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Abstract

Publicly available knowledge repositories,
such as Wikipedia and Freebase, benefit
significantly from volunteers, whose con-
tributions ensure that the knowledge keeps
expanding and is kept up-to-date and accu-
rate. User interactions are often limited to
hypertext, tabular, or graph visualization in-
terfaces. For spatio-temporal information,
however, other interaction paradigms may
be better-suited. We present an integrated
system that combines crowdsourcing, au-
tomatic or semi-automatic knowledge har-
vesting from text, and visual analytics. It
enables users to analyze large quantities
of structured data and unstructured textu-
al data from a spatio-temporal perspective
and gain deep insights that are not easily
observed in individual facts.

1 Introduction

There has been an unprecedented growth of pub-
licly available knowledge repositories such as the
Open Directory, Wikipedia, Freebase, etc. Many
additional knowledge bases and knowledge graphs
are built upon these, including DBpedia, YAGO,
and Google’s Knowledge Graph. Such repositories
benefit significantly from human volunteers, whose
contributions ensure that the knowledge keeps ex-
panding and is kept up-to-date and accurate.

Despite the massive growth of such structured
data, user interactions are often limited to sim-
ple browsing interfaces, showing encyclopedic tex-
t with hyperlinks, tabular listings, or graph visu-
alizations. Sometimes, however, users may seek
a spatio-temporal perspective of such knowledge.
Given that the spatio-temporal dimensions are fun-
damental with respect to both the physical world
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and human cognition, they constitute more than
just a particular facet of human knowledge. Of
course, there has been ample previous work on
spatio-temporal visualization. However, most pre-
vious work either deals with social media (Ardon
et al., 2013) rather than knowledge repositories, or
focuses on geo-located entities such as buildings,
cities, and so on (Hoffart et al., 2011a).

From a data analytics perspective, however,
much other knowledge can also be analyzed spatio-
temporally. For example, given a person like
Napoleon or a disease such as the Bubonic Plague,
we may wish to explore relevant geographical dis-
tributions. This notion of spatio-temporal analytics
goes beyond simple geolocation and time metadata.

In fact, the relevant spatio-temporal cues may
need to be extracted from text. Unfortunately, accu-
rate spatio-temporal extraction is also a challenging
task (Wang et al., 2011b). Most existing informa-
tion extraction tools neglect spatio-temporal infor-
mation and tend to produce very noisy extractions.

It appears that the best strategy is to put the hu-
man in the loop by combining knowledge harvest-
ing with methods to refine the extractions, similar
to YALI (Wang et al., 2013), a browser plug-in that
calls AIDA (Hoffart et al., 2011b) for named entity
recognition and disambiguation (NERD) in a real-
time manner. That system transparently collects
user feedback to gather statistics on name-entity
pairs and implicit training data for improving N-
ERD accuracy.

Overall, we observe that there is a need for more
sophisticated spatio-temporal knowledge analytics
frameworks with advanced knowledge harvesting
and knowledge visualization support. In this paper,
we present an integrated system to achieve these
goals, enabling users to analyze large amounts of
structured and unstructured textual data and gain
deeper insights that are not easily observed in indi-
vidual facts.
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Figure 1: System architecture

2 Architecture

Figure 1 depicts the overall architecture of our sys-
tem. Spatio-temporal events come from three d-
ifferent sources: crowdsourcing, information ex-
traction, and existing knowledge repositories. Our
system provides users with interfaces to enter textu-
al information, videos, and images of events. The
crowdsourced events are used as seed facts to ex-
tract additional spatio-temporal event information
from the Internet. We describe this in more de-
tail in Section 3. The extracted spatio-temporal
facts are stored in the knowledge base. Both the
crowdsourced facts and the extracted facts are pre-
sented visually in the visualization platform. Users
can browse as well as edit the event information.
Finally, the system comes pre-loaded with events
taken from the Web of Data, particularly the YA-
GO (Suchanek et al., 2007) knowledge base, which
contains events from different categories that serve
as seed data for the platform.

The system maintains the edit history for every
event, allowing users to revert any previous modifi-
cation. Moreover, users’ personal activity logs are
also captured and are available for browsing.

Relevant spatio-temporal events are simultane-
ously visualized with a map and on a timeline. A
heat-map is added as the top layer of the map to re-
flect the distribution and frequency of events. There
is also a streaming graph and line chart visualiza-
tion enabling the user to analyze events based on
their frequency. These may allow the user to dis-
cover salient correlations.

System Implementation. Our system is imple-

mented in Java, with Apache Tomcat1 as the Web
server. While parsing text documents, we rely on
OpenNLP2 for part-of-speech tagging, lemmatiz-
ing verbs, and stemming nouns. All data are stored
in a PostgreSQL3 database. The maps used in our
system are based on OpenStreetMap4.

3 Spatio-Temporal
Knowledge Harvesting

Spatio-Temporal Facts. Crowdsourcing is just
one way to populate the spatio-temporal knowl-
edge in our system. Additional facts are semi-
automatically mined from the Web using informa-
tion extraction techniques. We build on previous
work that has developed methods for extracting
temporal facts (Wang et al., 2011a), but extend this
line of work to also procure spatial facts.

Our aim is to extract spatio-temporal factual
knowledge from free text. A fact here consists
of a relation and two arguments, as well as optional
temporal and spatial attributes. For instance, the
spatio-temporal fact

playsForClub(Beckham; Real Madrid)
@<[2003,2008);Spain>

expresses that Beckham played for Real Madrid
from 2003 to 2007 in Spain. Temporal attributes
involve either a time interval or a time point, indi-
cating that the fact applies to a specific time period
or just a given point in time, respectively. Spatial
attributes are described in terms of a disambiguated
location name entity. For example, “Georgia” often
refers to the country in Europe, but may also refer
to the state with the same name in the US. Thus,
we use disambiguated entity identifiers.

Pattern Analysis. The extraction process s-
tarts with a set of seed facts for a given rela-
tion. For example, playsForClub(Beckham; Re-
al Madrid)@<[2003,2008);Spain> would be a
valid seed fact for the playsForClub relation. The
input text is processed to construct a pattern-fact
graph. Named entities are recognized and disam-
biguated using AIDA (Hoffart et al., 2011b). When
a pair of entities matches a seed fact, the surface
string between the two entities is lifted to a pattern.
This is constructed by replacing the entities with

1http://tomcat.apache.org/
2http://opennlp.apache.org/
3http://www.postgresql.org/
4https://www.openstreetmap.org/
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placeholders marked with their types, and keep-
ing only canonical lemmatized forms of nouns and
verbs as well as the last preposition. We use n-
gram based feature vectors to describe the pattern-
s (Wang et al., 2011a).

For example, given a sentence such as “Ronal-
do signed for Milan from Real Madrid.”, Milan is
disambiguated as A.C. Milan. The corresponding
pattern for leaving Real Madrid is “sign for 〈club〉
from”. Each pattern is evaluated by investigating
how frequent the pattern occurs with seed facts of a
particular relation. The normalized value (between
0 and 1) is assigned as the initial value for each
pattern, for the fact extraction stage.

Fact Candidate Gathering. Entity pairs that
match patterns whose strength is above a minimum
threshold become fact candidates and are fed in-
to the fact extraction stage of label propagation.
Temporal and spatial expressions occurring within
a window of k words in the sentence are consid-
ered as the temporal or spatial attribute of the fact
candidate (Wang et al., 2011a). These fact candi-
dates may have both temporal and spatial attributes
simultaneously.

Fact Extraction. Building on (Wang et al.,
2011a), we utilize Label Propagation (Talukdar
and Crammer, 2009) to determine the relation and
observation type expressed by each pattern. We
create a graph G = (VF ∪ VP, E) with one vertex
v ∈ VF for each fact candidate observed in the text
and one vertex v ∈ VP for each pattern. Edges
between VF and VP are introduced whenever a fact
candidate appeared with a pattern. Their weight is
derived from the co-occurrence frequency. Edges
among VP nodes have weights derived from the
n-gram overlap of the patterns.

Let L be the set of labels, consisting of the rela-
tion names plus a special dummy label to capture
noise. Further, let Y ∈ R|V|×|L|+ denote the graph’s
initial label assignment, and Ŷ ∈ R|V|×|L|+ stand
for the estimated labels of all vertices, Sl encode
the seeds’ weights on its diagonal, and R∗l be a ma-
trix of zeroes except for a column for the dummy
label. Then, the objective function is:

L(Ŷ) =
∑

`

[
(Y∗` − Ŷ∗`)TS`(Y∗` − Ŷ∗`)

+µ1ŶT
∗`LŶ∗` + µ2‖Ŷ∗` −R∗`‖2

]
(1)

Figure 2 shows an example of a pattern-fact

graph. Existing events in the database serve
as seeds in the graph. For instance, playsFor-
Club(David Beckham, LA Galaxy)@US is a seed
fact in the example, which will propagate the la-
bel playsForClub to other nodes in the graph.
After optimizing the objective, the fact candidates
which bear a relation’s label with weight above a
threshold are accepted as new facts (Wang et al.,
2011a). These facts, which may include temporal
or spatial or both kinds of attributes, are stored in
the database with provenance information, and can
subsequently be used in several kinds of visualiza-
tions.

4 Data Visualization
and Analytics

Our system enables several different forms of visu-
al analytics, as illustrated in Figure 3, which com-
bines several different screenshots of the system.

Spatio-Temporal Range Queries. Users may is-
sue range queries for both temporal and spatial
knowledge. In Figure 3, Screenshots 1, 3, and
4 show results of temporal range queries, while
Screenshot 5 shows the result of a spatial range
query. After choosing a particular span on the time-
line at the bottom, the events relevant for the select-
ed time interval are displayed both on a temporal
axis and on the map. A heat-map visualizes the
frequency of events with respect to their geograph-
ical distribution. Users may also scroll the timeline
to look at different events. The events shown on
the map dynamically change when the scrollbar is
moved. In Screenshot 1, we see that items on the
timeline are shown with different symbols to indi-
cate different categories of events. Screenshots 3
and 4 show results from different time intervals. If
users choose a spatial range by drawing on the map,
any events relevant to this geographical area during
the selected time interval are retrieved. Screenshot
5 shows how the system can visualize the retrieval
results using a pie chart. The area highlighted in
blue is the bounding box of the polygon, as deter-
mined within Algorithm 1. The different colors in
the pie chart indicate different event categories and
their relative frequency.

Event Browsing and Checking. Users can either
consult the events listed on the timeline by click-
ing on the icons, or browse the streaming graph
and line chart, which show the frequency of events.
When selecting an event on the timeline, a pop-up
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Figure 2: Spatio-temporal pattern-fact graph

Algorithm 1 Spatial range query algorithm
Input: spatial polygon on the map P, event database E
Output: events in the polygon.

1: minx ← minimum latitude of all points of P . Get bounding box of polygon P
2: maxx ← maximum latitude of all points of P
3: miny ← minimum longitude of all points of P
4: maxy ← maximum longitude of all points of P
5: EP = {e ∈ E | minx ≤ e.x ≤ maxx ∧miny ≤ e.y ≤ maxy} . Query event database
6: ED ← edges of polygon P . Get edges of polygon
7: for each e ∈ EP do
8: line← (x, y;−∞, y)
9: if e not located on the edges ∧ line intersects ED with even numbers then

10: EP ← EP − e
11: return EP

window appears on top of the map near the relevant
location. Normally, this window simply provides
the entity label, as in Screenshot 4, while detailed
information about the event is displayed in the side-
bar on the left, as in Screenshot 6. However, when
the user moves the cursor over the label, it expands
and additional information is displayed. For an
example of this, see Screenshot 3, which shows in-
formation for the “Battle of Noreia”. There are also
links for related videos and images. If there is no
interaction with a pop-up window for an extended
period of time, it is made transparent. When users
move the cursor above an event on the timeline, an
icon on the map pops up to provide the location
and name of that event. At the same time, an icon
is displayed in the histogram, which is located be-

neath the timeline. With these coupled effects, the
user simultaneously obtains information about both
the accurate location on the map and the accurate
time point within the timeline (see Screenshot 4).

Users can also scroll the map to navigate to
places of interest, and observe how frequently rele-
vant events happen in that area, as visualized with
the heat-map. When the user double clicks on a
location on the map, all the events pertaining to
that location are shown on the left of the window.
Screenshot 6 shows three events that occurred in
Beijing. Further details for each event are displayed
if the user clicks on them.

Our system also supports querying related events
for a specific person. Screenshot 8 provides the
results when querying for Napoleon, where impor-
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Figure 3: User interface screenshots

tant events related to Napolean are displayed on
the map.

Visual Analytics. Users may use the line chart
on the timeline and the heat-map to jointly inspect
statistics pertaining to the retrieved events. For in-
stance, Screenshot 2 shows the results as displayed
in the line chart on the timeline. Different colors
here refer to different event categories. As the user
moves the time window at the bottom of the time-
line, events on the timeline and maps are updated.
The histogram at the bottom of the timeline shows
the overall event statistics for the current state of
the knowledge base. Each column refers to the
number of events for a given five year interval. The
heat-map changes profoundly when transitioning
from Screenshot 3 to Screenshot 4, especially for
Europe. The total number of events increases as
well. The line chart visualization of events on the
timeline5 supports zooming in and out by adjust-
ing the time interval. Hence, it is not necessary
to initiate a new query if one wishes to drill down
on particular subsets of events among the query
results.

Adding/Editing Event Information. After log-
5We use the line chart developed by AmCharts www.

amcharts.com/

ging into the system, users can enter or update
event information. Our system provides an inter-
face to add or edit textual information, images, and
videos for events. This can be used to extend cur-
rent text-based knowledge bases into multimodal
ones (de Melo and Tandon, 2016).

The system further also stores the patterns from
the extraction component. Hence, users can track
and investigate the provenance of extracted facts in
more detail. They can not only edit or remove noisy
facts but also engage in a sort of debugging process
to correct or remove noisy patterns. Corrected or
deleted patterns and facts provide valuable feed-
back to the system in future extraction rounds.

After logging in, all user activities, including
queries, additions, edits, etc. are recorded in or-
der to facilitate navigation as well as providing for
potential user analytics. For example, users may
arrive at an interesting result using an entire series
of operations. Then they may continue to browse
the data aiming at further analyses. At some point
in time, they may wish to go back to consult pre-
viously obtained results. It may be challenging to
remember the exact sequence of operations that had
led to a particular set of results, especially when
there are many different querying conditions. The
activity log addresses this by making it easy to go
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back to any earlier step. Screenshot 7 shows the use
of a graph visualization to depict all the operations
of a user after login. This same data can also be
used for studying user behavior.

Furthermore, similarly to Wikipedia, the tool
captures the complete edit history for a particular
event. The interface for this uses a tabular form,
not shown here due to space constraints. Wikipedi-
a’s edit history has seen a rich number of uses in
previous research. For instance, one can study the
evolution of entity types or the time of appearance
of entities and their geographical distribution.

Providing Ground-Truth Data for Relation Ex-
traction Evaluation. Our system continuously
gathers ground-truth information on factual events
(especially spatio-temporal facts) based on user
contributions. The knowledge in our system con-
sists of relations of interest: event happened in
place, event happened on date, person is related
to person, person is related to event, etc. This can
serve as a growing basis for systematically evalu-
ating and comparing different relation extraction
methods and systems, going well beyond currently
used benchmarks.

Historical Maps. Geographical boundaries are
fluid. For instance, countries have changed and
borders have evolved quite substantially during the
course of history. Our system allows uploads of
historical map data to reflect previous epochs. Sub-
sequently, users can choose to have our system
display available historical maps rather than the s-
tandard map layer, based on the temporal selection.

5 Conclusion

We have presented a novel integrated system that
combines crowdsourcing, semi-automatic knowl-
edge harvesting from text, and visual analytics for
spatio-temporal data. Unlike previous work, the
system goes beyond just showing geo-located enti-
ties on the map by enabling spatio-temporal analyt-
ics for a wide range of entities and enabling users to
drill down on specific kinds of results. The system
combines user contributions with spatio-temporal
knowledge harvesting in order to enable large-scale
data analytics across large amounts of data. Given
the broad appeal of Wikipedia and similar websites,
we believe that this sort of platform can serve the
needs of a broad range of users, from casually inter-
ested people wishing to issue simple queries over
the collected knowledge all the way to experts in

digital humanities seeking novel insights via the
system’s advanced knowledge harvesting support.
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