </ t o k e n s>
8 <ccg>
9 <span id =” s1 ” c h i l d =” s2 ” c a t e g o r y =”N”

r u l e =” l e x ” />
10 <span . . . />
11 </ ccg>
12 <s e m a n t i c s>
13 <span id =” s1 ” c h i l d =” s2 ” sem=”\y . t e a ( y ) ”

t y p e =” t e a : E n t i t y −> Prop ” />
14 <span . . . />
15 </ s e m a n t i c s>
16 </ s e n t e n c e>
17 </ s e n t e n c e s>
18 </ r o o t>

Figure 3: XML output of the semantic composi-
tion. Span nodes of the semantics tag contain log-
ical semantic representations of that constituent.

element characteristics as XML node attributes.
For example, the base and surface forms, and the
POS tag of a token are all represented as XML
attributes in a <token> tag.

Our semantic composition produces the
<semantics> tag, which has as many children
nodes (<span>) as the CCG tree, the same span
identifiers and structure. However, semantic
spans also have a “sem” attribute encoding the
semantics (using NLTK’s semantics format) that
have been composed for that constituent. An
example of a resulting semantic logic formula in
NLTK semantics format is:

\F.exists y. ( tea(y) & F (y))
Note that predicates are prefixed with an under-
score to avoid collisions with reserved predicates
in NLTK semantics format or in a potential prover.

Semantic spans also provide the type of single
predicates (attribute “type”). For instance, the type
of the predicate tea is a function that receives an
entity as an argument, and produces a proposition:

tea : Entity→ Prop

Types are automatically inferred using NLTK se-
mantics functionality. However, it is possible to
force arbitrary types in a semantic template by
adding the attribute “coq type”. For example, we
can specify the type for a transitive verb as:
− semantics : . . .
category : (S\NP)/NP
coq type : Entity→ Entity→ Prop

We can activate these types with the flag
--arbi-types in the call to semparse.py.

5 Textual Entailment

The logical formulas that ccg2lambda outputs
can be used in a variety of applications. In this
demonstration, we use them to recognize textual
entailment, an NLP problem that often requires
precise language understanding. We assume that
the user inputs a file with one sentence per line.
All sentences are assumed to be premises, except
the last sentence, which is assumed to be the con-
clusion. An entailment problem example is:
premise1: All women ordered coffee or tea.
premise2: Some woman did not order coffee.
conclusion: Some woman ordered tea.

Contrarily to other textual entailment systems
based on logics (Angeli and Manning, 2014; Mac-
Cartney and Manning, 2007), we do not assume
single-premise problems, which makes our system
more general. The MRs of the problem above are:

p1 : ∀x.(woman(x)→ ∃y.((tea(y) ∨ coffee(y)) ∧ order(x, y)))

p2 : ∃x.(woman(x) ∧ ¬∃y.(coffee(y) ∧ order(x, y)))

c : ∃x.(woman(x) ∧ ∃y.(tea(y) ∧ order(x, y)))

We build a theorem by concatenating mean-
ing representations of the premises {p1, . . . , pn}
and the conclusion c with the implication opera-
tor, which is a convenience in theorem proving:

Theorem : p1 → . . .→ pn → c. (1)
And then, we define predicate types as:
Parameter tea : Entity → Prop.

Parameter order : Entity → Entity → Prop.

Finally, we pipe the theorem and type definitions
to Coq (Castéran and Bertot, 2004), an interactive
higher-order prover that we run fully automated
with the use of some tactics (including arithmetics
and equational reasoning), as described in Mi-
neshima et al. (2015). We return the label yes (en-
tailment) if the conclusion can be logically proved
from the premises, no if the negated conclusion
can be proved, and unknown otherwise.

The recognition of textual entailment can be
performed with the following command:

# python prove.py semantics.xml

where the entailment judgment (yes, no, unknown)
is printed to standard output. Moreover, the flag
--graph out allows to specify an HTML file
to print a graphical visualization of the CCG tree
structure of sentences, their semantic composition
(every constituent annotated with a component of
the formula), and the prover script. An excerpt of
the visualization is shown in Section 6.
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Figure 4: Visualization of the semantic output of ccg2lambda for the sentence “All women ordered
coffee or tea.” where logical semantic representations appear below their respective CCG nodes.

Figure 5: Visualization of the semantic output of ccg2lambda for the sentence “Some woman did not
order coffee.” where logical semantic representations appear below their respective CCG nodes.

Figure 6: Visualization of the semantic output of ccg2lambda for the sentence “Some woman ordered
tea.” where logical semantic representations appear below their respective CCG nodes.

6 Visualization

For visualization purposes, we provide a separate
script that can be called as:

# python visualize.py semantics.xml

> semantics.html

which produces a file semantics.html with
an HTML graphical representation of the CCG
tree, augmented at every node with the seman-
tics composed up to that node (see Figures 4, 5
and 6 for an excerpt). These semantic representa-
tions are obtained with the semantic templates that
accompany our software and that were developed
and evaluated in Mineshima et al. (2015). The
trivial propositions “TrueP” have no effect and ap-
pear in the formulas in place of potential modifiers
(such as adjectives or adverbs) of more complex
sentences. The visualization can be configured to
display the root on top, change colors and sizes of
the syntactic categories, feature structures, logical
formulas and base forms at the leaves.

7 Future Work and Conclusion

As an extension to ccg2lambda, it would be
valuable to produce (possibly scored) N-best lists
of logical formulas, instead of the current single
1-best. Moreover, our current semantic templates
do not cover all syntactic categories that C&C or
Jigg produce, and we need a good default combi-
nation mechanism. Other minor enhancements are
to produce logical formulas for each CCG deriva-
tion in an N-best list, and to allow features other
than the base form to become predicates.

In this paper we have demonstrated our sys-
tem to convert CCG trees to logic MRs. It oper-
ates by composing semantics bottom-up, guided
by the combinatory characteristics of the CCG
derivation and semantic templates provided by the
user. In this release, semantic templates for En-
glish and Japanese are also included. As Mi-
neshima et al. (2015) has shown, the MRs obtained
by ccg2lambda are useful to recognize textual
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entailment. We believe that these easy-to-produce
MRs can be useful to NLP tasks that require pre-
cise language understanding or that benefit from
using MRs as features in their statistical systems.
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Miyao, and Daisuke Bekki. 2015. Higher-order log-
ical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2055–
2061, Lisbon, Portugal, September. Association for
Computational Linguistics.

Hiroshi Noji and Yusuke Miyao. 2016. Jigg: A
framework for an easy natural language process-
ing pipeline. In Proceedings of ACL 2016 System
Demonstrations, Berlin, Germany, August. Associa-
tion for Computational Linguistics.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

Jan van Eijck and Christina Unger. 2010. Compu-
tational Semantics with Functional Programming.
Cambridge University Press.

Nguyen Vo, Arindam Mitra, and Chitta Baral. 2015.
The NL2KR platform for building natural language
translation systems. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 899–908, Beijing, China, July.
Association for Computational Linguistics.

90


