
ACL 2016

The 54th Annual Meeting of the
Association for Computational Linguistics

Proceedings of System Demonstrations

August 7-12, 2016
Berlin, Germany

c©2016 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-03-6

ii

Preface

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 54th Annual Meeting of the Association for Computational
Linguistics on August 7-12, 2016 in Berlin, Germany.

The system demonstrations program offers the presentation of early research prototypes as well as
interesting mature systems. We received 85 submissions, of which 28 were selected for inclusion in
the program (acceptance rate of 33%) after review by three members of the program committee.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions.

iii

Organizers:

Sameer Pradhan, cemantix.org and Boulder Learning, Inc.
Marianna Apidianaki, LIMSI, CNRS, Université Paris-Saclay

Program Committee:

Apoorv Agarwal, Columbia University (USA)
Nikolaos Aletras, Amazon (UK)
Simon Baker, University of Cambridge (UK)
Daniel Bauer, Columbia University (USA)
Taylor Berg-Kirkpatrick, UC Berkeley (USA)
Laurent Besacier, LIG, Université Joseph Fourier (France)
Chris Biemann, TU Darmstadt (Germany)
Grzegorz Chrupała, Tilburg University (The Netherlands)
Vincent Claveau, IRISA-CNRS (France)
Anne Cocos, University of Pennsylvania (USA)
Daniël de Kok, University of Tübingen (Germany)
Michael Denkowski, Carnegie Mellon University (USA)
Georgiana Dinu, IBM Watson (USA)
Tomaž Erjavec, Jožef Stefan Institute (Slovenia)
Darja Fišer, University of Ljubljana (Slovenia)
Annemarie Friedrich, Saarland University (Germany)
Dimitris Galanis, ILSP / Athena Research Center (Greece)
Yvette Graham, Dublin City University (Ireland)
Carolin Haas, Heidelberg University (Germany)
Barry Haddow, University of Edinburgh (UK)
David Jurgens, Stanford University (USA)
Valia Kordoni, Humboldt University of Berlin (Germany)
Gerhard Kremer, University of Stuttgart (Germany)
Patrik Lambert, Pompeu Fabra University (Spain)
Philippe Langlais, Université de Montréal (Canada)
Angeliki Lazaridou, University of Trento (Italy)
Joseph Le Roux, Université Paris Nord (France)
John Lee, City University of Hong Kong (Hong Kong)
Alessandro Lenci, University of Pisa (Italy)
Pierre Lison, University of Oslo (Norway)
Nikola Ljubešić, University of Zagreb (Croatia)
Nitin Madnani, Educational Testing Service (USA)
Wolfgang Maier, University of Düsseldorf (Germany)
Suresh Manandhar, University of York (UK)
Benjamin Marie, LIMSI, CNRS, Université Paris-Sud (France)
Stella Markantonatou, ILSP / Athena Research Center (Greece)
Yuval Marton, Microsoft Research (USA)
Pascual Martínez-Gómez, National Institute of Advanced Industrial Science and Technology (Japan)
Saif Mohammad, National Research Council (Canada)
Alessandro Moschitti, Qatar Computing Research Institute (Qatar)
Philippe Muller, IRIT, Toulouse University (France)

v

Preslav Nakov, Qatar Computing Research Institute (Qatar)
Diane Napolitano, Educational Testing Service (USA)
Hiroshi Noji, Nara Institute of Science and Technology (Japan)
Pierre Nugues, Lund University (Sweden)
Yannick Parmentier, University of Orleans (France)
Mohammad Taher Pilehvar, University of Cambridge (UK)
Stelios Piperidis, ILSP / Athena Research Center (Greece)
Maja Popović, Humboldt University of Berlin (Germany)
Vinodkumar Prabhakaran, Stanford University (USA)
Prokopis Prokopidis, ILSP / Athena Research Center (Greece)
Alessandro Raganato, Sapienza University of Rome (Italy)
Carlos Ramisch, LIF, Aix-Marseille Université (France)
Siva Reddy, University of Edinburgh (UK)
Adithya Renduchintala, Johns Hopkins University (USA)
German Rigau, UPV/EHU, University of the Basque Country (Spain)
Djamé Seddah, University Paris-Sorbonne (France)
Advaith Siddharthan, University of Aberdeen (UK)
Michel Simard, National Research Council (Canada)
Artem Sokolov, Heidelberg University (Germany)
Lucia Specia, University of Sheffield (UK)
Miloš Stanojević, University of Amsterdam (The Netherlands)
Kaveh Taghipour, National University of Singapore (Singapore)
Xavier Tannier, LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay (France)
Christoph Teichmann, University of Potsdam (Germany)
Jörg Tiedemann, University of Helsinki (Finland)
John Tinsley, Iconic Translation Machines Ltd (Ireland)
Nadi Tomeh, Université Paris 13, Sorbonne Paris Cité (France)
Olga Uryupina, University of Trento (Italy)
Lonneke van der Plas, University of Malta (Malta)
Andrea Varga, The Content Group (UK)
Ivan Vulić, University of Cambridge (UK)
Marion Weller-DiMarco, University of Stuttgart (Germany)
Guillaume Wisniewski, LIMSI, CNRS, Université Paris-Sud (France)
Shiqi Zhao, Baidu (China)
Pierre Zweigenbaum, LIMSI, CNRS, Université Paris-Saclay (France)

vi

Table of Contents

POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels
Alan Akbik and Yunyao Li .1

Online Information Retrieval for Language Learning
Maria Chinkina, Madeeswaran Kannan and Detmar Meurers . 7

Terminology Extraction with Term Variant Detection
Damien Cram and Beatrice Daille . 13

DeepLife: An Entity-aware Search, Analytics and Exploration Platform for Health and Life Sciences
Patrick Ernst, Amy Siu, Dragan Milchevski, Johannes Hoffart and Gerhard Weikum 19

Visualizing and Curating Knowledge Graphs over Time and Space
Tong Ge, Yafang Wang, Gerard de Melo, Haofeng Li and Baoquan Chen . 25

A Web-framework for ODIN Annotation
Ryan Georgi, Michael Wayne Goodman and Fei Xia . 31

Real-Time Discovery and Geospatial Visualization of Mobility and Industry Events from Large-Scale,
Heterogeneous Data Streams

Leonhard Hennig, Philippe Thomas, Renlong Ai, Johannes Kirschnick, He Wang, Jakob Pannier,
Nora Zimmermann, Sven Schmeier, Feiyu Xu, Jan Ostwald and Hans Uszkoreit 37

TranscRater: a Tool for Automatic Speech Recognition Quality Estimation
Shahab Jalalvand, Matteo Negri, Marco Turchi, José G. C. de Souza, Falavigna Daniele and Mo-

hammed R. H. Qwaider . 43

TMop: a Tool for Unsupervised Translation Memory Cleaning
Masoud Jalili Sabet, Matteo Negri, Marco Turchi, José G. C. de Souza and Marcello Federico . . 49

MMFeat: A Toolkit for Extracting Multi-Modal Features
Douwe Kiela . 55

JEDI: Joint Entity and Relation Detection using Type Inference
Johannes Kirschnick, Holmer Hemsen and Volker Markl .61

OpenDial: A Toolkit for Developing Spoken Dialogue Systems with Probabilistic Rules
Pierre Lison and Casey Kennington . 67

MUSEEC: A Multilingual Text Summarization Tool
Marina Litvak, Natalia Vanetik, Mark Last and Elena Churkin . 73

Language Muse: Automated Linguistic Activity Generation for English Language Learners
Nitin Madnani, Jill Burstein, John Sabatini, Kietha Biggers and Slava Andreyev 79

ccg2lambda: A Compositional Semantics System
Pascual Martínez-Gómez, Koji Mineshima, Yusuke Miyao and Daisuke Bekki 85

MeTA: A Unified Toolkit for Text Retrieval and Analysis
Sean Massung, Chase Geigle and ChengXiang Zhai . 91

MDSWriter: Annotation Tool for Creating High-Quality Multi-Document Summarization Corpora
Christian M. Meyer, Darina Benikova, Margot Mieskes and Iryna Gurevych 97

vii

Jigg: A Framework for an Easy Natural Language Processing Pipeline
Hiroshi Noji and Yusuke Miyao . 103

An Advanced Press Review System Combining Deep News Analysis and Machine Learning Algorithms
Danuta Ploch, Andreas Lommatzsch and Florian Schultze . 109

Personalized Exercises for Preposition Learning
John Lee and Mengqi Luo . 115

My Science Tutor—Learning Science with a Conversational Virtual Tutor
Sameer Pradhan, Ron Cole and Wayne Ward . 121

pigeo: A Python Geotagging Tool
Afshin Rahimi, Trevor Cohn and Timothy Baldwin . 127

Creating Interactive Macaronic Interfaces for Language Learning
Adithya Renduchintala, Rebecca Knowles, Philipp Koehn and Jason Eisner 133

Roleo: Visualising Thematic Fit Spaces on the Web
Asad Sayeed, Xudong Hong and Vera Demberg . 139

MediaGist: A Cross-lingual Analyser of Aggregated News and Commentaries
Josef Steinberger . 145

GoWvis: A Web Application for Graph-of-Words-based Text Visualization and Summarization
Antoine Tixier, Konstantinos Skianis and Michalis Vazirgiannis . 151

LiMoSINe Pipeline: Multilingual UIMA-based NLP Platform
Olga Uryupina, Barbara Plank, Gianni Barlacchi, Francisco J Valverde-Albacete, Manos Tsagkias,

Antonio Uva and Alessandro Moschitti . 157

new/s/leak – Information Extraction and Visualization for Investigative Data Journalists
Seid Muhie Yimam, Heiner Ulrich, Tatiana von Landesberger, Marcel Rosenbach, Michaela Reg-

neri, Alexander Panchenko, Franziska Lehmann, Uli Fahrer, Chris Biemann and Kathrin Ballweg . . 163

viii

Conference Program

Monday, August 8, 2016

18:00–21:00 ACL System Demonstrations Session A

POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels
Alan Akbik and Yunyao Li

Online Information Retrieval for Language Learning
Maria Chinkina, Madeeswaran Kannan and Detmar Meurers

Terminology Extraction with Term Variant Detection
Damien Cram and Beatrice Daille

DeepLife: An Entity-aware Search, Analytics and Exploration Platform for Health
and Life Sciences
Patrick Ernst, Amy Siu, Dragan Milchevski, Johannes Hoffart and Gerhard Weikum

Visualizing and Curating Knowledge Graphs over Time and Space
Tong Ge, Yafang Wang, Gerard de Melo, Haofeng Li and Baoquan Chen

A Web-framework for ODIN Annotation
Ryan Georgi, Michael Wayne Goodman and Fei Xia

Real-Time Discovery and Geospatial Visualization of Mobility and Industry Events
from Large-Scale, Heterogeneous Data Streams
Leonhard Hennig, Philippe Thomas, Renlong Ai, Johannes Kirschnick, He Wang,
Jakob Pannier, Nora Zimmermann, Sven Schmeier, Feiyu Xu, Jan Ostwald and
Hans Uszkoreit

TranscRater: a Tool for Automatic Speech Recognition Quality Estimation
Shahab Jalalvand, Matteo Negri, Marco Turchi, José G. C. de Souza, Falavigna
Daniele and Mohammed R. H. Qwaider

TMop: a Tool for Unsupervised Translation Memory Cleaning
Masoud Jalili Sabet, Matteo Negri, Marco Turchi, José G. C. de Souza and Marcello
Federico

MMFeat: A Toolkit for Extracting Multi-Modal Features
Douwe Kiela

JEDI: Joint Entity and Relation Detection using Type Inference
Johannes Kirschnick, Holmer Hemsen and Volker Markl

ix

Monday, August 8, 2016 (continued)

OpenDial: A Toolkit for Developing Spoken Dialogue Systems with Probabilistic
Rules
Pierre Lison and Casey Kennington

MUSEEC: A Multilingual Text Summarization Tool
Marina Litvak, Natalia Vanetik, Mark Last and Elena Churkin

Language Muse: Automated Linguistic Activity Generation for English Language
Learners
Nitin Madnani, Jill Burstein, John Sabatini, Kietha Biggers and Slava Andreyev

ccg2lambda: A Compositional Semantics System
Pascual Martínez-Gómez, Koji Mineshima, Yusuke Miyao and Daisuke Bekki

MeTA: A Unified Toolkit for Text Retrieval and Analysis
Sean Massung, Chase Geigle and ChengXiang Zhai

MDSWriter: Annotation Tool for Creating High-Quality Multi-Document Summa-
rization Corpora
Christian M. Meyer, Darina Benikova, Margot Mieskes and Iryna Gurevych

Jigg: A Framework for an Easy Natural Language Processing Pipeline
Hiroshi Noji and Yusuke Miyao

An Advanced Press Review System Combining Deep News Analysis and Machine
Learning Algorithms
Danuta Ploch, Andreas Lommatzsch and Florian Schultze

Tuesday, August 8, 2016

18:00–19:30 ACL System Demonstrations Session B

Personalized Exercises for Preposition Learning
John Lee and Mengqi Luo

My Science Tutor—Learning Science with a Conversational Virtual Tutor
Sameer Pradhan, Ron Cole and Wayne Ward

pigeo: A Python Geotagging Tool
Afshin Rahimi, Trevor Cohn and Timothy Baldwin

x

Tuesday, August 8, 2016 (continued)

Creating Interactive Macaronic Interfaces for Language Learning
Adithya Renduchintala, Rebecca Knowles, Philipp Koehn and Jason Eisner

Roleo: Visualising Thematic Fit Spaces on the Web
Asad Sayeed, Xudong Hong and Vera Demberg

MediaGist: A Cross-lingual Analyser of Aggregated News and Commentaries
Josef Steinberger

GoWvis: A Web Application for Graph-of-Words-based Text Visualization and Sum-
marization
Antoine Tixier, Konstantinos Skianis and Michalis Vazirgiannis

LiMoSINe Pipeline: Multilingual UIMA-based NLP Platform
Olga Uryupina, Barbara Plank, Gianni Barlacchi, Francisco J Valverde-Albacete,
Manos Tsagkias, Antonio Uva and Alessandro Moschitti

new/s/leak – Information Extraction and Visualization for Investigative Data Jour-
nalists
Seid Muhie Yimam, Heiner Ulrich, Tatiana von Landesberger, Marcel Rosenbach,
Michaela Regneri, Alexander Panchenko, Franziska Lehmann, Uli Fahrer, Chris
Biemann and Kathrin Ballweg

xi

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 1–6,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels

Alan Akbik Yunyao Li
IBM Research

Almaden Research Center
650 Harry Road, San Jose, CA 95120, USA
{akbika,yunyaoli}@us.ibm.com

Abstract

Semantic role labeling (SRL) identifies the
predicate-argument structure in text with
semantic labels. It plays a key role in un-
derstanding natural language. In this pa-
per, we present POLYGLOT, a multilingual
semantic role labeling system capable of
semantically parsing sentences in 9 differ-
ent languages from 4 different language
groups. The core of POLYGLOT are SRL
models for individual languages trained
with automatically generated Proposition
Banks (Akbik et al., 2015). The key fea-
ture of the system is that it treats the
semantic labels of the English Proposi-
tion Bank as “universal semantic labels”:
Given a sentence in any of the supported
languages, POLYGLOT applies the corre-
sponding SRL and predicts English Prop-
Bank frame and role annotation. The re-
sults are then visualized to facilitate the
understanding of multilingual SRL with
this unified semantic representation.

1 Introduction

Semantic role labeling (SRL) is the task of la-
beling predicate-argument structure in sentences
with shallow semantic information. One promi-
nent labeling scheme for the English language is
the Proposition Bank (Palmer et al., 2005) which
annotates predicates with frame labels and argu-
ments with role labels. Role labels roughly con-
form to simple questions (who, what, when, where,
how much, with whom) with regards to the predi-
cate. SRL is important for understanding natural
language; it has been found useful for many ap-
plications such as information extraction (Fader et
al., 2011) and question answering (Shen and Lap-
ata, 2007; Maqsud et al., 2014).

Figure 1: Example of POLYGLOT predicting English Prop-
Bank labels for a simple German sentence: The verb “kaufen”
is correctly identified to evoke the BUY.01 frame, while “ich”
(I) is recognized as the buyer, “ein neues Auto” (a new car)
as the thing bought, and “dir” (for you) as the benefactive.

Not surprisingly, enabling SRL for languages
other than English has received increasing atten-
tion. One relevant key effort is to create Proposi-
tion Bank-style resources for different languages,
such as Chinese (Xue and Palmer, 2005) and
Hindi (Bhatt et al., 2009). However, the conven-
tional approach of manually generating such re-
sources is costly in terms of time and experts re-
quired, hindering the expansion of SRL to new tar-
get languages.

An alternative approach is annotation projec-
tion (Padó and Lapata, 2009; Van der Plas et
al., 2011) that utilizes parallel corpora to trans-
fer predicted SRL labels from English sentences
onto sentences in a target language. It has shown
great promise in automatically generating such re-
sources for arbitrary target languages. In previ-
ous work, we presented an approach based on fil-
tered projection and bootstrapped learning to auto-
generate Proposition Bank-style resources for 7
languages, namely Arabic, Chinese, French, Ger-
man, Hindi, Russian and Spanish (Akbik et al.,
2015).
Unified semantic labels across all languages.

One key difference between auto-generated
PropBanks and manually created ones is that the
former use English Proposition Bank labels for

1

Figure 2: Side by side view of English, Chinese and Spanish sentences parsed in POLYGLOT’s Web UI. English PropBank
frame and role labels are predicted for all languages: All example sentences evoke the BUY.01 frame and have constituents
accordingly labeled with roles such as the buyer, the thing bought, the price paid and the benefactive.

all target languages, while the latter use language-
specific labels. As such, the auto-generated Prop-
Banks allow us to train an SRL system to consume
text in various languages and make predictions in
a shared semantic label set, namely English Prop-
Bank labels. Refer to Figures 1 and 2 for examples
of how our system predicts frame and role labels
from the English Proposition Bank for sentences
in German, English, Chinese and Spanish.

Similar to how Stanford dependencies are one
basis of universal dependencies (De Marneffe et
al., 2014; Nivre, 2015), we believe that English
PropBank labels have the potential to eventu-
ally become a basis of “universal” shallow se-
mantic labels. Such a unified representation of
shallow semantics, we argue, may facilitate ap-
plications such as multilingual information ex-
traction and question answering, much in the
same way that universal dependencies facilitate
tasks such as crosslingual learning and the devel-
opment and evaluation of multilingual syntactic
parsers (Nivre, 2015). The key questions, how-
ever, are (1) to what degree English PropBank
frame and role labels are appropriate for different
target languages; and (2) how far this approach can
handle language-specific phenomena or semantic
concepts.

Contributions. To facilitate the discussions of
the above questions, we present POLYGLOT, an
SRL system trained on auto-generated PropBanks
for 8 languages plus English, namely Arabic, Chi-
nese, French, German, Hindi, Japanese, Russian
and Spanish. Given a sentence in one of these
9 languages, the system applies the correspond-
ing SRL and visualizes the shallow semantic parse
with predicted English PropBank labels. POLY-
GLOT allows us to illustrate our envisioned ap-
proach of parsing different languages into a shared
shallow semantic abstraction based on the English
Proposition Bank. It also enables researchers to

experiment with the tool to understand the breadth
of shallow semantic concepts currently covered,
and to discuss limitations and the potential of such
an approach for downstream applications.

2 System Overview

Figure 3 depicts the overall architecture of POLY-
GLOT. First, we automatically generate labeled
training data for each target language with anno-
tation projection (Akbik et al., 2015) (Figure 3
Step 1). We use the labeled data to train for each
language an SRL system (Figure 3 Step 2) that
predicts English PropBank frame and role labels.
Both the creation of the training data and the train-
ing of the SRL instances are one-time processes.

POLYGLOT provides a Web-based GUI to al-
low users to interact with the SRL systems (Fig-
ure 3 Step 3). Given a natural language sentence,
depending on the language of the input sentence,
POLYGLOT selects the appropriate SRL instance
and displays on the GUI the semantic parse, as
well as syntactic information.

Figure 3: System overview

2

Yesterday, Diego bought his girlfriend some flowers
A1A0 buy.01

A0 buy.01
Ayer, Diego compró flores para su novia

A4AM-TMP

AM-TMP A4A1

Figure 4: Annotation projection for a word-aligned English-
Spanish sentence pair.

In the next sections, we briefly describe the cre-
ation of the labeled data and the training of the
SRL systems, followed by a tour of the Web UI.

3 Auto-Generation of Labeled Data

We followed an annotation projection approach
to automatically generate the labeled data for dif-
ferent languages. This approach takes as input a
word-aligned parallel corpus of English sentences
and their translations in a target language (TL). A
semantic role labeler then predicts labels for the
English sentences. In a projection step, these la-
bels are transferred along word alignments onto
the target language sentences. The underlying the-
ory is that translated sentence pairs share a de-
gree of semantic similarity, making such projec-
tion possible (Padó and Lapata, 2009).

Figure 4 illustrates an example of annotation
projection: Using an SRL system trained with the
English Proposition Bank, the English sentence is
labeled with the appropriate frame (BUY.01) and
role labels: “Diego” as the buyer (A0 in PropBank
annotation), “some flowers” as the thing bought
(A1) and “his girlfriend” as the benefactive (A4).
In addition, “yesterday” is labeled AM-TMP, sig-
nifying a temporal context of this frame. These
labels are then projected onto the aligned Spanish
words. For instance, “compró” is word-aligned to
“bought” and thus labeled as BUY.01. The pro-
jection produces a Spanish sentence labeled with
English PropBank labels; such data can in turn be
used to train an SRL system for Spanish.
State-of-the-art. Direct annotation projection of-
ten introduces errors, mostly due to non-literal
translations (Akbik et al., 2015). Previous work
defined lexical and syntactic constraints to in-
crease projection quality, such as filters to al-
low only verbs to be labeled as frames (Van der
Plas et al., 2011), heuristics that ensure that only
heads of syntactic constituents are labeled as ar-
guments (Padó and Lapata, 2009) and the use of
verb translation dictionaries to guide frame map-

pings. In (Akbik et al., 2015), we additionally
proposed a process of filtered projection and boot-
strapped learning, and successfully created Propo-
sition Banks for 7 target languages. We found the
quality of the generated PropBanks to be moderate
to high, depending on the target language. Table 1
shows estimated precision, recall and F1-score for
each language with two evaluation methods. Par-
tial evaluation counts correctly labeled incomplete
constituents as true positives while exact evalua-
tion only counts correctly labeled complete con-
stituents as true positives. For more details we re-
fer the reader to (Akbik et al., 2015) .

4 Semantic Role Labeling

Using the auto-generated labeled data, we
train the semantic role labeler of the MATE
toolkit (Björkelund et al., 2009), which achieved
state-of-the-art semantic F1-score in the multilin-
gual semantic role labeling task of the CoNLL-
2009 shared task (Hajič et al., 2009). The parser is
implemented as a sequence of local logistic regres-
sion classifiers for the four steps of predicate iden-
tification, predicate classification, argument iden-
tification and argument classification. In addition,
it implements a global reranker to rerank sets of
local predictions. It uses a standard feature set of
lexical and syntactic features.
Preprocessing. Before SRL, we execute a
pipeline of NLP tools to extract the required lex-
ical, morphological and syntactic features. To fa-
cilitate reproducability of the presented work, we
use publicly available open source tools and pre-

PREDICATE ARGUMENT

LANG. Match P R F1 P R F1 Agr κ

Arabic part. 0.97 0.89 0.93 0.86 0.69 0.77 0.92 0.87
exact 0.97 0.89 0.93 0.67 0.63 0.65 0.85 0.77

Chinese part. 0.97 0.88 0.92 0.93 0.83 0.88 0.95 0.91
exact 0.97 0.88 0.92 0.83 0.81 0.82 0.92 0.86

French part. 0.95 0.92 0.94 0.92 0.76 0.83 0.97 0.95
exact 0.95 0.92 0.94 0.86 0.74 0.8 0.95 0.91

German part. 0.96 0.92 0.94 0.95 0.73 0.83 0.95 0.91
exact 0.96 0.92 0.94 0.91 0.73 0.81 0.92 0.86

Hindi part. 0.91 0.68 0.78 0.93 0.66 0.77 0.94 0.88
exact 0.91 0.68 0.78 0.58 0.54 0.56 0.81 0.69

Russian part. 0.96 0.94 0.95 0.91 0.68 0.78 0.97 0.94
exact 0.96 0.94 0.95 0.79 0.65 0.72 0.93 0.89

Spanish part. 0.96 0.93 0.95 0.85 0.74 0.79 0.91 0.85
exact 0.96 0.93 0.95 0.75 0.72 0.74 0.85 0.77

Table 1: Estimated precision and recall over seven languages
from our previous evaluation (Akbik et al., 2015).

3

LANGUAGE NLP PREPROCESSING PARALLEL DATA SETS #SENTENCES

Arabic STANFORDCORENLP, KHOJASTEMMER, STANFORDPARSER UN, OpenSubtitles 24,5M
Chinese STANFORDCORENLP, MATEPARSER UN, OpenSubtitles 12,2M
English CLEARNLP n/a n/a
French STANFORDCORENLP, MATETRANSITIONPARSER UN, OpenSubtitles 36M
German STANFORDCORENLP, MATETRANSITIONPARSER Europarl, OpenSubtitles 14,1M
Hindi TNTTAGGER, MALTPARSER Hindencorp 54K
Japanese JJST Tatoeba, OpenSubtitles 1,7M
Russian TREETAGGER, MALTPARSER UN, OpenSubtitles 22,7M
Spanish STANFORDCORENLP, MATEPARSER UN, OpenSubtitles 52,4M

Table 2: NLP tools and source of parallel data used for each language. Since English is the source language for annotation
projection, no parallel data was required to train SRL.
NLP tools: STANFORDCORENLP: (Manning et al., 2014) , TNTTAGGER: (Brants, 2000), TREETAGGER: (Schmid, 1994), KHOJASTEMMER: (Khoja and Garside,
1999), STANFORDPARSER: (Green and Manning, 2010), STANFORDCORENLP: (Choi and McCallum, 2013), MATEPARSER: (Bohnet, 2010), JJST: proprietary
system, MATETRANSITIONPARSER: (Bohnet and Nivre, 2012), MALTPARSER: (Nivre et al., 2006).

trained models where available. A breakdown of
the preprocessing tools used for each language is
given in Table 2.
Data sets. In order to generate training
data for POLYGLOT, we used the following
sources of parallel data: The UN corpus of
official United Nations documents (Rafalovitch
et al., 2009), the Europarl corpus of Euro-
pean parliament proceedings (Koehn, 2005), the
OpenSubtitles corpus of movie subtitles (Lison
and Tiedemann, 2016), the Hindencorp corpus
automatically gathered from web sources (Bojar
et al., 2014) and the Tatoeba corpus of language
learning examples1. The data sets were obtained
from the OPUS project (Tiedemann, 2012) and
word aligned using the Berkeley Aligner2. Table 2
lists the data sets used for each language and the
combined number of available parallel sentences.

5 POLYGLOT User Interface
The Web-based GUI of POLYGLOT allows users to
enter sentences in one of 9 languages and request
a shallow semantic analysis. Figure 5 presents a
screenshot of the GUI. Users begin by entering a
sentence in the text field and clicking on the “parse
sentence” button. As indicated in Figure 3, it is
then passed to a language-specific NLP pipeline
based on the associated language that is detected
automatically by default or specified by the user.
The pipeline tokenizes and lemmatizes the sen-
tence, performs morphological analysis, depen-
dency parsing and semantic role labeling.
Output. The syntactic and semantic parsing re-
sults are displayed below the input field, follow-
ing the design of (Björkelund et al., 2010): The
topmost result table is the semantic analysis, pre-

1http://tatoeba.org/eng/
2https://code.google.com/archive/p/berkeleyaligner/

sented as a grid in which each row corresponds
to one identified semantic frame. The grid high-
lights sentence constituents labeled with roles and
includes role descriptions for better interpretabil-
ity of the parsing results.

Below the results of the semantic analysis the
GUI shows two more detailed views of the pars-
ing results. The first visualizes the dependency
parse tree generated using WHATSWRONGWITH-
MYNLP3, while the second (omitted in Fig-
ure 5 in the interest of space) displays the full
syntactic-semantic parse in CoNLL format, in-
cluding morphological information and other fea-
tures not present in the dependency tree visualiza-
tion. These two views may be helpful to users that
wish to identify possible sources of SRL errors.
For instance, a common error class stem from er-
rors in dependency parsing, causing incorrect con-
stituents to be labeled as arguments.
Example sentence. Figure 5 illustrates the re-
sult visualization of the tool. A user enters a sen-
tence “Hier, je voulais acheter une baguette, mais
je n’avais pas assez d’argent” (engl. “Yesterday I
wanted to buy a baguette but I didn’t have enough
money”) into the text field. As indicated in the
top left corner, this sentence is auto-detected to be
French.

The results of semantic analysis is displayed be-
low the input field. The first column in the grid
indicates that three frames have been identified:
WANT.01, BUY.01 and HAVE.03. The second row
in the grid corresponds to the WANT.01 frame,
which identifies “je” (engl. “I”) as the wanter and
“acheter une baguette” (engl. “buy a baguette”) as
the thing wanted. The arguments are color-coded
by PropBank argument type for better readability.
For instance, in the PropBank annotation scheme,

3https://code.google.com/archive/p/whatswrong/

4

Figure 5: POLYGLOT’s Web UI with a French example sentence.

the agents of the three frames in the example (the
wanter, the buyer and the owner) are all annotated
with the same role (A0). They are thus highlighted
in the same yellow color in the visualization. This
allows a user to quickly gauge whether the seman-
tic analysis of the sentence is correct4.

6 Demonstration and Outlook

We present POLYGLOT as a hands-on demo where
users can enter sentences and request shallow se-
mantic analyses. We also plan to make it publicly
accessible in the future. We are currently working
on improving the annotation projection approach
to generate higher quality data by experimenting
with further constraints, language-specific heuris-
tics and improved frame mappings. We are par-
ticularly interested in how far English Proposi-
tion Bank labels are suitable for arbitrary target
languages and may serve as basis of a “universal
semantic role labeling” framework: we are qual-
itatively analysing auto-generated PropBanks in
comparison to manual efforts; meanwhile, we are
evaluating POLYGLOT in downstream applications
such as multilingual IE. Through the presentation
of POLYGLOT, we hope to engage the research
community in this discussion.

4The example sentence in Figure 5 contains one error:
The word “hier” (engl. “yesterday”) should be labeled AM-
TMP instead of AM-DIS. All other labels are correct.

References
Alan Akbik, Laura Chiticariu, Marina Danilevsky,

Yunyao Li, Shivakumar Vaithyanathan, and Huaiyu
Zhu. 2015. Generating high quality proposition
banks for multilingual semantic role labeling. In
ACL 2015, 53rd Annual Meeting of the Association
for Computational Linguistics Beijing, China, page
to appear.

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. A multi-representational and multi-layered
treebank for hindi/urdu. In Proceedings of the Third
Linguistic Annotation Workshop, pages 186–189.
Association for Computational Linguistics.

Anders Björkelund, Love Hafdell, and Pierre Nugues.
2009. Multilingual semantic role labeling. In Pro-
ceedings of the Thirteenth CoNLL: Shared Task,
pages 43–48, Boulder, Colorado, June. Association
for Computational Linguistics.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntac-
tic and semantic dependency parser. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics: Demonstrations, pages 33–36.
Association for Computational Linguistics.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 EMNLP-CoNLL, pages 1455–
1465. Association for Computational Linguistics.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of the 23rd COLING, pages 89–97. Association
for Computational Linguistics.

5

Ondřej Bojar, Vojtěch Diatka, Pavel Rychlỳ, Pavel
Straňák, Vı́t Suchomel, Aleš Tamchyna, Daniel Ze-
man, et al. 2014. Hindencorp–hindi-english and
hindi-only corpus for machine translation. In Pro-
ceedings of the Ninth LREC.

Thorsten Brants. 2000. Tnt: a statistical part-of-
speech tagger. In Proceedings of the sixth confer-
ence on Applied natural language processing, pages
224–231. Association for Computational Linguis-
tics.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics.

Marie-Catherine De Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D Manning. 2014. Univer-
sal stanford dependencies: A cross-linguistic typol-
ogy. In LREC, volume 14, pages 4585–4592.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1535–1545. Association for Computational
Linguistics.

Spence Green and Christopher D Manning. 2010. Bet-
ter arabic parsing: Baselines, evaluations, and anal-
ysis. In Proceedings of the 23rd COLING, pages
394–402. Association for Computational Linguis-
tics.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, et al. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth CoNLL: Shared Task, pages 1–18. Associa-
tion for Computational Linguistics.

Shereen Khoja and Roger Garside. 1999. Stemming
arabic text. Lancaster, UK, Computing Department,
Lancaster University.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and tv subtitles.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Umar Maqsud, Sebastian Arnold, Michael Hülfenhaus,
and Alan Akbik. 2014. Nerdle: Topic-specific ques-
tion answering using wikia seeds. In COLING (De-
mos), pages 81–85.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of LREC, vol-
ume 6, pages 2216–2219.

Joakim Nivre. 2015. Towards a universal grammar
for natural language processing. In Computational
Linguistics and Intelligent Text Processing, pages 3–
16. Springer.

Sebastian Padó and Mirella Lapata. 2009. Cross-
lingual annotation projection for semantic roles.
Journal of Artificial Intelligence Research,
36(1):307–340.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational linguistics,
31(1):71–106.

Alexandre Rafalovitch, Robert Dale, et al. 2009.
United nations general assembly resolutions: A six-
language parallel corpus. In Proceedings of the MT
Summit, volume 12, pages 292–299.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of the
international conference on new methods in lan-
guage processing, volume 12, pages 44–49. Cite-
seer.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In EMNLP-
CoNLL, pages 12–21.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of LREC, MAY 21-27,
2012, Istanbul, Turkey, pages 2214–2218.

Lonneke Van der Plas, Paola Merlo, and James Hen-
derson. 2011. Scaling up automatic cross-lingual
semantic role annotation. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies:
short papers-Volume 2, pages 299–304. Association
for Computational Linguistics.

Nianwen Xue and Martha Palmer. 2005. Automatic
semantic role labeling for chinese verbs. In IJCAI,
volume 5, pages 1160–1165. Citeseer.

6

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 7–12,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Online Information Retrieval for Language Learning

Maria Chinkina Madeeswaran Kannan Detmar Meurers

Universität Tübingen
LEAD Graduate School

Department of Linguistics
{mchnkina,mkannan,dm}@sfs.uni-tuebingen.de

Abstract

The reading material used in a language
learning classroom should ideally be rich
in terms of the grammatical constructions
and vocabulary to be taught and in line
with the learner’s interests. We devel-
oped an online Information Retrieval sys-
tem that helps teachers search for texts
appropriate in form, content, and read-
ing level. It identifies the 87 grammati-
cal constructions spelled out in the official
English language curriculum of schools
in Baden-Württemberg, Germany. The
tool incorporates a classical efficient al-
gorithm for reranking the results by as-
signing weights to selected constructions
and prioritizing the documents containing
them. Supplemented by an interactive vi-
sualization module, it allows for a multi-
faceted presentation and analysis of the re-
trieved documents.

1 Introduction

The learner’s exposure to a language influences
their acquisition of it. The importance of input in
second language (L2) learning has been repeatedly
emphasized by the proponents of major Second
Language Acquisition theories (Krashen, 1977;
Gass and Varonis, 1994; Swain, 1985), with psy-
cholinguists highlighting the significance of fre-
quency and perceptual salience of target construc-
tions (e.g., Slobin, 1985).

In line with this research, a pedagogical ap-
proach of input flood (Trahey and White, 1993) is
extensively used by L2 teachers. However, manu-
ally searching for linguistically rich reading ma-
terial takes a lot of time and effort. As a re-
sult, teachers often make use of easily accessible
schoolbook texts. However, this limits the choice

of texts, and they are typically less up-to-date and
less in line with students’ interests than authentic
texts. In the same vein, a survey conducted by Pur-
cell et al. (2012) revealed that teachers expect their
students to use online search engines in a typical
research assignment with a very high probability
of 94%, compared to the 18% usage of printed or
electronic textbooks.

With this in mind, we developed an online In-
formation Retrieval (IR) system that uses efficient
algorithms to retrieve, annotate and rerank web
documents based on the grammatical construc-
tions they contain. The paper presents FLAIR1

(Form-Focused Linguistically Aware Information
Retrieval), a tool that provides a balance of con-
tent and form in the search for appropriate reading
material.

2 Overview and Architecture

The FLAIR pipeline can be broadly reduced to
four primary operations – Web Search, Text
Crawling, Parsing and Ranking. As demonstrated
by the diagram in Figure 1, the first three opera-
tions are delegated to the server as they require the
most resources. Ranking, however, is performed
locally on the client endpoint to reduce latency.

Web Crawling

We chose to use Microsoft Bing2 as our primary
search engine given its readily available Java bind-
ings. By default, the top 20 results are fetched for
any given search query. A basic filter is applied
to exclude web documents with low text content.
The search is conducted repeatedly until the result-
ing list of documents contains at least 20 items.

1The online tool is accessible at: http://purl.org/
icall/flair

2http://bing.com

7

Figure 1: FLAIR architecture.

Text Extraction
The Text Extractor makes use of the Boilerpipe
library3 extracting plain text with the help of its
DefaultExtractor. The choice is motivated by the
high performance of the library as compared to
other text extraction techniques (Kohlschütter et
al., 2010).

Parsing
Text parsing is facilitated by the Stanford
CoreNLP library4 (Manning et al., 2014), which
was chosen for its robust, performant and open-
source implementation. Our initial prototype used
the standard PCFG parser for constituent parsing,
but its cubic time complexity was a significant is-
sue when parsing texts with long sentences. We
therefore switched to a shift-reduce implementa-
tion5 that scales linearly with sentence and parse
length. While it resulted in a higher memory over-
head due to its large language models, it allowed
us to substantially improve the performance of our
code.

Ranking
The final stage of the pipeline involves ranking
the results according to a number of grammati-
cal constructions and syntactic properties. Each
parameter can be assigned a specific weight that
then affects its ranking relative to the other pa-
rameters. The parsed data is cached locally on

3https://code.google.com/p/boilerpipe/
4http://nlp.stanford.edu/software/

corenlp.shtml
5http://nlp.stanford.edu/software/

srparser.shtml

the client side for each session. This allows us
to perform the ranking calculations on the local
computer, thereby avoid a server request-response
roundtrip for each re-ranking operation.

We chose the classical IR algorithm BM25
(Robertson and Walker, 1994) as the basis for our
ranking model. It helps to avoid the dominance
of one single grammatical construction over the
others and is independent of the normalization
unit as it uses a ratio of the document length to the
average document length in the collection. The
final score of each document determines its place
in the ranking and is calculated as:

G(q, d) =
∑

t∈q∩d
(k+1)×tft,d

tft,d+k×(1−b+b× |d|
avdl

)
× log N+1

dft

where q is a FLAIR query containing one or
more linguistic forms, t is a linguistic form, d is
a document, tft,d is the number of occurrences
of t in d, |d| is document length, avdl is the
average document length in the collection, dft is
the number of documents containing t, and k is
a free parameter set to 1.7. The free parameter b
specifies the importance of the document length.
The functionality of the tool allows the user to
adjust the importance of the document length with
a slider that assigns a value from 0 to 1 to the
parameter b.

2.1 Technical Implementation

FLAIR is written in Java and implemented as a
Java EE web application. The core architecture re-
volves around a client-server implementation that

8

uses WebSocket (Fette and Melnikov, 2011) and
Ajax (Garrett and others, 2005) technologies for
full-duplex, responsive communication. All server
operations are performed in parallel, and each op-
eration is divided into subtasks that are executed
asynchronously. Operations initiated by the client
are dispatched as asynchronous messages to the
server. The client then waits for a response from
the latter, which are relayed as rudimentary push
messages encoded in JSON.6 By using WebSock-
ets to implement the server endpoint, we were able
to reduce most of the overhead associated with
HTTP responses.

The sequence of operations performed within
the client boundary is described as follows:

1. Send search query to server and initiate web
search

2. Wait for completion signal from server

3. Initiate text parsing

4. Wait for completion signal from server

5. Request parsed data from server

6. Cache parsed data

7. Re-rank results according to parameters

The sequence of operations performed within the
server boundary is described as follows:

1. Receive search query from client

2. Begin web search operation:

(a) Fetch top N valid search results
(b) For each search result, fetch page text
(c) Signal completion

3. Wait for request from client

4. Begin text parsing operation:

(a) For each valid search result, parse text
and collate data

(b) Signal completion

5. Wait for request from client

6. Send parsed data to client

6http://json.org

3 FLAIR Interface

The main layout consists of four elements – a set-
tings panel, a search field, a list of results, and a
reading interface, where the identified target con-
structions are highlighted. The interactive visual-
ization incorporates the technique of parallel coor-
dinates used for visualizing multivariate data (In-
selberg and Dimsdale, 1991).

The visualization provides an overview of the
distribution of the selected linguistic characteris-
tics in the set of retrieved documents. Vertical
axes represent parameters – linguistic forms, num-
ber of sentences, number of words and the read-
ability score, and each polyline stands for a doc-
ument having certain linguistic characteristics and
thus, going through different points on the param-
eter axes. The interactive design allows for more
control over a user-selected set of linguistic char-
acteristics. Users can select a range of values for
one or more constructions to precisely identify and
retrieve documents.

Figures 2 and 3 demonstrate FLAIR in use: The
user has entered the query Germany and selected
Past Perfect and Present Perfect as target con-
structions. After reranking the 20 retrieved docu-
ments, the interactive visualization was used to se-
lect only the documents with a non-zero frequency
of both constructions.

4 Detection of Linguistic Forms

We based our choice of the 87 linguistic forms on
the official school curriculum for English in the
state of Baden-Württemberg, Germany.7 As most
of the linguistic structures listed there do not have
a one-to-one mapping to the standard output of
NLP tools, we used a rule-based approach to ap-
proximate them.

For closed word classes, string matching (e.g.,
articles) or look-up lists (e.g, prepositions) can be
used to differentiate between their forms. How-
ever, detection of some grammatical constructions
and syntactic structures requires a deeper syntactic
analysis. Identification of the degrees of compar-
ison of long adjectives requires keeping track of
two consequent tokens and their POS tags, as is
the case with the construction used to that cannot
be simply matched (cf. the passive ”It is used to
build rockets”). More challenging structures, such

7The curricula for grades 2, 4, 6, 8, 10 are accessible on
the website of the education portal of Baden-Württemberg:
http://bildung-staerkt-menschen.de

9

Figure 2: FLAIR interface: the settings panel, the list of results and the reading interface.

Figure 3: The visualization component of FLAIR. Vertical axes correspond to text characteristics and the
lines going through the axes represent documents.

as real and unreal conditionals and different gram-
matical tenses, are identified by means of complex
patterns and additional constraints. For a more
elaborate discussion of the detection of linguistic
forms, the pilot evaluation and the use cases, see
Chinkina and Meurers (2016).

5 Performance Evaluation

Parallelization of the tool allowed us to reduce
the overall processing time by at least a factor
of 25 (e.g., 35 seconds compared to 15 minutes
for top 20 results). However, due to the highly
parallel nature of the system, its performance is
largely dependent on the hardware on which it is
deployed. Amongst the different operations per-
formed by the pipeline, web crawling and text an-
notation prove to be the most time-consuming and
resource-intensive tasks. Web crawling is an I/O

task that is contingent on external factors such as
remote network resources and bandwidth, thereby
making it a potential bottleneck and also an unre-
liable target for profiling. We conducted several
searches and calculated the relative time each op-
eration took. It took around 50-65% of the total
time (from entering the query till displaying a list
of results) to fetch the results and extract the docu-
ments and around 20-30% of the total time to parse
them.

The Stanford parser is responsible for text anno-
tation operations, and its shift-reduce constituent
parser offers best-in-class performance and accu-
racy.8 We analyzed the performance of the parser
on the constructions that our tool depends on for
the detection of linguistic patterns. Among the

8See http://nlp.stanford.edu/software/
srparser.shtml

10

biggest challenges were gerunds that got anno-
tated as either nouns (NN) or gerunds/present par-
ticiples (VBG). Phrasal verbs, such as settle in,
also appeared to be problematic for the parser and
were sometimes not presented as a single entity in
the list of dependencies.

The FLAIR light-weight algorithm for detecting
linguistic forms builds upon the results of the Stan-
ford parser while adding negligible overhead. To
evaluate it, we collected nine news articles with
the average length of 39 sentences by submitting
three search queries and saving the top three re-
sults for each of them. We then annotated all sen-
tences for the 87 grammatical constructions and
compared the results to the system output. Table 1
provides the precision, recall, and F-measure for
selected linguistic forms identified by FLAIR9.

Linguistic target Prec. Rec. F1

Yes/no questions 1.00 1.00 1.00
Irregular verbs 1.00 0.96 0.98
used to 0.83 1.00 0.91
Phrasal verbs 1.00 0.61 0.76
Tenses (Present Simple, ...) 0.95 0.84 0.88
Conditionals (real, unreal) 0.65 0.83 0.73
Mean (81 targets) 0.94 0.90 0.91
Median (81 targets) 1.00 0.97 0.95

Table 1: Evaluating the FLAIR algorithm

As the numbers show, some constructions are eas-
ily detectable (plural irregular noun forms, e.g.,
children) while others cannot be reliably identi-
fied by the parser (conditionals). The reasons for a
low performance are many-fold: the ambiguity of
a construction (real conditionals), the unreliable
output of the text extractor module (simple sen-
tences) or the Stanford Parser (-ing verb forms),
and the FLAIR parser module itself (unreal con-
ditionals). Given the decent F-scores and our
goal of covering the whole curriculum, we include
all constructions into the final system – indepen-
dent of their F-score. As for the effectiveness of
the tool ina real-life setting, full user studies with
language teachers and learners are necessary for
a proper evaluation of distinctive components of
FLAIR (see Section 7).

9The mean and the median are given for 81 targets be-
cause six grammatical constructions did not occur in the test
set.

6 Related Work

While most of the state-of-the-art IR systems de-
signed for language teachers and learners imple-
ment a text complexity module, they differ in how
they treat vocabulary and grammar. Vocabulary
models are built using either word lists (LAWSE
by Ott and Meurers, 2011) or the data from learner
models (REAP by Brown and Eskenazi, 2004).
Grammar is given little to no attention: Bennöhr
(2005) takes into account the complexity of differ-
ent conjunctions in her TextFinder algorithm.

Distinguishing features of FLAIR aimed at mak-
ing it usable in a real-life setting are that (i) it cov-
ers the full range of grammatical forms and cate-
gories specified in the official English curriculum
for German schools, and (ii) its parallel processing
model allows to efficiently retrieve, annotate and
rerank 20 web documents in a matter of seconds.

7 Conclusion and Outlook

The paper presented FLAIR – an Information Re-
trieval system that uses state-of-the-art NLP tools
and algorithms to maximize the number of spe-
cific linguistic forms in the top retrieved texts. It
supports language teachers in their search for ap-
propriate reading material in the following way:

• A parsing algorithm detects the 87 linguistic
constructions spelled out in the official cur-
riculum for the English language.

• Parallel processing allows to fetch and parse
several documents at the same time, making
the system efficient for real-life use.

• The responsive design of FLAIR ensures a
seamless interaction with the system.

The tool offers input enrichment of online materi-
als. In a broader context of computer-assisted lan-
guage learning, it can be used to support input en-
hancement (e.g., WERTi by Meurers et al., 2010)
and exercise generation (e.g., Language MuseSM

by Burstein et al., 2012).
Recent work includes the integration of the

Academic Word List (Coxhead, 2000) to estimate
the register of documents on-the-fly and rerank
them accordingly. The option of searching for
and highlighting the occurrences of words from
customized vocabulary lists has also been imple-
mented. In addition to the already available length
and readability filters, we are working on the op-
tions to constrain the search space by including

11

support for i) search restricted to specific web do-
mains and data sets, such as Project Gutenberg10

or news pages, and ii) search through one’s own
data set. We also plan to implement and test
more sophisticated text readability formulas (Va-
jjala and Meurers, 2014) and extend our informa-
tion retrieval algorithm. Finally, a pilot online user
study targeting language teachers is the first step
we are taking to empirically evaluate the efficacy
of the tool.

On the technical side, FLAIR was built from
the ground up to be easily scalable and extensible.
Our implementation taps the parallelizability of
text parsing and distributes the task homogenously
over any given hardware. While FLAIR presently
supports the English language exclusively, its ar-
chitecture enables us to add support for more lan-
guages and grammatical constructions with a min-
imal amount of work.

Acknowledgments

This research was funded by the LEAD Gradu-
ate School [GSC1028], a project of the Excellence
Initiative of the German federal and state govern-
ments. Maria Chinkina is a doctoral student at the
LEAD Graduate School.

We would also like to thank the language teach-
ers at Fachsprachzentrum Tübingen for trying out
the tool and providing valuable feedback.

References
Jasmine Bennöhr. 2005. A web-based personalised

textfinder for language learners. Master’s thesis,
University of Edinburgh.

Jonathan Brown and Maxine Eskenazi. 2004. Re-
trieval of authentic documents for reader-specific
lexical practice. In InSTIL/ICALL Symposium 2004.

Maria Chinkina and Detmar Meurers. 2016.
Linguistically-aware information retrieval: Provid-
ing input enrichment for second language learners.
In Proceedings of the 11th Workshop on Innovative
Use of NLP for Building Educational Applications,
San Diego, CA.

Averil Coxhead. 2000. A new academic word list.
TESOL quarterly, 34(2):213–238.

Ian Fette and Alexey Melnikov. 2011. The websocket
protocol.

Jesse James Garrett et al. 2005. Ajax: A new approach
to web applications.

10http://gutenberg.org

Susan M Gass and Evangeline Marlos Varonis. 1994.
Input, interaction, and second language production.
Studies in second language acquisition, 16(03):283–
302.

Alfred Inselberg and Bernard Dimsdale. 1991. Paral-
lel coordinates. In Human-Machine Interactive Sys-
tems, pages 199–233. Springer.

Christian Kohlschütter, Peter Fankhauser, and Wolf-
gang Nejdl. 2010. Boilerplate detection using shal-
low text features. In Proceedings of the third ACM
international conference on Web search and data
mining, pages 441–450. ACM.

Stephen Krashen. 1977. Some issues relating to the
monitor model. On Tesol, 77(144-158).

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60.

Niels Ott and Detmar Meurers. 2011. Information re-
trieval for education: Making search engines lan-
guage aware. Themes in Science and Technology
Education, 3(1-2):pp–9.

Kristen Purcell, Lee Rainie, Alan Heaps, Judy
Buchanan, Linda Friedrich, Amanda Jacklin, Clara
Chen, and Kathryn Zickuhr. 2012. How teens do
research in the digital world. Pew Internet & Amer-
ican Life Project.

Stephen E Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Pro-
ceedings of the 17th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 232–241.

Dan I Slobin. 1985. Crosslinguistic evidence for the
language-making capacity. The crosslinguistic study
of language acquisition, 2:1157–1256.

Merrill Swain. 1985. Communicative competence:
Some roles of comprehensible input and comprehen-
sible output in its development. Input in second lan-
guage acquisition, 15:165–179.

Martha Trahey and Lydia White. 1993. Positive
evidence and preemption in the second language
classroom. Studies in second language acquisition,
15(02):181–204.

Sowmya Vajjala and Detmar Meurers. 2014. Assess-
ing the relative reading level of sentence pairs for
text simplification. In Proceedings of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL-14), Gothen-
burg, Sweden. Association for Computational Lin-

guistics.

12

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 13–18,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

TermSuite: Terminology Extraction with Term Variant Detection

Damien Cram
LINA - UMR CNRS 6241

Université de Nantes, France
damien.cram@univ-nantes.fr

Béatrice Daille
LINA - UMR CNRS 6241

Université de Nantes, France
beatrice.daille@univ-nantes.fr

Abstract

We introduce, TermSuite, a JAVA and
UIMA-based toolkit to build terminolo-
gies from corpora. TermSuite follows
the classic two steps of terminology ex-
traction tools, the identification of term
candidates and their ranking, but imple-
ments new features. It is multilingually
designed, scalable, and handles term vari-
ants. We focus on the main compo-
nents: UIMA Tokens Regex for defining
term and variant patterns over word anno-
tations, and the grouping component for
clustering terms and variants that works
both at morphological and syntactic levels.

1 Introduction

Terminologies play a central role in any NLP ap-
plications such as information retrieval, informa-
tion extraction, or ontology acquisition. A ter-
minology is a coherent set of terms that consti-
tutes the vocabulary of a domain. It also reflects
the conceptual system of that domain. A term
could be a single term (SWT), such as rotor, or
a complex term. Complex terms are either com-
pounds such as broadband, or multi-word terms
(MWT) such as frequency band. Terms are func-
tional classes of lexical items used in discourse,
and as such they are subjected to linguistic varia-
tions such as modification or coordination.

As specialized domains are poorly covered by
general dictionaries, Term Extraction Tools (TET)
that extract terminology from corpora have been
developed since the early nineties. This first gen-
eration of TET (Cabré et al., 2001) was mono-
lingually designed, not scalable, and they were
not handling term variants, except for ACABIT
(Daille, 2001) and FASTR (Jacquemin, 2001).

This last question has always been a pain in the
neck for TET.

The current generation of TET improves on var-
ious aspects. As an example, TermoStat1 deals
with several Romance languages, reaches to treat
text up to 30 megabytes, and proposes a first
structuring based on lexical inclusion. Term-
Suite goes a step forward: it is multilingually
designed, scalable, and handles term variants. It
is able to perform term extraction from languages
that behave differently from the linguistic point of
view. Complex terms in languages such as Ger-
man and Russian are mostly compounds, while in
Roman languages they are MWT. TermSuite
extracts single terms and any kind of complex
terms. For some generic domains and some ap-
plications, large amounts of data have to be pro-
cessed. TermSuite is scalable and has been
applied to corpora of 1.1 gigabytes using a per-
sonal computer configuration. Finally, Term-
Suite identifies a broad range of term variants,
from spelling to syntactic variants that may be
used to structure the extracted terminology with
various conceptual relations.

Since the first TermSuite release (Rocheteau
and Daille, 2011), several enhancements about
TET have been made. We developed UIMA To-
kens Regex, a tool to define term and variant pat-
terns using word annotations within the UIMA
framework (Ferrucci and Lally, 2004) and a group-
ing tool to cluster terms and variants. Both tools
are designed to treat in an uniform way all linguis-
tic kinds of complex terms.

After a brief reminder of TermSuite gene-
ral architecture, we present its term spotting tool
UIMA Tokens Regex, its variant grouping tool,
and the variant specifications we design for En-
glish, French, Spanish, German, and Russian. Fi-

1http://termostat.ling.umontreal.ca/

13

nally, we provide some figures and considerations
about TermSuite resources and behaviour.

2 TermSuite architecture

TET are dedicated to compute the termhood and
the unithood of a term candidate (Kageura and
Umino, 1996). Two steps make up the core of
the terminology extraction process (Pazienza et
al., 2005):

1. Spotting: Identification and collection of
term-like units in the texts, mostly a subset
of nominal phrases;

2. Filtering and sorting: Filtering of the ex-
tracted term-like units that may not be terms,
syntactically or terminologically; Sorting of
the term candidates according to their unit-
hood, their terminological degree and their
most interest for the target application.

TermSuite adopts these two steps. Term-
like units are collected with the following NLP
pipeline: tokenization, POS tagging, lemmatiza-
tion, stemming, splitting, and MWT spotting with
UIMA Tokens Regex. They are ranked according
to the most popular termhood measure. But in or-
der to improve the term extraction process and to
provide a first structuring of the term candidates, a
component dedicating to term variant recognition
has been added. Indeed, term variant recognition
improves the outputs of term extraction: the rank-
ing of the term candidates is more accurate and
more terms are detected (Daille and Blancafort,
2013).

Figure 2 shows the output of TermSuite TET
within the graphical interface. The main win-
dow shows the terms rank according to termhood.
A term candidate may group miscellaneous term
variants. When a term is highlighted, the occur-
rences spot by UIMA Tokens Regex are showed
in the bottom window and the term features in the
right window.

3 Spotting multiword terms

We design a component in charge of spotting
multi-word terms and their variants in text, which
is based on UIMA Tokens Regex2, a concise and
expressive language coupled with an efficient rule
engine. UIMA Tokens Regex allows the user to

2http://github.com/JuleStar/
uima-tokens-regex/

define rules over a sequence of UIMA annota-
tions, ie. over tokens of the corpus, each rule
being in the form of a regular expression. Com-
pared to RUTA (Kluegl et al., 2016), UIMA To-
kens Regex operates only on annotations that ap-
pear sequentially, which is the case for word an-
notations. The occurrence recognition engine has
been thus implemented as a finite-state machine
with linear complexity.

3.1 Syntax
UIMA Tokens Regex syntax is formally de-
fined by an ANTLR3 grammar and inspired by
Stanford TokensRegex (Chang and Man-
ning, 2014).

Matchers Before defining regular expressions
over annotations, each annotation needs to be
atomically matchable. That is why UIMA Tokens
Regex defines a syntax for matchers. A matcher
can be of three types:

[Boolean Exp] an expression matching
the values of annotation
attributes.

/String RegExp/ A valid Java regular ex-
pression matching against
the text covered by the an-
notation.

The dot ”.” matches any annotation.
The Boolean Exp within brackets is a combination
of atomic boolean expressions, boolean operators
& and ‖, and parentheses. An atomic boolean
expression is of the form:

property op literal

Where property is an annotation feature de-
fined in TermSuite UIMA type system, op is
one of ==, !=, <, <=, >, and >=, and literal
is either a string, a boolean (true or false), or
a number (integer or double).

Rules Rules are named regular expressions that
are defined as follows:

term "rule name": TokensRegex;

Where TokensRegex is a sequence of quantified
matchers. The quantifiers are:

? 0 or 1
* 0 or several
+ at least 1
{n} exactly n
{m,n} between m and n

3http://antlr.org/

14

3.2 Engine

UIMA Tokens Regex engine parses the list of rules
and creates for each of these rules a finite-state
automaton. The engine provides automata with
the sequence of UIMA annotations of the prepro-
cessed input document. UIMA Tokens Regex en-
gine implements the default behaviour of a regu-
lar expression engine: it is greedy, backtracking,
picking out the first alternative, and impatient.

Every time an automaton (ie. a rule) matches,
TermSuite generates a rule occurrence and
stores the offset indexes of the matched text.

3.3 Application to terminology extraction

Example In TermSuite type system, the val-
ues of the feature category are the part-of-
speech (POS) tags. Rule an below extracts MWT
composed of one or several adjectives followed by
a noun.

term "an": [category=="adjective"]+
[category=="noun"] ;

Matcher predefinition For the sake of both
readability and reusability, UIMA Tokens Regex
allows the user to predefine matchers. Thus, Rule
an can be expressed concisely as A+ N using the
matchers N and A:

matcher N: [category=="noun"];
matcher Vpp: [V & mood=="participle"

& tense=="past"];
matcher A: [(Vpp | category=="adjective")

& lemma!="same"
& lemma!="other"];

matcher C: /ˆ(and|or)$/;
matcher D: [category=="determiner"

& subCategory != "possessive"];
matcher P: [category=="adposition"

& subCategory=="preposition"];

term "an": A+ N ;
term "npn": N P D? N ;
term "acan": ˜D A C A N ;

Rule acan extracts coordination variants that
match the ”adjective conjunction adjective noun”
pattern, such as onshore and offshore locations.
The quantifier ? expresses an optional determiner.
Rule npn can extract both MWT: energy of wind
and energy of the wind.

Features The annotation features available
in TermSuite type system are category,
subCategory, lemma, and stem and in-
flectional features such as mood, tense, or
case.

Lexical filtering Matcher A above shows an ex-
ample of lexical filtering that prohibits occur-
rences of the listed lemma in the pattern. For ex-
ample, Rule an will not match the term candidate
same energy.

Contextual filtering Contextual POS are pre-
ceded by tilde (∼). Rule acan shows an example
of contextual filtering. A determinant should oc-
cur for the pattern to be matched, but it will be not
part of collected MWT.

4 Variant grouping

TermSuite is able to gather terms according to
syntactic and morphological variant patterns that
are defined with YAML syntax (Ben-Kiki et al.,
2005).

4.1 Syntax

A variant rule states a set of conditions that two
term candidates must fulfil to be paired. It consists
of:

a rule name a string expression between double
quotes ("), ended by a colon (:),

a source pattern and a target pattern, which are
sequences of matcher labels.

a boolean expression a logical expression on
source and target term features, denoted by
rule. The field rule is interpreted by a
Groovy engine and must be defined in valid
Groovy syntax.

Example The example below is the simplest
variant grouping rule defined for English.

"S-I-NN-(N|A)":
source: N N
target: N N N, N A N
rule: s[0]==t[0] && s[1]==t[2]

This rule is named S-I-NN-(N|A). It states
that one term candidate (the source) must be of
pattern N N, and the second term candidate (the
target) of patterns N N N or N A N. The rule
field states that the lemma property of s[0], the
first noun of the source, has the same lemma as
t[0], the first noun of the target. Likewise s[1]
and t[2] must share the same lemma. For exam-
ple, this variant grouping rule will be satisfied for
the two terms turbine structure and turbine base
structure.

15

Word features The rule field expresses con-
ditions on word features. The two main features
used for grouping are lemma and stem. lemma
is the default one, that is why stating s[0] == t[0]
is equivalent to s[0].lemma == t[0].lemma. The
rule ”S-PI-NN-P” below makes use of the stem
property. An example of grouping is effect of ro-
tation and rotational effect where rotational is de-
rived from rotation.
"S-PI-NN-P":

source: N P N
target: A N, N N
rule: s[0]==t[1] && s[2].stem==t[0].stem

Morphological variants TermSuite imple-
ments Compost, a multilingual splitter (Logi-
nova Clouet and Daille, 2014) that makes the de-
cision as to whether the term composed of one
graphic unit, is a SWT or a compound, and for
compounds, it gives one or several candidate anal-
yses ranked by their scores. We only keep the best
split. The compound elements are reachable when
TermSuite comes to apply the variant group-
ing rules. The syntax of YAML variant rules al-
lows the user to express morphological variants
between two terms:
"M-I-EN-N|A":

source: N [compound]
target: N N, A N
rule: s[0][0]==t[0][0] && s[0][1] == t[1]

In the rule M-I-EN-N|A above, the tag
[compound] after the source pattern states that
the source has to be a morphosyntactic compound.
In the rule field, we access the component fea-
tures with the second index of the two-based in-
dexing arrays, the first index referring to the POS
position in the source or target patterns. As ex-
amples, this rule groups the two term candidates
windfarm and windmill farm, and also hydropower
and hydroelectric power.

4.2 Engine

Term variant grouping applies on term pairs with
a complexity of O(n2), where n is the number
of term candidates extracted by UIMA Tokens
Regex. TermSuite copes with this issue by
pre-indexing each term candidate with all its pairs
of single-word lemmas. For example, the term
of length 3 offshore wind turbine has three in-
dexing keys: (offshore, wind), (offshore,
turbine), and (turbine, wind). The group-
ing engine operates over all terms sharing the same
indexing key, for all indexing keys. Therefore, the

MWT Variants
en 43 41
fr 35 37
de 20 30
es 62 40
ru 18 16

Table 1: Numbers of rules provided in Term-
Suite

O(n2) complexity applies to small subsets of term
candidates, and the weight of variant grouping in
the overall terminology extraction process is quite
reasonable (see Section 7).

5 Language grammars

We define MWT spotting rules and variant group-
ing rules for the five languages supported by
TermSuite: Fr, En, Es, De, and Ru. Table 1
shows the number of rules by languages for MWT
spotting and for term variant grouping.

6 Ranking by termhood

Term candidates are ranked according to their ter-
mhood that is measured with weirdness ratio (WR).
WR is the quotient of the relative frequency in both
the domain specific corpus C and a general lan-
guage corpus G.

WR(t, C) =
fnorm(t, C)
fnorm(t,G) (1)

Where fnorm stands for the normalized fre-
quency of a term in a given corpus, ie. the average
number of its occurrences every 1000 words, and
G is a general language corpus.

6.1 General language corpus

The general language corpora used for computing
WR are part of the compilation of newspapers pro-
vided by CLEF 2004 (Jones et al., 2005). These
corpora cover numerous and miscellaneous topics,
which are useful to obtain a corpus representative
of the general language. The corpora of the gen-
eral language that we use to compute the frequen-
cies of term candidates are:

Newspaper Lang Size Nb words
Der Spiegel De 382M 60M
Glasgow Herald En 302M 28M
Agencia EFE Es 1.1G 171M
Le Monde Fr 1.1G 82M
Izvestia Ru 66M 5.8M

16

6.2 WR behaviour

Figure 1 gives WR distribution on the English part
of the domain-specific monolingual comparable
corpora for Wind Energy4 [EOL]. [EOL] is avail-
able for seven languages and has a minimum size
of 330K words by language. The x-axis of Fig-
ure 1 is set to WR base-10 logarithm, hence a value
of 2 means that the term candidate is a 100 times
more frequent in the specific corpus C than in G.

0 1 2 3 4 5

0

2,0
00

4,0
00

6,0
00

8,0
00

Logarithmic of Weirdness Ratio - log (wr)

Figure 1: Distribution of WR base-10 logarithm
over all terms extracted by TermSuite on En-
glish [EOL].

We distinguish two sets of terms on Figure 1.
The first one, starting around 0 until log(wr) ' 2,
contains the terms that are not domain specific
since they occur in both the specialised and the
general language corpora. The second set, from
the peak at log(wr) ' 2 to the upper bound, con-
tains both the terms that appear much more fre-
quently in C than in G and the terms that never
occur in G. Actually, the first peak at log(wr) ' 2
refers to terms that occur once in C and never in G,
the second lower peak refers to terms that occur
twice in C and never in G, and so on.

We did not provide the distributions for other
[EOL] languages nor for other corpora, because
their WR distributions are similar. For all config-
urations, the first peak always appears at WR ' 2
and the upper bound at WR ' 5. As a result of
the analysis of WR distribution, we set 2 as default
value of log(wr) threshold for accepting candi-
dates as terms.

4http://www.lina.univ-nantes.fr/taln/
maven/wind-energy.tgz

7 Performances

TermSuite operates on English [EOL] in
11 seconds with the technical configuration:
Ubuntu 14.04, 16Go RAM, Intel(R)
Core(TM) i7-4800MQ (4x2,2.7Ghz).
We detail the execution times of each main
component with the use of two part-of-speech
taggers TreeTagger5(TT) and Mate6:

TT Mate
Tokenizer 1.3s idem
POS/Lemmatiser 2.4s 81s
Stemmer 0.67s idem
MWT Spotter 4.8s idem
Morph. Compound Finder 0.14s idem
Syntactic Term Gatherer 0.23s idem
Graphical Term Gatherer 0.27s idem
Total (without UIMA overheads) 9.8s 88.5s

Scalability Time complexity is linear. The pro-
cessing of Agencia EFE corpus (cf. Section 6.1),
the biggest tested so far (171 million words), takes
101 minutes to process. This performance proves
a very satisfactory vertical scalability in the con-
text of smaller domain-specific corpora. No kind
of parallelism has been implemented so far, not
even Java multi-threading, which is the best oppor-
tunity of optimization if an improvement of perfor-
mances is required.

8 Release

TermSuite is a Java (7+) program. It can be
used in three ways: the Java API, the command
line API, or the graphical user interface as shown
on Figure 2. Its only third-party dependency is
TreeTagger, which needs to be installed sep-
arately and referenced by TermSuite configura-
tion.
TermSuite is under licence Apache 2.0. The

source code and all its components and linguis-
tic resources are released on Github7. The lat-
est released versions, currently 2.1, are available
on Maven Central8. All links, documenta-
tion, resources, and guides about TermSuite are
available on its official website:

http://termsuite.github.io/

Acknowledgements

TermSuite development is supported by IS-
TEX, French Excellence Initiative of Scientific

5http://www.cis.uni-muenchen.de/
˜schmid/tools/TreeTagger/

6https://code.google.com/p/mate-tools/
7https://github.com/termsuite/
8Maven group id is fr.univ-nantes.termsuite

17

Figure 2: TermSuite graphical user interface

and Technical Information.

References
Oren Ben-Kiki, Clark Evans, and Brian Ingerson.

2005. Yaml ain’t markup language (yamlTM) ver-
sion 1.1. yaml. org, Tech. Rep.

M. Teresa Cabré, Rosa Estopà Bagot, and Jordi Vi-
valdi Platresi. 2001. Automatic term detection:
A review of current systems. In D. Bourigault,
C. Jacquemin, and M.-C. L’Homme, editors, Recent
Advances in Computational Terminology, volume 2
of Natural Language Processing, pages 53–88. John
Benjamins.

Angel X. Chang and Christopher D. Manning. 2014.
TokensRegex: Defining cascaded regular expres-
sions over tokens. Technical Report CSTR 2014-02,
Department of Computer Science, Stanford Univer-
sity.

Béatrice Daille and Helena Blancafort. 2013.
Knowledge-poor and knowledge-rich approaches
for multilingual terminology extraction. In Proceed-
ings, 13th International Conference on Intelligent
Text Processing and Computational Linguistics (CI-
CLing), page 14p, Samos, Greece.

Béatrice Daille. 2001. Qualitative terminology extrac-
tion. In D. Bourigault, C. Jacquemin, and M.-C.
L’Homme, editors, Recent Advances in Computa-
tional Terminology, volume 2 of Natural Language
Processing, pages 149–166. John Benjamins.

David Ferrucci and Adam Lally. 2004. UIMA: an
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10:327–348.

Christian Jacquemin. 2001. Spotting and Discovering
Terms through Natural Language Processing. Cam-
bridge: MIT Press.

Gareth J. F. Jones, Michael Burke, John Judge, Anna
Khasin, Adenike Lam-Adesina, and Joachim Wag-
ner, 2005. Multilingual Information Access for Text,
Speech and Images: 5th Workshop of the Cross-
Language Evaluation Forum, CLEF 2004, Bath,
UK, September 15-17, 2004, Revised Selected Pa-
pers, chapter Dublin City University at CLEF 2004:
Experiments in Monolingual, Bilingual and Multi-
lingual Retrieval, pages 207–220. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Kyo Kageura and Bin Umino. 1996. Methods of au-
tomatic term recognition: a review. Terminology,
3(2):259–289.

Peter Kluegl, Martin Toepfer, Philip-Daniel Beck,
Georg Fette, and Frank Puppe. 2016. UIMA ruta:
Rapid development of rule-based information ex-
traction applications. Natural Language Engineer-
ing, 22(1):1–40.

Elizaveta Loginova Clouet and Béatrice Daille. 2014.
Splitting of Compound Terms in non-Prototypical
Compounding Languages. In Workshop on Compu-
tational Approaches to Compound Analysis, COL-
ING 2014, pages 11 – 19, Dublin, Ireland, August.

Maria Teresa Pazienza, Marco Pennacchiotti, and
Fabio Massimo Zanzotto. 2005. Terminology ex-
traction: An analysis of linguistic and statistical ap-
proaches. In S. Sirmakessis, editor, Proceedings
of the NEMIS 2004 Final Conference, volume 185
of Studies in Fuzziness and Soft Computing, pages
225–279. Springer Berlin Heidelberg.

J. Rocheteau and B. Daille. 2011. TTC TermSuite -
A UIMA Application for Multilingual Terminology
Extraction from Comparable Corpora. In Proceed-
ings of the 5th International Joint Conference on
Natural Language Processing (IJCNLP 2011, Thai-
land, November. Asian Federation of ACL.

18

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 19–24,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

DeepLife: An Entity-aware Search, Analytics and Exploration Platform
for Health and Life Sciences

Patrick Ernst, Amy Siu, Dragan Milchevski, Johannes Hoffart, Gerhard Weikum
Max-Planck Institute for Informatics

Campus E1 4
66123 Saarbrücken, Germany

{pernst, siu, dmilchev, jhoffart, weikum}@mpi-inf.mpg.de

Abstract

Despite the abundance of biomedical lit-
erature and health discussions in online
communities, it is often tedious to retrieve
informative contents for health-centric in-
formation needs. Users can query schol-
arly work in PubMed by keywords and
MeSH terms, and resort to Google for ev-
erything else. This demo paper presents
the DeepLife system, to overcome the lim-
itations of existing search engines for life
science and health topics. DeepLife in-
tegrates large knowledge bases and har-
nesses entity linking methods, to support
search and exploration of scientific litera-
ture, newspaper feeds, and social media, in
terms of keywords and phrases, biomed-
ical entities, and taxonomic categories.
It also provides functionality for entity-
aware text analytics over health-centric
contents.

1 Introduction

There is an ever-growing abundance of biomed-
ical information and health-related contents on
the Internet: scientific publications in PubMed,
ontologies and knowledge bases on genes, pro-
teins, drugs, etc., health portals like the one by
the Mayo Clinic, online communities where pa-
tients and doctors discuss diseases, therapies, drug
side effects, etc., and more. However, this wealth
of information is in contrast to the limited support
of finding relevant contents, especially when lay-
men search for specific topics off the mainstream
or when experts want high recall on advanced top-
ics from many sources. A typical user approach is

to combine keywords with Medical Subject Head-
ings (MeSH) terms when searching PubMed, and
to use Google for everything else.

As an example, consider a user who takes
asthma medication and plans to go for a 3-month
trip to China including rural areas. Which vaccina-
tions are needed, which asthma drugs are not com-
patible with these vaccines or other drugs that may
be needed and purchased during the trip (e.g. diar-
rhea, sinusitis, influenza)? What is the experience
of other travelers? As an example for an expert
user’s needs, consider a medical student who is
investigating the conditions and risk factors under
which Zika spreads and causes health problems.

State of the Art and its Limitations: These
kinds of users face the following shortcomings of
available search engines:

• Restricted search functionality: The search en-
gines for PubMed or health portals like upto-
date.com or mayoclinic.org support only key-
word queries with some support for MeSH-
like annotations, but lack query functionality
that can incorporate hierarchical taxonomies
and linkage with knowledge bases. Search
over social media sites is even more limited.

• Limited coverage and diversity: Other than
Google, all search engines can tap only into
one kind of content: either scholarly publica-
tions or user-provided social media, but never
both. The same holds for intermediate-style
contents like health portals.

• Restriction to molecular entities: For contents
about genes, proteins, pathways, etc., there
are structured-data sites that come with richer
query and exploration functionality. However,
for entities at the level of diseases, therapies,

19

symptoms, risk factors, etc., there are no ser-
vices of this kind.

• Lack of support for interactive exploration:
The only user-friendly support for interac-
tive sessions is auto-completion suggestions
for user queries. However, these are solely
based on the query-and-click history of previ-
ous users. This has no awareness of emerging
topics in the underlying contents and entity-
level background knowledge.

This state of the art for health-related search
is in sharp contrast with the state of the art
for general-purpose search, say over daily news
or general-purpose social media (e.g., discussing
celebrities). Advances in recognizing and dis-
ambiguating textual mentions of named enti-
ties and the linkage to comprehensive knowl-
edge bases like DBpedia, Freebase, Wikidata and
Yago have enabled powerful and user-friendly re-
trieval systems. Google supports entity-centric
search through transparent interlinkage with the
Google Knowledge Graph; Microsoft, Facebook,
etc. have similar functionalities. Academic sys-
tems such as Broccoli (Bast and Buchhold, 2013),
STICS (Hoffart et al., 2014) and Semantic Scholar
(Valenzuela et al., 2015) are highly expressive
in their capabilities for querying and exploration,
with entity-centric auto-completion suggestions
and other advanced features. However, none of
these covers biomedical or health contents.

Our Approach and Contribution: This paper
presents a novel system, called DeepLife, which
provides this kind of user-friendly and expressive
support for health-related contents from a wide va-
riety of sources, including scholarly publications,
newspaper articles and online communities. Our
approach is inspired by the STICS system (Hof-
fart et al., 2014). However, our content is com-
pletely different, and coping with textual men-
tions of biomedical entities is much harder than
recognizing and disambiguating prominent people
or places in news articles. This paper presents
the system architecture of DeepLife, demonstrates
its usefulness for various use cases, and discusses
how we overcame the aforementioned limitations
of prior work and the challenges regarding cover-
age, scale and usability.

Salient features of DeepLife include the follow-
ing novelties:

• integrating large knowledge bases like the
Unified Medical Language System (UMLS)

and KnowLife (Ernst et al., 2015) into a search
engine over a variety of health-related sources
and document feeds,

• providing capabilities for search and explo-
ration based on flexible combinations of key-
words (and phrases), biomedical entities, facts,
and taxonomic categories,

• supporting users by powerful auto-completion
suggestions, interactive query sessions, and
basic forms of entity-aware text analytics.

DeepLife is available for interactive use at
https://gate.d5.mpi-inf.mpg.de/deeplife/

en-health/.

2 Related Work

In the biomedical domain, the majority of in-
formation retrieval systems limit their scopes to
PubMed scientific publications. Kim et al. (2008)
only uses molecular entities for query expan-
sion. The scopes of Textpresso (Müller et al.,
2004), GoPubMed (Doms and Schroeder,
2005), FACTA+ (Tsuruoka et al., 2011),
EVEX (Van Landeghem et al., 2012), Bio-
TextQuest+ (Papanikolaou et al., 2014) and
CRAB (Guo et al., 2014) are restricted to genes,
proteins, or chemicals. MEDIE (Miyao et al.,
2006) and GeneView (Thomas et al., 2012)
annotate PubMed articles with various kinds of
biomedical entities and events, but both systems
do not offer interactive real-time exploration
and analytics. Contrary to the systems afore-
mentioned, PolySearch2 (Liu et al., 2015) goes
beyond scientific publications, but its search and
exploration interface is not entity-aware.

Besides scientific publications, bio-surveillance
systems aggregate and analyze news articles to
identify health threats, such as disease outbreaks
and food hazards. HealthMap (Freifeld et al.,
2008) and EpiSpider (Keller et al., 2009) rely on
user created ProMED reports and do not process
documents automatically. Contrary to these user-
based approaches, Global Health Monitor (Don
et al., 2008) and the Medical Information System
(MedISys) (Rortais et al., 2010) in combination
with PULS (Steinberger et al., 2008) automati-
cally extract entities and events from relevant med-
ical news. However, the amount of entities both
systems can distinguish is limited.

Pang et al. (2015) emphasize the need for better
exploratory search capabilities for health content,

20

Genre Sources Documents
Entity

Occurrences
Distinct
Entities

Clinical
Trials

2 16,476 49,170 8,962

Encyclopedic
Articles

44 11,139 405,795 16,505

News 121 76,534 3,058,111 38,295
Scientific
Publications

15 19,884,225 214,531,153 453,647

Social Media 1 9,473 117,421 4,433

Total 182 19,997,847 218,161,650 454,620

Table 1: Input corpus snapshot on June 1st, 2016

but they do not consider semantic assets, like enti-
ties or a knowledge base.

3 DeepLife’s Knowledge Base

Knowledge bases (KBs) store facts about entities,
their properties, and the relationships between en-
tities. A fact is a triple consisting of two enti-
ties e1, e2, which serve as left- and right-hand
arguments of a relation R, denoted by R(e1, e2).
We augment and integrate two large knowledge
bases to generate DeepLife’s KB covering the en-
tire spectrum of biomedical entities, together with
an extensive type system featuring salient facts.

UMLS: As entity dictionary, we rely on
the Unified Medical Language System (UMLS).
UMLS is the largest collection of biomedical enti-
ties and covers 3,221,702 entities with 12,842,558
entity names. It integrates source vocabularies
from different biomedical domains into a coherent
structure. Due to its broad coverage, we are able to
detect all kinds of entities in text, i.e. entities about
diseases, anatomy, genes, treatments, etc. How-
ever, the UMLS semantic type system is shallow,
i.e. it only assigns 127 types to more than 3 mil-
lion entities. Therefore, we generate our own type
system by automatically augmenting UMLS with
type hierarchies from its source vocabularies. For
each vocabulary, we compute its entity coverage in
our text corpus depending on the entities’ seman-
tic types. The hierarchy of the vocabulary with the
highest coverage for a particular semantic type is
then used, i.e. for genes the Gene Ontology (GO)
is used, for anatomical entities the Foundational
Model of Anatomy (FMA) and for drugs and dis-
eases the Medical Subject Headings (MeSH).

KnowLife: Although UMLS is rich on entities
and types, it lacks cross-domain facts, i.e. relation-
ships connecting different biomedical domains.
To bridge this gap, we integrate KnowLife, a large
knowledge base for health and life sciences, au-

tomatically constructed from Web sources (Ernst
et al., 2015). KnowLife contains more than
500,000 of such cross-domain facts at a preci-
sion of 96% connecting different biomedical ar-
eas such as genes, diseases, anatomic parts, symp-
toms, treatments, as well as environmental and
lifestyle risk factors for diseases. To integrate
the facts into our system, we represent them as
types. For all facts, R(e1, e2), we create a new
type by using the relation R and the right-hand
argument e2 as type name. For example, for all
left-hand arguments e1 appearing in facts such as
isRiskFactor(e1, Asthma) we create the type
RiskFactorsforAsthma.

Altogether, DeepLife’s knowledge base covers
3.2 million entities with around 12.8 million entity
names and synonyms, 64,568 custom types from
source vocabularies and 136,437 fact types.

4 Entity Extraction

DeepLife has currently indexed 19,997,847 doc-
uments and extracted 218,161,650 entities from
a continuous stream of 182 RSS feeds spanning
five text genres. As Table 1 shows, this constantly
growing and diverse corpus covers the full spec-
trum of biomedical information on the web. Clin-
ical trials and scientific publications describe re-
search findings and target professionals. DeepLife
thereby includes the entire Pubmed MEDLINE
collection. Encyclopaedic articles are educational
resources providing insights to laymen. Social
media, such as patient discussion forums, are
mainly used to share experiences and to receive
advice. By including news articles, our system is
always up-to-date on the latest health topics, such
as disease outbreaks or lifestyle information.

Entity Recognition: To process incoming arti-
cles in real-time and to stay up-to-date, our sys-
tem applies an agile entity recognition method.
StanfordCoreNLP is used to split sentences, to-
kenize words and determine part-of-speech tags.
OpenNLP Chunker is used to generate an initial
set of noun chunk candidates. We extend this set
by applying a rule-based approach, e.g. splitting
or merging prepositional phrases, conjunctions, as
well as proper and common nouns. Candidates are
then matched against the entity names in UMLS
using string-similarity, giving preference to the
longest possible matching chunk. To efficiently
handle the large dictionary and volume of candi-
dates, we use our own method which is based on

21

(a) Entity search for aspirin also includes its synonym acetylsalicylic acid

(b) Searching for anti-inflammatory agents expands to all agents in this category

Figure 1: Entity and Category Search

Figure 2: Combined Category and Entity Search for Asthma Risk Factors

22

Figure 3: Entity/Category Auto-completion

locality sensitive hashing (LSH) with min-wise in-
dependent permutations (MinHash) to quickly find
matching candidates (Siu et al., 2013). LSH prob-
abilistically reduces the high-dimensional space
of all character-level 3-grams, while MinHash
quickly estimates the similarity between two sets
of 3-grams. A successful match provides us also
with the entity’s semantic type.

Entity Disambiguation: The entity type infor-
mation is used to disambiguate between multiple
entity candidates matched to the same noun chunk
in the input text. In the first filtering step, we re-
duce the number of entity candidates by only re-
taining the most specifically typed entities accord-
ing to the UMLS semantic type system. Taking
into account that UMLS provides a ranked list of
entities for every possible name, we further disam-
biguate between the remaining candidates by de-
termining the highest ranked entities. In case two
entities share the same rank, we determine their
popularities by the number of occurrences in dif-
ferent UMLS source vocabularies and prefer the
more popular entity. As shown in Table 1, our sys-
tem has currently extracted 218,161,650 mentions
of 454,620 distinct entities.

5 Demo Scenarios

Entities are at the core of our system. Combining
them with facts and types from DeepLife’s knowl-
edge base enables us to realize different use cases
showcasing novel features of our system.

Entity-aware Auto-completion: Formulating
queries with DeepLife is user-friendly and respon-
sive. Providing an entity auto-completion which

combines prefix matching with entity popularity,
the system lets users easily explore and navigate
through an extensive amount of entities and cate-
gories. For a user-provided prefix, the system re-
trieves entity and category candidates, where any
token of their name or synonyms matches the pre-
fix. These candidates are then ranked by corpus
statistics which the system constantly updates. For
example, Figure 3 depicts Arthritis as the second
suggestion, because its synonym Joint Inflamma-
tion matches the prefix, and because of its high
prevalence in the corpus.

Entity and Category Search: The entity-
based search of our system excels over traditional
keyword-based search. It increases recall, since
the system automatically includes all synonyms of
an entity, as well as precision, since the disam-
biguation removes unwanted occurrences. For ex-
ample, as depicted in Figure 1a, if users search
for Aspirin, documents mentioning its synonym
Acetylsalicylic Acid are also retrieved. An im-
portant feature of our system is the possibility to
search for categories of entities. This allows users
to broaden their search request to all entities of the
same type, i.e. entities which share common at-
tributes or features. For example, to search for
all “aspirin like drugs” which share therapeutic
properties, one can search for the category Anti-
inflammatory Agents (see Figure 1b). The sys-
tem automatically determines all entities within
the category via DeepLife’s type system to retrieve
relevant documents. Figure 1b also highlights
DeepLife’s diverse set of sources. The search re-
sults cover news, publications, as well as discus-
sions. To tap into specific sources, users can easily
customize queries with search filters.

Cross-domain Combined Search: DeepLife’s
knowledge base empowers our system to provide
an intuitive method for searching facts by com-
bining category and entity search. This is espe-
cially useful for layman users. Consider a user
who is suffering from asthma and is interested
in finding all risk factors triggering the disease.
In this case, using the category Risk Factors for
Asthma generated from facts together with the en-
tity Asthma as search query, the system retrieves
all documents mentioning Asthma with its risk fac-
tors (see Figure 2). Displaying the individual risk
factors (e.g. HLA Gene, Viral Lower Respiratory
Infection, etc.) as an expansion of the category
provides immediate insights and facilitates further

23

Figure 4: Countries co-occurring with Zika

exploration.
Analytics: Our system offers interactive entity-

based analytics to spot trends and topic shifts.
Such analyses benefit from the improved recall
and precision aspects aforementioned. Statistics,
based on entity occurrences in documents over
time, are computed and visualized. For example
in Figure 4, entity occurrences of Zika and re-
lated countries in our corpus (Y-Axis) are visu-
alized over time (X-Axis). Users can zoom into
specific time frames and explore documents the
statistics are based on. Not only can entities be
tracked individually, the analytics can also be con-
strained on one entity of main interest, i.e. only
those documents in which this entity appears. In
the same example in Figure 4, to gather insights
about countries affected by the virus, the user set
Zika virus disease as the main entity to compute
analytics based on documents where Zika and a
particular country were mentioned.

References
Hannah Bast and Björn Buchhold. 2013. An index for effi-

cient semantic full-text search. In Proc. of CIKM. pages
369–378.

Andreas Doms and Michael Schroeder. 2005. Gopubmed:
exploring pubmed with the gene ontology. Nucleic Acids
Res 33:W783–6.

Son Don, Ai Kawazoe, and Nigel Collier. 2008. Global health
monitor - a web-based system for detecting and mapping
infectious diseases. In Proc. of IJCNLP. pages 951–956.

Patrick Ernst, Amy Siu, and Gerhard Weikum. 2015. Knowl-
ife: a versatile approach for constructing a large knowl-
edge graph for biomedical sciences. BMC Bioinformatics
16(1):1–13.

Clark Freifeld, Kenneth Mandl, Ben Reis, and John Brown-
stein. 2008. Healthmap: Global infectious disease mon-
itoring through automated classification and visualization
of internet media reports. JAMIA 15(2):150–157.

Yufan Guo, Diarmuid Ó Séaghdha, Ilona Silins, Lin Sun, Jo-
han Högberg, Ulla Stenius, and Anna Korhonen. 2014.
Crab 2.0: A text mining tool for supporting literature re-
view in chemical cancer risk assessment. In Proc. of COL-
ING. pages 76–80.

Johannes Hoffart, Dragan Milchevski, and Gerhard Weikum.
2014. Stics: Searching with strings, things, and cats. In
Proc. of SIGIR. pages 1247–1248.

Mikaela Keller, Michael Blench, Herman Tolentino, Clark C.
Freifeld, Kenneth D. Mandl, and Abla Mawudeku et al.
2009. Use of unstructured event-based reports for global
infectious disease surveillance. Emerging Infectious Dis-
ease Journal 15(5):689.

Jung-jae Kim, Piotr Pezik, and Dietrich Rebholz-
Schuhmann. 2008. Medevi: Retrieving textual evidence
of relations between biomedical concepts from medline.
Bioinformatics 24(11):1410–1412.

Yifeng Liu, Yongjie Liang, and David Wishart. 2015. Poly-
search2: a significantly improved text-mining system for
discovering associations between human diseases, genes,
drugs, metabolites, toxins and more. Nucleic Acids Re-
search 43(W1):W535–W542.

Yusuke Miyao, Tomoko Ohta, Katsuya Masuda, Yoshimasa
Tsuruoka, Kazuhiro Yoshida, Takashi Ninomiya, and
Jun’ichi Tsujii. 2006. Semantic retrieval for the accurate
identification of relational concepts in massive textbases.
In Proc. of ACL. pages 1017–1024.

Hans-Michael Müller, Eimear E Kenny, and Paul W Stern-
berg. 2004. Textpresso: An ontology-based information
retrieval and extraction system for biological literature.
PLoS Biol 2(11).

Patrick CI Pang, Karin Verspoor, Jon Pearce, and Shanton
Chang. 2015. Better health explorer: Designing for health
information seekers. In Proc. of OZCHI. pages 588–597.

Nikolas Papanikolaou, Georgios A. Pavlopoulos, Evange-
los Pafilis, Theodosios Theodosiou, Reinhard Schneider,
and Venkata P. et al. Satagopam. 2014. Biotextquest+: a
knowledge integration platform for literature mining and
concept discovery. Bioinformatics 30(22):3249–3256.

Agnès Rortais, Jenya Belyaeva, Monica Gemo, Erik van der
Goot, and Jens Linge. 2010. Medisys: An early-warning
system for the detection of (re-)emerging food- and feed-
borne hazards. Food Research Internat. 43(5):1553–1556.

Amy Siu, Dat Ba Nguyen, and Gerhard Weikum. 2013. Fast
entity recognition in biomedical text. In Proc. of Workshop
on Data Mining for Healthcare at KDD.

Ralf Steinberger, Flavio Fuart, Erik van der Goot, Clive Best,
Peter von Etter, and Roman Yangarber. 2008. Text Min-
ing from the Web for Medical Intelligence, IOS Press, vol-
ume 19.

Philippe Thomas, Johannes Starlinger, Alexander Vowinkel,
Sebastian Arzt, and Ulf Leser. 2012. Geneview: a com-
prehensive semantic search engine for pubmed. Nucleic
Acids Research 40(W1):W585–W591.

Yoshimasa Tsuruoka, Makoto Miwa, Kaisei Hamamoto,
Jun’ichi Tsujii, and Sophia Ananiadou. 2011. Discover-
ing and visualizing indirect associations between biomed-
ical concepts. Bioinformatics 27(13):i111–i119.

Marco Valenzuela, Vu Ha, and Oren Etzioni. 2015. Identi-
fying meaningful citations. In Proc. of the Workshop on
Scholarly Big Data at AAAI.

Sofie Van Landeghem, Kai Hakala, Samuel Rönnqvist, Tapio
Salakoski, Yves Van de Peer, and Filip Ginter. 2012.
Exploring biomolecular literature with evex: Connect-
ing genes through events, homology, and indirect associa-
tions. Advances in Bioinformatics 2012:12.

24

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 25–30,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Visualizing and Curating Knowledge Graphs
over Time and Space

Tong Ge1, Yafang Wang1∗, Gerard de Melo2, Haofeng Li1, Baoquan Chen1

1Shandong University, China; 2Tsinghua University, China

Abstract

Publicly available knowledge repositories,
such as Wikipedia and Freebase, benefit
significantly from volunteers, whose con-
tributions ensure that the knowledge keeps
expanding and is kept up-to-date and accu-
rate. User interactions are often limited to
hypertext, tabular, or graph visualization in-
terfaces. For spatio-temporal information,
however, other interaction paradigms may
be better-suited. We present an integrated
system that combines crowdsourcing, au-
tomatic or semi-automatic knowledge har-
vesting from text, and visual analytics. It
enables users to analyze large quantities
of structured data and unstructured textu-
al data from a spatio-temporal perspective
and gain deep insights that are not easily
observed in individual facts.

1 Introduction

There has been an unprecedented growth of pub-
licly available knowledge repositories such as the
Open Directory, Wikipedia, Freebase, etc. Many
additional knowledge bases and knowledge graphs
are built upon these, including DBpedia, YAGO,
and Google’s Knowledge Graph. Such repositories
benefit significantly from human volunteers, whose
contributions ensure that the knowledge keeps ex-
panding and is kept up-to-date and accurate.

Despite the massive growth of such structured
data, user interactions are often limited to sim-
ple browsing interfaces, showing encyclopedic tex-
t with hyperlinks, tabular listings, or graph visu-
alizations. Sometimes, however, users may seek
a spatio-temporal perspective of such knowledge.
Given that the spatio-temporal dimensions are fun-
damental with respect to both the physical world

∗The corresponding author:yafang.wang@sdu.edu.cn

and human cognition, they constitute more than
just a particular facet of human knowledge. Of
course, there has been ample previous work on
spatio-temporal visualization. However, most pre-
vious work either deals with social media (Ardon
et al., 2013) rather than knowledge repositories, or
focuses on geo-located entities such as buildings,
cities, and so on (Hoffart et al., 2011a).

From a data analytics perspective, however,
much other knowledge can also be analyzed spatio-
temporally. For example, given a person like
Napoleon or a disease such as the Bubonic Plague,
we may wish to explore relevant geographical dis-
tributions. This notion of spatio-temporal analytics
goes beyond simple geolocation and time metadata.

In fact, the relevant spatio-temporal cues may
need to be extracted from text. Unfortunately, accu-
rate spatio-temporal extraction is also a challenging
task (Wang et al., 2011b). Most existing informa-
tion extraction tools neglect spatio-temporal infor-
mation and tend to produce very noisy extractions.

It appears that the best strategy is to put the hu-
man in the loop by combining knowledge harvest-
ing with methods to refine the extractions, similar
to YALI (Wang et al., 2013), a browser plug-in that
calls AIDA (Hoffart et al., 2011b) for named entity
recognition and disambiguation (NERD) in a real-
time manner. That system transparently collects
user feedback to gather statistics on name-entity
pairs and implicit training data for improving N-
ERD accuracy.

Overall, we observe that there is a need for more
sophisticated spatio-temporal knowledge analytics
frameworks with advanced knowledge harvesting
and knowledge visualization support. In this paper,
we present an integrated system to achieve these
goals, enabling users to analyze large amounts of
structured and unstructured textual data and gain
deeper insights that are not easily observed in indi-
vidual facts.

25

Figure 1: System architecture

2 Architecture

Figure 1 depicts the overall architecture of our sys-
tem. Spatio-temporal events come from three d-
ifferent sources: crowdsourcing, information ex-
traction, and existing knowledge repositories. Our
system provides users with interfaces to enter textu-
al information, videos, and images of events. The
crowdsourced events are used as seed facts to ex-
tract additional spatio-temporal event information
from the Internet. We describe this in more de-
tail in Section 3. The extracted spatio-temporal
facts are stored in the knowledge base. Both the
crowdsourced facts and the extracted facts are pre-
sented visually in the visualization platform. Users
can browse as well as edit the event information.
Finally, the system comes pre-loaded with events
taken from the Web of Data, particularly the YA-
GO (Suchanek et al., 2007) knowledge base, which
contains events from different categories that serve
as seed data for the platform.

The system maintains the edit history for every
event, allowing users to revert any previous modifi-
cation. Moreover, users’ personal activity logs are
also captured and are available for browsing.

Relevant spatio-temporal events are simultane-
ously visualized with a map and on a timeline. A
heat-map is added as the top layer of the map to re-
flect the distribution and frequency of events. There
is also a streaming graph and line chart visualiza-
tion enabling the user to analyze events based on
their frequency. These may allow the user to dis-
cover salient correlations.

System Implementation. Our system is imple-

mented in Java, with Apache Tomcat1 as the Web
server. While parsing text documents, we rely on
OpenNLP2 for part-of-speech tagging, lemmatiz-
ing verbs, and stemming nouns. All data are stored
in a PostgreSQL3 database. The maps used in our
system are based on OpenStreetMap4.

3 Spatio-Temporal
Knowledge Harvesting

Spatio-Temporal Facts. Crowdsourcing is just
one way to populate the spatio-temporal knowl-
edge in our system. Additional facts are semi-
automatically mined from the Web using informa-
tion extraction techniques. We build on previous
work that has developed methods for extracting
temporal facts (Wang et al., 2011a), but extend this
line of work to also procure spatial facts.

Our aim is to extract spatio-temporal factual
knowledge from free text. A fact here consists
of a relation and two arguments, as well as optional
temporal and spatial attributes. For instance, the
spatio-temporal fact

playsForClub(Beckham; Real Madrid)
@<[2003,2008);Spain>

expresses that Beckham played for Real Madrid
from 2003 to 2007 in Spain. Temporal attributes
involve either a time interval or a time point, indi-
cating that the fact applies to a specific time period
or just a given point in time, respectively. Spatial
attributes are described in terms of a disambiguated
location name entity. For example, “Georgia” often
refers to the country in Europe, but may also refer
to the state with the same name in the US. Thus,
we use disambiguated entity identifiers.

Pattern Analysis. The extraction process s-
tarts with a set of seed facts for a given rela-
tion. For example, playsForClub(Beckham; Re-
al Madrid)@<[2003,2008);Spain> would be a
valid seed fact for the playsForClub relation. The
input text is processed to construct a pattern-fact
graph. Named entities are recognized and disam-
biguated using AIDA (Hoffart et al., 2011b). When
a pair of entities matches a seed fact, the surface
string between the two entities is lifted to a pattern.
This is constructed by replacing the entities with

1http://tomcat.apache.org/
2http://opennlp.apache.org/
3http://www.postgresql.org/
4https://www.openstreetmap.org/

26

placeholders marked with their types, and keep-
ing only canonical lemmatized forms of nouns and
verbs as well as the last preposition. We use n-
gram based feature vectors to describe the pattern-
s (Wang et al., 2011a).

For example, given a sentence such as “Ronal-
do signed for Milan from Real Madrid.”, Milan is
disambiguated as A.C. Milan. The corresponding
pattern for leaving Real Madrid is “sign for 〈club〉
from”. Each pattern is evaluated by investigating
how frequent the pattern occurs with seed facts of a
particular relation. The normalized value (between
0 and 1) is assigned as the initial value for each
pattern, for the fact extraction stage.

Fact Candidate Gathering. Entity pairs that
match patterns whose strength is above a minimum
threshold become fact candidates and are fed in-
to the fact extraction stage of label propagation.
Temporal and spatial expressions occurring within
a window of k words in the sentence are consid-
ered as the temporal or spatial attribute of the fact
candidate (Wang et al., 2011a). These fact candi-
dates may have both temporal and spatial attributes
simultaneously.

Fact Extraction. Building on (Wang et al.,
2011a), we utilize Label Propagation (Talukdar
and Crammer, 2009) to determine the relation and
observation type expressed by each pattern. We
create a graph G = (VF ∪ VP, E) with one vertex
v ∈ VF for each fact candidate observed in the text
and one vertex v ∈ VP for each pattern. Edges
between VF and VP are introduced whenever a fact
candidate appeared with a pattern. Their weight is
derived from the co-occurrence frequency. Edges
among VP nodes have weights derived from the
n-gram overlap of the patterns.

Let L be the set of labels, consisting of the rela-
tion names plus a special dummy label to capture
noise. Further, let Y ∈ R|V|×|L|+ denote the graph’s
initial label assignment, and Ŷ ∈ R|V|×|L|+ stand
for the estimated labels of all vertices, Sl encode
the seeds’ weights on its diagonal, and R∗l be a ma-
trix of zeroes except for a column for the dummy
label. Then, the objective function is:

L(Ŷ) =
∑

`

[
(Y∗` − Ŷ∗`)TS`(Y∗` − Ŷ∗`)

+µ1ŶT
∗`LŶ∗` + µ2‖Ŷ∗` −R∗`‖2

]
(1)

Figure 2 shows an example of a pattern-fact

graph. Existing events in the database serve
as seeds in the graph. For instance, playsFor-
Club(David Beckham, LA Galaxy)@US is a seed
fact in the example, which will propagate the la-
bel playsForClub to other nodes in the graph.
After optimizing the objective, the fact candidates
which bear a relation’s label with weight above a
threshold are accepted as new facts (Wang et al.,
2011a). These facts, which may include temporal
or spatial or both kinds of attributes, are stored in
the database with provenance information, and can
subsequently be used in several kinds of visualiza-
tions.

4 Data Visualization
and Analytics

Our system enables several different forms of visu-
al analytics, as illustrated in Figure 3, which com-
bines several different screenshots of the system.

Spatio-Temporal Range Queries. Users may is-
sue range queries for both temporal and spatial
knowledge. In Figure 3, Screenshots 1, 3, and
4 show results of temporal range queries, while
Screenshot 5 shows the result of a spatial range
query. After choosing a particular span on the time-
line at the bottom, the events relevant for the select-
ed time interval are displayed both on a temporal
axis and on the map. A heat-map visualizes the
frequency of events with respect to their geograph-
ical distribution. Users may also scroll the timeline
to look at different events. The events shown on
the map dynamically change when the scrollbar is
moved. In Screenshot 1, we see that items on the
timeline are shown with different symbols to indi-
cate different categories of events. Screenshots 3
and 4 show results from different time intervals. If
users choose a spatial range by drawing on the map,
any events relevant to this geographical area during
the selected time interval are retrieved. Screenshot
5 shows how the system can visualize the retrieval
results using a pie chart. The area highlighted in
blue is the bounding box of the polygon, as deter-
mined within Algorithm 1. The different colors in
the pie chart indicate different event categories and
their relative frequency.

Event Browsing and Checking. Users can either
consult the events listed on the timeline by click-
ing on the icons, or browse the streaming graph
and line chart, which show the frequency of events.
When selecting an event on the timeline, a pop-up

27

Figure 2: Spatio-temporal pattern-fact graph

Algorithm 1 Spatial range query algorithm
Input: spatial polygon on the map P, event database E
Output: events in the polygon.

1: minx ← minimum latitude of all points of P . Get bounding box of polygon P
2: maxx ← maximum latitude of all points of P
3: miny ← minimum longitude of all points of P
4: maxy ← maximum longitude of all points of P
5: EP = {e ∈ E | minx ≤ e.x ≤ maxx ∧miny ≤ e.y ≤ maxy} . Query event database
6: ED ← edges of polygon P . Get edges of polygon
7: for each e ∈ EP do
8: line← (x, y;−∞, y)
9: if e not located on the edges ∧ line intersects ED with even numbers then

10: EP ← EP − e
11: return EP

window appears on top of the map near the relevant
location. Normally, this window simply provides
the entity label, as in Screenshot 4, while detailed
information about the event is displayed in the side-
bar on the left, as in Screenshot 6. However, when
the user moves the cursor over the label, it expands
and additional information is displayed. For an
example of this, see Screenshot 3, which shows in-
formation for the “Battle of Noreia”. There are also
links for related videos and images. If there is no
interaction with a pop-up window for an extended
period of time, it is made transparent. When users
move the cursor above an event on the timeline, an
icon on the map pops up to provide the location
and name of that event. At the same time, an icon
is displayed in the histogram, which is located be-

neath the timeline. With these coupled effects, the
user simultaneously obtains information about both
the accurate location on the map and the accurate
time point within the timeline (see Screenshot 4).

Users can also scroll the map to navigate to
places of interest, and observe how frequently rele-
vant events happen in that area, as visualized with
the heat-map. When the user double clicks on a
location on the map, all the events pertaining to
that location are shown on the left of the window.
Screenshot 6 shows three events that occurred in
Beijing. Further details for each event are displayed
if the user clicks on them.

Our system also supports querying related events
for a specific person. Screenshot 8 provides the
results when querying for Napoleon, where impor-

28

5

Figure 3: User interface screenshots

tant events related to Napolean are displayed on
the map.

Visual Analytics. Users may use the line chart
on the timeline and the heat-map to jointly inspect
statistics pertaining to the retrieved events. For in-
stance, Screenshot 2 shows the results as displayed
in the line chart on the timeline. Different colors
here refer to different event categories. As the user
moves the time window at the bottom of the time-
line, events on the timeline and maps are updated.
The histogram at the bottom of the timeline shows
the overall event statistics for the current state of
the knowledge base. Each column refers to the
number of events for a given five year interval. The
heat-map changes profoundly when transitioning
from Screenshot 3 to Screenshot 4, especially for
Europe. The total number of events increases as
well. The line chart visualization of events on the
timeline5 supports zooming in and out by adjust-
ing the time interval. Hence, it is not necessary
to initiate a new query if one wishes to drill down
on particular subsets of events among the query
results.

Adding/Editing Event Information. After log-
5We use the line chart developed by AmCharts www.

amcharts.com/

ging into the system, users can enter or update
event information. Our system provides an inter-
face to add or edit textual information, images, and
videos for events. This can be used to extend cur-
rent text-based knowledge bases into multimodal
ones (de Melo and Tandon, 2016).

The system further also stores the patterns from
the extraction component. Hence, users can track
and investigate the provenance of extracted facts in
more detail. They can not only edit or remove noisy
facts but also engage in a sort of debugging process
to correct or remove noisy patterns. Corrected or
deleted patterns and facts provide valuable feed-
back to the system in future extraction rounds.

After logging in, all user activities, including
queries, additions, edits, etc. are recorded in or-
der to facilitate navigation as well as providing for
potential user analytics. For example, users may
arrive at an interesting result using an entire series
of operations. Then they may continue to browse
the data aiming at further analyses. At some point
in time, they may wish to go back to consult pre-
viously obtained results. It may be challenging to
remember the exact sequence of operations that had
led to a particular set of results, especially when
there are many different querying conditions. The
activity log addresses this by making it easy to go

29

back to any earlier step. Screenshot 7 shows the use
of a graph visualization to depict all the operations
of a user after login. This same data can also be
used for studying user behavior.

Furthermore, similarly to Wikipedia, the tool
captures the complete edit history for a particular
event. The interface for this uses a tabular form,
not shown here due to space constraints. Wikipedi-
a’s edit history has seen a rich number of uses in
previous research. For instance, one can study the
evolution of entity types or the time of appearance
of entities and their geographical distribution.

Providing Ground-Truth Data for Relation Ex-
traction Evaluation. Our system continuously
gathers ground-truth information on factual events
(especially spatio-temporal facts) based on user
contributions. The knowledge in our system con-
sists of relations of interest: event happened in
place, event happened on date, person is related
to person, person is related to event, etc. This can
serve as a growing basis for systematically evalu-
ating and comparing different relation extraction
methods and systems, going well beyond currently
used benchmarks.

Historical Maps. Geographical boundaries are
fluid. For instance, countries have changed and
borders have evolved quite substantially during the
course of history. Our system allows uploads of
historical map data to reflect previous epochs. Sub-
sequently, users can choose to have our system
display available historical maps rather than the s-
tandard map layer, based on the temporal selection.

5 Conclusion

We have presented a novel integrated system that
combines crowdsourcing, semi-automatic knowl-
edge harvesting from text, and visual analytics for
spatio-temporal data. Unlike previous work, the
system goes beyond just showing geo-located enti-
ties on the map by enabling spatio-temporal analyt-
ics for a wide range of entities and enabling users to
drill down on specific kinds of results. The system
combines user contributions with spatio-temporal
knowledge harvesting in order to enable large-scale
data analytics across large amounts of data. Given
the broad appeal of Wikipedia and similar websites,
we believe that this sort of platform can serve the
needs of a broad range of users, from casually inter-
ested people wishing to issue simple queries over
the collected knowledge all the way to experts in

digital humanities seeking novel insights via the
system’s advanced knowledge harvesting support.

Acknowledgments

This project was sponsored by National 973 Pro-
gram (No. 2015CB352500), National Natural Sci-
ence Foundation of China (No. 61503217), Shan-
dong Provincial Natural Science Foundation of Chi-
na (No. ZR2014FP002), and The Fundamental Re-
search Funds of Shandong University (No. 2014T-
B005, 2014JC001). Gerard de Melo’s research is
supported by China 973 Program Grants 2011C-
BA00300, 2011CBA00301, and NSFC Grants
61033001, 61361136003, 61550110504.

References
Sebastien Ardon, Amitabha Bagchi, Anirban Mahanti,

Amit Ruhela, Aaditeshwar Seth, Rudra Mohan Tri-
pathy, and Sipat Triukose. 2013. Spatio-temporal
and events based analysis of topic popularity in Twit-
ter. In CIKM, pages 219–228.

Gerard de Melo and Niket Tandon. 2016. Seeing is be-
lieving: The quest for multimodal knowledge. ACM
SIGWEB Newsletter, 2016(Spring).

Johannes Hoffart, Fabian M. Suchanek, Klaus
Berberich, Edwin Lewis-Kelham, Gerard de Melo,
and Gerhard Weikum. 2011a. YAGO2: Exploring
and querying world knowledge in time, space, con-
text, and many languages. In WWW.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc S-
paniol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011b. Robust disambiguation of named
entities in text. In EMNLP.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A Core of Semantic Knowl-
edge. In WWW.

Partha Pratim Talukdar and Koby Crammer. 2009.
New regularized algorithms for transductive learn-
ing. In ECML PKDD, pages 442–457.

Yafang Wang, Bin Yang, Lizhen Qu, Marc Spaniol, and
Gerhard Weikum. 2011a. Harvesting facts from tex-
tual web sources by constrained label propagation.
In CIKM, pages 837–846.

Yafang Wang, Bin Yang, Spyros Zoupanos, Marc Span-
iol, and Gerhard Weikum. 2011b. Scalable spatio-
temporal knowledge harvesting. In WWW, pages
143–144.

Yafang Wang, Lili Jiang, Johannes Hoffart, and Ger-
hard Weikum. 2013. Yali: a crowdsourcing plug-in
for NERD. In SIGIR, pages 1111–1112.

30

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 31–36,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

A Web-framework for ODIN Annotation

Ryan Georgi Michael Wayne Goodman Fei Xia

University of Washington
Seattle, WA, USA

{rgeorgi,goodmami,fxia}@uw.edu

Abstract

The current release of the ODIN (On-
line Database of Interlinear Text) database
contains over 150,000 linguistic examples,
from nearly 1,500 languages, extracted
from PDFs found on the web, representing
a significant source of data for language
research, particularly for low-resource lan-
guages. Errors introduced during PDF-to-
text conversion or poorly formatted exam-
ples can make the task of automatically an-
alyzing the data more difficult, so we aim
to clean and normalize the examples in or-
der to maximize accuracy during analysis.
In this paper we describe a system that al-
lows users to automatically and manually
correct errors in the source data in order to
get the best possible analysis of the data.
We also describe a RESTful service for
managing collections of linguistic exam-
ples on the web. All software is distributed
under an open-source license.

1 Introduction

The current release of the ODIN (Online Database
of INterlinear Text) database contains over
150,000 linguistic examples in the form of inter-
linear glossed text (IGT), an example of which
is shown in Fig. 1. These IGT instances are
extracted from PDFs found on the web, repre-
senting a significant source of data for computa-
tional typology, as well as providing information
for resource-poor languages (RPLs). These in-
stances are additionally useful for inducing anno-
tation on RPLs, as demonstrated by Georgi et al.
(2014, 2015), in which the relationships between
words and glosses are identified and encoded for
the purpose of enriching the data with annotations
not present in the original examples. However,

keené Paksí dónq-ine-m
DEM.PLUR dog five-DEF-ACC
‘these five dogs’

Figure 1: An IGT instance of Aari [aiw], an
Omotic language of Ethiopia. Extracted from
Dryer (2007)

the PDF-to-text conversion process can introduce
noise into the data, and some examples are not for-
matted well in the original document. These and
other issues can decrease the efficacy of the auto-
matic structural analysis.

To address these issues, we have created a
web interface that combines automatic cleaning
and normalization procedures with a user-friendly
browser-based GUI to enable human annotators to
review and improve the data quality of the avail-
able IGT instances. Additionally, as editing is
meant as one of multiple capabilities of the final
system, this browser interface is driven by a REST-
ful (Fielding, 2000) backend system that will sup-
port future interface extensions.

2 Related Work

The system we describe is not the first web-based
editor of IGT, but none of the existing systems
(for IGT or annotation in general) that we’re aware
of fit our use case. TYPECRAFT1 (Beermann
and Mihaylov, 2014) is a wiki-based collabora-
tive IGT editor. As it directly targets IGT, the
editor is designed to support tabular annotations
and is a useful tool for users creating new IGT.
However, it limits the kinds of annotations (mor-
phemes, POS tags, glosses, etc.) and it is not ob-
vious how the ODIN model (see Section 3) would
fit, nor how our automated transformation scripts
(see Section 4) would be integrated. The brat

1http://typecraft.org

31

rapid annotation tool2 (BRAT; Stenetorp et al.,
2012), with its RESTful web API, is somewhat
similar in implementation to our system, but does
not seem to support tabular visualization of hierar-
chical annotations. The current annotation task for
our users is primarily correcting errors in text ex-
tracted from PDFs, which is similar in some ways
to how RECAPTCHA (Von Ahn et al., 2008) lets
users provide clean transcriptions of text in im-
ages. But, unlike RECAPTCHA, our task re-
quires some knowledge of IGT structure.

3 ODIN Data

The data that we are seeking to annotate in this pa-
per comes from the ODIN 2.1 data release,3 which
provides the data in two formats: the plain text for-
mat, and in Xigt, an extensible format for encod-
ing IGT (Goodman et al., 2014).

3.1 Building ODIN

The ODIN database was constructed in several
steps. First, documents were retrieved using a
meta-crawling approach, where queries with IGT-
like search terms such as {3SG, ACC} were di-
rected to online search engines. The resulting doc-
uments were converted to text format using an off-
the-shelf PDF-to-text conversion tool. This text
output was subsequently used to extract features
to detect the IGT instances within the text, as well
as build a language identification system. The full
details of the construction of the ODIN database
can be found in Lewis and Xia (2010).

3.2 Extracted Textual IGTs

The first format for representing IGT is intended to
be human-readable while maintaining the appro-
priate metadata for processing. An example of this
format can be seen in Fig. 2. This format includes
the textual content of the IGT, as well as whether a
line belongs to the language line (L), gloss line (G)
or translation line (T) of the instance, or whether it
is metadata (M). In addition, secondary tags exist
for more fine-grained categorization, such as for
corrupted instances (CR), language name metadata
(LN), etc. Furthermore, a doc_id is provided
for reference to the original source document, as
well as line numbers referring to the lines from the
pdftotext4 output of the PDF document.

2http://brat.nlplab.org
3http://depts.washington.edu/uwcl/odin
4http://www.foolabs.com/xpdf

3.3 Xigt-encoded IGTs

The Xigt format (Goodman et al., 2014) encodes
all of this information in a model that is better
suited for computational work. The Xigt pack-
age provides codes for either XML or JSON, and
enables standoff annotation that is capable of pre-
serving the original text format while adding mul-
tiple annotation layers (Xia et al., 2016). This is
the format used for storing additional annotation,
including the syntactic enrichment found in Xia
et al. (2016), as well as metadata such as annota-
tor comments. This standoff annotation is imple-
mented as XML elements we call tiers that refer
back to the elements they annotate.

4 Automatic Processing

The data in ODIN was assembled using an ap-
proach that combined metacrawling for IGT-
containing documents with a classifier trained to
detect IGT-formatted instances (Lewis and Xia,
2010). The resulting data can look like that in
Fig. 2; with a variety of corruption and non-
linguistically relevant data. To speed up annota-
tion, we run several automated cleaning and nor-
malization steps before handing the instance off to
human annotators.

4.1 Cleaning

In the first step, we attempt to clean any artifacts
introduced by the PDF-to-text conversion process.
First, invalid characters for XML data, such as
the form feed control character U+000C, are auto-
matically replaced with the Unicode replacement
character U+FFFD. Line and character corruption
are addressed next. The instance in Fig. 2 exhibits
both line corruption and character corruption. For
line corruption, we merge two lines of the same
type (e.g., L) if they are adjacent, one or both has
the corruption tag CR, and any characters in the
lines line up with whitespace in the other. In this
example, the ‘ak’ on line 875 would be combined
with the rest of the text on 876 as the two lines
are merged into one. The output of the clean-
ing process is output to a new cleaned Xigt tier.
The cleaning process also removes blank lines (if
any) and superfluous initial columns of whitespace
(consistently across lines to avoid altering column
alignments). Currently we do not attempt to au-
tomatically fix character corruption (e.g., when a
character’s diacritics are erroneously extracted as a
separate character), but instead allow users to cor-

32

doc_id=1482 874 878 M+AC+LN L+CR L+SY+CR G T+DB
language: Haitian (hat)
line=874 tag=M+AC+LN: (25) Haitian CF (Lefebvre 1998:165)
line=875 tag=L+CR : ak
line=876 tag=L+SY+CR: Jani pale lii/j
line=877 tag=G : (John speak with he)
line=878 tag=T+DB : (a) ’John speaks with him’, (b) ’John speaks with himself’

Figure 2: A text-format ODIN IGT instance exhibiting line corruption, character corruption, and lan-
guage names and parentheticals, extracted from Heine (2001).

rect the corrupted characters (including Unicode),
and we make the original PDF available to the user
for consultation, if it is necessary. We are also in-
vestigating an alternative PDF extractor that more
accurately extracts Unicode characters, diacritics,
combined ligatures, etc.

4.2 Normalization
The second automated step we perform relates to
information that is either non-linguistic or meta-
linguistic in nature. In Fig. 2, such information in-
cludes the instance numbering (25), the language
name (Haitian), author citation (Lefebvre), and
quotation marks (on line 878). In the instance in
Fig. 2, these elements have been placed on a line
above the language line, which the IGT detection
algorithm has tagged as non-IGT data (tag=M).
Other times, this data occurs on the language line
and thus instance numbering on the language line
are removed with regular expressions. Other in-
formation, such as the language name or linguistic
construction, are detected and placed on a sepa-
rate M line. However, not all data can be reliably
automatically extracted, such as the co-indexation
variables i and j in line 876 which could be inter-
preted as being part of the word.

4.3 Enrichment
In addition to cleaning and normalizing, through
the use of the INterlinear Text ENrichment Toolkit
(INTENT) (Georgi, 2016; Xia et al., 2016), we
automatically generate word alignments and part-
of-speech tags for the different lines of IGT. Cur-
rently, this is visualized in the editor, as seen in
Fig. 5, and will be able to be corrected by the an-
notators for subsequent tasks.

5 A RESTful IGT Server

While our immediate needs for the editor are fairly
simple, we anticipate expansion for future tasks
that may be required by the RiPLes (information
engineering and synthesis for Resource-Poor Lan-
guages) project (Xia et al., 2016). In order to fa-

cilitate such expansion, we created the backend
for the editor as a general-purpose RESTful IGT
server with the HTTP methods listed in Fig. 4.

The data is stored in a custom JSON-based
filesystem database so that individual IGTs can
be updated without having to reserialize an entire
corpus, but the database abstraction layer makes
it straightforward to later add support for other
databases. Through the Accept request header, a
user may ask for either the XML or JSON serial-
ization of the data. More information on this inter-
face can be found at the project page at:
https://github.com/xigt/sleipnir

6 Online Editing Environment

The main interface that end-users will experience
at this point is the online editing environment, a
screenshot of which is provided in Fig. 3. This
browser-based interface allows us to invite an-
notators around the world to participate without
needing to install Python or any of the supporting
packages required to work with the Xigt-formatted
ODIN data.

The interface is contained in three main panes;
in Fig. 3, labels (1) and (2) mark the corpus and
instance browsers, respectively, while the rest of
the window is dedicated to the instance editor.

Loading an Instance To start working on an in-
stance, an annotator first selects the corpus from
the corpus browser (1) and then the particular in-
stance from (2). Instances that have been previ-
ously annotated are highlighted with the color of
their rating, while the currently displayed instance
is highlighted in cyan.

Validating an Instance as IGT Once an in-
stance is loaded in the editor, the annotator is pre-
sented with an interface showing only the raw text
of the instance (not shown), and the rating buttons
(4). Since instances in ODIN have been automat-
ically identified, some instances may not, in fact,
be IGT, or may be too corrupted to derive what the
original content might have been. At this point,

33

Figure 3: Screenshot of the browser-based editor being used to edit a sentence. (1) and (2) show the
corpus and instance browsers, respectively, while (3) labels the instance editing area, and (4) shows the
rating system.

GET /corpora
retrieve list of available corpora

GET /corpora/<CID>
retrieve a corpus by its identifier <CID>

GET /corpora/<CID>/summary
retrieve a summary of the contents of corpus <CID>

GET /corpora/<CID>/igts
retrieve the list of IGTs for corpus <CID> (parameters
exist for filtering this list)

GET /corpora/<CID>/igts/<IID>
retrieve a single IGT by its identifier <IID> from cor-
pus <CID>

POST /corpora
add a new corpus

POST /corpora/<CID>/igts
add a new IGT to corpus <CID>

PUT /corpora/<CID>/igts/<IID>
assign or replace IGT <IID> in corpus <CID>

DELETE /corpora/<CID>
delete corpus <CID>

DELETE /corpora/<CID>/igts/<IID>
delete IGT <IID> in corpus <CID>

Figure 4: HTTP methods for the IGT server,
where <CID> refers to the corpus identifier and
<IID> the single IGT identifier.

the annotator may click the red “bad quality” rat-
ing button to flag that instance. If the instance is
IGT and of acceptable quality they may continue
onto the next task.

Cleaning After the annotator has verified that
an instance is valid, they may click the Gener-
ate Cleaned Tier button to trigger the automatic
cleaning procedure described in Section 4.1. The
annotator is then given an opportunity to manu-
ally correct any errors made by the automatic cor-
ruption removal. The cleaning stage only corrects
errors introduced by the PDF-to-text conversion
process, so for clean instances there is little to be
done here. If the annotator has made a mistake or
wishes to start over, they may restore the content
of an item to the state after automatically clean-
ing, or they may regenerate the clean tier entirely
by re-invoking the cleaning procedure on the raw
data. The raw tier cannot be edited, so the anno-
tator can always get back to the original represen-
tation. Once satisfied, the annotator may continue
to the normalization step.

Normalization By clicking the Generate Nor-
malized Tier button, the annotator triggers the
normalization procedure described in Section 4.2.
In addition to placing non-IGT information on M
lines, annotators are also asked to correct spuri-
ous or missing whitespace, ensure that there are
an equal number of language-line and gloss-line
tokens, and, when possible, an equal number of
morpheme or clitic boundaries denoted by ‘-’ or
‘=’, following the Leipzig Glossing Rules (Com-
rie et al., 2015). Just as with the cleaning step,

34

Figure 5: Normalized tier analysis, with the sec-
tion labeled (1) showing the annotation indicator
labels and (2) showing the enrichment and align-
ment information. The colors highlighted in (2)
are to indicate which elements of the IGT in-
stance are referenced by another element. Here,
the alignment between the English go and the
Japanese ikasetas visualized. The titles on the left
refer to the tier type represented in the Xigt repre-
sentation.6

the annotator may restore the original normalized
content of an item or regenerate the normalized
tier entirely. At this point, if the annotator be-
lieves they have satisfactorily met the normaliza-
tion guidelines, they are done editing and continue
to the analysis step to ensure the system is able to
accurately infer the IGT structure.

Analysis When the annotator clicks the Analyze
Normalized Tier button, the editor will present
an analysis of the IGT such as the one shown in
Fig. 5. This analysis includes both a series of in-
dicators (1) to alert the annotator to the aforemen-
tioned guidelines, and a visualization of the au-
tomatic alignment and enrichment (2) performed
by INTENT (see Section 4.3). The enrichment in-
cludes both the automatic word, morpheme, and
gloss segmentation (words, morphemes, glosses,
respectively), as well as word alignment between
gloss and translation and part-of-speech tags for
each line (bilingual-alignments, pos). There are
currently four indicators:

COL language and gloss tokens are aligned with
whitespace into columns

TAG language, gloss, and translation lines all ex-

ist and have no extraneous metadata on them

GLM language and gloss lines have the same
number of morphological units

GLW language and gloss lines have the same
number of whitespace-separated tokens

When an indicator shows red, the annotator
should go back to the normalization (or possibly,
the cleaning) step and make more corrections, then
reanalyze. Occasionally an indicator shows red
when there is no error; e.g., a word in the language
line might have a hyphen that is not a morpho-
logical boundary and is thus glossed with a non-
hyphenated token. The visualization of the auto-
matically aligned and enriched IGT illustrates to
the annotator how well the system was able to in-
fer the structure of the IGT. Some problems that
could not be detected with the indicators may be-
come obvious by the presence of incorrect align-
ments, and the annotator can use this information
to adjust the textual representation until proper
alignments are obtained. These two facets of the
analysis—indicators and visualization—help the
annotator see how usable the instance will be for
further processing.

Rating and Saving the Instance Finally, if the
annotator has proceeded to the normalization or
analysis steps, they may choose to rate the instance
as bad (red), unclean (yellow) or clean (green), de-
pending on the level of corruption of the instance.
A field is provided to add further comments that
will be saved into the IGT file.

User Management Currently, users are identi-
fied by a unique 8-character userid string, that also
serves as the login. Annotator accounts are created
and a backend corpus management script is used to
initialize copies of corpus subsections that are as-
signed to the annotators. Annotators’ ratings and
comments are saved in these files along with their
userid, so that inter-annotator agreement can be
quickly and efficiently calculated across selected
overlapping corpus segments.

Availability A fully functioning demonstration
of the interface containing Chinese, German, and
Japanese instances may be accessed at:
http://editor.xigt.org/user/demo
The source code is released under the MIT license

6See Goodman et al. (2014) for more.

35

and is available at:
https://github.com/xigt/yggdrasil

7 Conclusion and Future Improvements

The system we have presented here greatly
streamlines the process of refining and display-
ing IGT data. Such clean, electronically avail-
able IGT data can be of great use to linguists
searching for examples of particular phenomena,
typologists looking to compare linguistic informa-
tion over the thousands of languages for which
IGT data is available, and computational linguists
looking to build NLP tools for resource-poor lan-
guages.

In the future, we hope to further expand the
editing capabilities of the system to include giv-
ing annotators the ability to edit word alignment
and POS tag data. Such annotation would provide
a high-quality set of data for typological research,
as well as evaluation data for the automatic enrich-
ment methods used.

Finally, while the current system is used only
for display and editing, we hope to include the
ability to search over IGT corpora in a subsequent
version of the tool, replacing the current ODIN
search capability7.

Acknowledgments

This work is supported by the National Science
Foundation under Grant No. BCS-0748919. Any
opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the
authors and do not necessarily reflect the views of
the NSF.

References

Dorothee Beermann and Pavel Mihaylov. 2014.
TypeCraft collaborative databasing and re-
source sharing for linguists. Language re-
sources and evaluation 48(2):203–225.

Bernard Comrie, Martin Haspelmath, and
Balthasar Bickel. 2015. Leipzig glossing rules.
https://www.eva.mpg.de/lingua/
pdf/Glossing-Rules.pdf.

Matthew S Dryer. 2007. Noun phrase structure.
In Timothy Shopen, editor, Language Typology
and Syntactic Description, Language typology

7http://odin.linguistlist.org/

and syntactic description, Cambridge, United
Kingdom, pages 151–205.

Roy Fielding. 2000. Architectural Styles and
the Design of Network-based Software Archi-
tecture. Ph.D. thesis, University of California,
Irvine.

Ryan Georgi. 2016. the INterlinear Text ENrich-
ment Toolkit. http://intent-project.
info/.

Ryan Georgi, William D Lewis, and Fei Xia. 2014.
Capturing divergence in dependency trees to
improve syntactic projection. Language Re-
sources and Evaluation 48(4):709–739.

Ryan Georgi, Fei Xia, and William D Lewis. 2015.
Enriching interlinear text using automatically
constructed annotators. LaTeCH 2015 page 58.

Michael Wayne Goodman, Joshua Crowgey, Fei
Xia, and Emily M Bender. 2014. Xigt: extensi-
ble interlinear glossed text for natural language
processing. Language Resources and Evalua-
tion 49(2):455–485.

Bernd Heine. 2001. Accounting for creole reflex-
ive forms. Pidgins and Creoles Archive (8).

William D Lewis and Fei Xia. 2010. Developing
ODIN: A Multilingual Repository of Annotated
Language Data for Hundreds of the World’s
Languages. Literary and Linguistic Computing
25(3):303–319.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi
Tsujii. 2012. BRAT: a web-based tool for NLP-
assisted text annotation. In Proceedings of the
Demonstrations at the 13th Conference of the
European Chapter of the Association for Com-
putational Linguistics. Association for Compu-
tational Linguistics, pages 102–107.

Luis Von Ahn, Benjamin Maurer, Colin
McMillen, David Abraham, and Manuel
Blum. 2008. recaptcha: Human-based char-
acter recognition via web security measures.
Science 321(5895):1465–1468.

Fei Xia, William D Lewis, Michael Wayne Good-
man, Glenn Slayden, Ryan Georgi, Joshua
Crowgey, and Emily M Bender. 2016. Enrich-
ing a massively multilingual database of inter-
linear glossed text. Language Resources and
Evaluation pages 1–29.

36

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 37–42,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Real-Time Discovery and Geospatial Visualization of Mobility and
Industry Events from Large-Scale, Heterogeneous Data Streams

Leonhard Hennig∗, Philippe Thomas∗, Renlong Ai∗, Johannes Kirschnick∗, He Wang∗,
Jakob Pannier†, Nora Zimmermann†, Sven Schmeier∗, Feiyu Xu∗, Jan Ostwald†,

Hans Uszkoreit∗
∗DFKI, Berlin, firstname.lastname@dfki.de

† DB Systel, Berlin, firstname.lastname@deutschebahn.com

Abstract

Monitoring mobility- and industry-
relevant events is important in areas such
as personal travel planning and supply
chain management, but extracting events
pertaining to specific companies, transit
routes and locations from heterogeneous,
high-volume text streams remains a
significant challenge. We present Spree,
a scalable system for real-time, automatic
event extraction from social media, news
and domain-specific RSS feeds. Our
system is tailored to a range of mobility-
and industry-related events, and processes
German texts within a distributed lin-
guistic analysis pipeline implemented
in Apache Flink. The pipeline detects
and disambiguates highly ambiguous
domain-relevant entities, such as street
names, and extracts various events with
their geo-locations. Event streams are
visualized on a dynamic, interactive map
for monitoring and analysis.

1 Introduction

Monitoring relevant news and events is of cen-
tral importance in many economic and personal
decision processes, such as supplier/supply chain
management, market research, and personal travel
planning. Social media, news sites, but also more
specialized information systems such as on-line
traffic and public transport information sources,
provide valuable streams of text messages that can
be used to improve decision making processes.
For example, a sourcing department of a com-
pany may wish to monitor world-wide news for
disruptive or risk-related events pertaining to their
suppliers (e.g. natural disasters, strikes, liquid-
ity risks), while a traveler wants to be informed

about traffic events related to her itinerary (e.g.
delays, cancellations). We thus want to extract
and recognize events from message streams that
mention very specific entities, such as compa-
nies, locations, or routes. For example, from the
sentence “On Friday, Amazon employees once
more went on strike in the company’s shipping
center in Leipzig.”, we would like to extract a
strike event with arguments time=Friday, organi-
zation=Amazon, and location=Leipzig.

Detecting such events in textual message
streams raises a number of challenges. Social me-
dia streams, such as Twitter, are of very high vol-
ume and often contain duplicated, imprecise and
potentially non-trustworthy information. They are
written in a very informal, not always grammat-
ically well-formed style (Osborne et al., 2014),
which cannot easily be processed with standard
linguistic tools. News sites provide well-formed
texts, but their content is very heterogeneous and
often hard to separate from non-relevant web page
elements. Both types of sources relate informa-
tion about an unbounded number of topics, which
means that relevant messages need to be distin-
guished from irrelevant data. Domain-specific in-
formation sources, on the other hand, are topic-
focused, but employ a wide variety of formats,
from telegraph style texts to table entries. Process-
ing such sources hence often requires customized
analysis pipelines as well as domain adaptation
of existing linguistic tools. We also typically re-
quire that documents are processed in (near) real-
time in order to enable timely responses to im-
portant events. Finally, utilizing domain-specific,
large entity datasets raises additional challenges
for named entity recognition and linking, includ-
ing significantly more cross-type ambiguities (e.g.
synonymous street and transport stop names) and
a higher rate of ambiguous, long-tail entities (e.g.,
there is a “main street” or “bus route #1” in many

37

towns).
We introduce Spree, a scalable platform

for real-time, fine-grained event extraction and
geospatial visualization (Section 2). It is de-
signed to process German texts from social media,
news, web sites and traffic information sources in
a distributed, scalable, and fault-tolerant manner
(Section 3). These features are realized by im-
plementing the system’s main components within
the Apache Flink framework (Alexandrov et al.,
2014), a big data analytics platform which pro-
vides a high through-put, streaming computing en-
vironment. Events are automatically detected and
geo-located within a linguistic analysis pipeline
(Section 4), and visualized for the end user in a
web-based application (Section 5). The system in
its current version is tailored to the mobility and
supply chain domains, and allows users to moni-
tor and analyze messages for a range of events.

2 System Overview and Architecture

The system was designed based on the following
requirements:

• Combine mobility and industry data from
structured knowledge resources with infor-
mation from highly dynamic, unstructured or
semi-structured document streams

• Identify and extract mobility and industry-
related entities and events from dynamic data
streams

• Enable large-scale, fault-tolerant processing
of data streams in (near) real-time

• Visualize identified events on a dynamic, in-
teractive map

Figure 1 gives an overview of the system ar-
chitecture. The system separates data ingestion
(crawling) from the actual processing, which fa-
cilitates the integration of new data sources. Data
ingestion and processing are loosely coupled via
a message queue (MQ). The streaming process-
ing of documents encompasses three major tasks:
Preprocessing of documents (including HTML-
to-text conversion, boilerplating, and linguistic
preprocessing), entity discovery and linking, and
event extraction. Components are coupled with
a shared document schema which stores annota-
tion results. Annotated documents are persisted to
a distributed index. Additional structured knowl-
edge is stored in relational databases, and served

via REST interfaces. The user interface is imple-
mented as a light-weight web application.

3 Data Sources

This section describes the data streams and knowl-
edge resources that are implemented in the Spree
system. Table 1 shows summary statistics of the
data streams, and Table 2 shows summary statis-
tics of the knowledge resources.

Data Size

Tweets 11.5 M
News 1.2 M
RSS items 12.4 M

Table 1: Data statistics, Jan 1st – Mar 31st, 2016

Type # Concepts Resource

Company 112,347 Internal Dataset
City 27,075 OpenStreetMap
Street 104,598 OpenStreetMap
Station 9,860 Deutsche Bahn
Route 25,907 Deutsche Bahn

Table 2: Data statistics for knowledge resources

3.1 Data Streams

All source data streams are handled with in-
dividual crawlers, which push documents to
Kafka MQ1 for further processing by the analysis
pipeline (see Section 4).

Twitter We use the Twitter Search API2 to
obtain a topically focused streaming sample of
tweets. For our current system, we define the
search filter using a list of approximately 150
domain-relevant users/channels and 300 search
terms. Channels include e.g. airline companies,
traffic information sources, and railway compa-
nies. Search terms comprise event-related key-
words such as “traffic jam” or “roadworks”, but
also major highway names, railway route identi-
fiers, and airport codes. This limits the number of
tweets to approximately 50.000 per day, at a rate
of about 35 tweets a minute.

News We retrieve news pages and general web

1kafka.apache.org
2dev.twitter.com/rest/public/search

38

Web,
APIs

Crawler

Event
Extraction

RE ModelsEL Models
Lexicons,

Rules,
Models

Fr
on

te
nd

Index
(Solr)M

Q

(K
af

ka
)

Doc
Schema

Entity Discovery &
Linking

Candidate
Retrieval

Topic Filtering

Preprocessing

Doc
Schema

Knowledge
Base(s)

Text Processing Streaming Architecture (Simplified)

RE
ST

Apache Flink

Figure 1: System architecture

sites using the uberMetrics Search API3, which
provides an interface to more than 400 million web
sources that are crawled on a regular basis. The
API allows us to define complex boolean search
queries to filter the set of web pages that our sys-
tem needs to process. We employ the same search
terms as for Twitter, and limit the language to Ger-
man. This provides approximately 13.200 docu-
ments per day (9/min).

RSS Feeds We implemented custom crawlers
for a representative set of approximately 100 RSS
feeds that provide traffic and transportation infor-
mation. Feed sources include federal and state po-
lice, radio stations, and air travel sources. The
feeds are fetched at regular intervals, yielding ap-
proximately 136.000 feed items per day (95/min).

3.2 Knowledge Bases

We integrate several types of knowledge resources
for domain-specific named entity recognition, en-
tity linking and event extraction. All resources are
stored in a PostgreSQL relational database.

Companies We maintain a list of approx. 800K
German companies, which includes many small
and medium enterprises. From this list we selected
a subset of 112,347 companies with ≥ 20 em-
ployees. Company entries comprise information
about the company’s name, judicial form, number
of employees, and industry sector, and are associ-
ated with one or more postal addresses which were

3doc.ubermetrics-technologies.com/
api-reference/

geocoded using Nominatim4. If applicable, entries
are linked to DBpedia5 and Freebase6.

OpenStreetMap OpenStreetMap provides data
dumps7 that we use as a knowledge resource for
location names. In particular, we utilize city, town,
village, highway and road data for Germany, in-
cluding names and geo-shape information.

GTFS Our final resource consists of trans-
portation data of the German railway company
Deutsche Bahn AG. This dataset contains railway
and public transport stops, timetables, and transit
routes, and includes geographical information for
each entity. The data is provided in the commonly
used General Transit Feed Specification (GTFS)
format8.

4 Document Processing Pipeline

This section describes the implementation of the
streaming pipeline to process documents in the
Spree system.

4.1 Data Schema

We store analysis results of individual pipeline
components in a shared document schema that
is inspired by the Common Analysis Structure
(CAS) approach implemented in UIMA (Ferrucci
and Lally, 2004). The schema defines elements,

4nominatim.openstreetmap.org
5dbpedia.org
6freebase.com
7planet.openstreetmap.org
8developers.google.com/transit/gtfs

39

such as documents, sentences, tokens, concepts
and relations. Annotations are either realized as
attributes of these classes, or in a generic fash-
ion using a labeled span scheme. We use Avro9,
a compact binary data format, to serialize docu-
ments between pipeline processing steps.

4.2 Stream Processing
Document processing is implemented in an anal-
ysis pipeline that is realized within the Apache
Flink framework (Alexandrov et al., 2014)10.
Flink’s core is a streaming data flow engine
that provides data distribution, communication,
and fault tolerance for distributed computations
over data streams. All document processors in-
gest messages (documents) from the MQ sys-
tem. This architecture ensures data durability
via Kafka’s replication and disk persistence fea-
tures, and consistent data movement and compu-
tation with Apache Flink. Together, these frame-
works guarantee exactly-once delivery of events,
can handle back pressure in case of data stream
peaks, and provide high throughput. Our sys-
tem thus can easily scale to larger and faster data
streams than those we currently handle, for exam-
ple when extending the system to monitor more
data streams, other languages, or a wider range of
events.

Our document processing implementation reads
messages from Kafka and converts them to the in-
ternal document schema. For news and web sites,
we extract text from the HTML and remove boil-
erplate code11. We perform language detection,
and discard any non-German documents. All re-
maining documents are then passed to the linguis-
tic analysis components, described next.

4.3 Linguistic Analysis
The linguistic analysis components process doc-
uments to detect and geo-locate mobility- and
industry-related entities and events.

Documents are first segmented into sentences
and tokens. We use the Mate Tools suite (Bohnet,
2010) to part-of-speech tag words, and for de-
pendency parsing of sentences. For named en-
tity recognition, we utilize SProUT (Drozdzyn-
ski et al., 2004), which implements a regular
expression-like formalism and gazetteers for de-
tecting concepts in text. SProUT uses rule sets to

9avro.apache.org
10flink.apache.org
11github.com/kohlschutter/boilerpipe

Name Arguments

Accident Road, route, loc, time
Delay Road, route, flight, cause, loc, time
Disaster Type, trigger, casualties, loc, time
Traffic Jam Road, loc, time
Rail Replacem. Route, loc, time
Road Closure Road, cause, loc, time
Acquisition Buyer, acquired, loc, time
Merger Old, new, trigger, loc, time
Spin-off Parent, child, loc, time
Layoffs Company, trigger, number, loc, time
Strike Company, trigger, loc, time
Insolvency Company, trigger, cause, loc, time

Table 3: Event types recognized by our pipeline,
and their arguments.

deal with frequent morphologic variations and ab-
breviations, e.g. “strasse” and “straße” (“street”),
or “Pl.” for “Platz” (“place”). We construct
gazetteers for companies, cities and towns, streets,
transport stops, and transit routes, from the knowl-
edge resources described in Section 3.2. All
gazetteers store name variants, database identifier
information, as well as geo-locations.

We perform an entity linking step next to dis-
ambiguate the candidate entities of a recognized
concept. Since our system is based on a very
extensive set of company and geo-location en-
tities, entity linking is particularly challenging.
For example, many public transit route names
are identical across German cities (e.g. “S1” for
“train line #1”), and street names are also very of-
ten re-used in different cities. We implement a
straight-forward, geo-location-based disambigua-
tion algorithm. For ambiguous entities, such as
streets, transit stops, or small villages, the algo-
rithm chooses the candidate whose coordinates are
contained in the geo-shape of “larger” entities co-
occurring in the text. In turn, unambiguous stop or
street entities can also be used to resolve “larger”
ambiguous entities, e.g. transit routes, using a
similar strategy. Additionally, Twitter allows users
to tag locations in a message. This can either be a
precise location (longitude, latitude) or a general
location label (e.g., a city name with geo-shape).
For tweets with a location label, we retain only
candidate entities located within the user-tagged
geo-shape, and then apply our disambiguation al-
gorithm.

Finally, our pipeline detects events and event ar-
guments by matching dependency parse trees of
sentences to a set of automatically learned depen-
dency patterns, as proposed by Xu et al. (2007).

40

We define an event in the spirit of the ACE / ERE
guidelines (Linguistic Data Consortium, 2015) as
a n-ary relation with a set of required and op-
tional arguments, which include location and time.
The dependency patterns we use for event detec-
tion are extracted from a manually curated set of
event-specific training sentences, which were an-
notated with event type, argument types, and argu-
ment roles. For Twitter texts, where we typically
cannot expect high-quality dependency parses, we
complement our approach with a key phrase-based
event detection strategy. By carefully selecting
the trigger key phrase set, we can identify event
types with high precision. Table 3 summarizes the
events and arguments recognized by our system.

5 Web Application

Annotated documents are persisted to a distributed
Solr index12. The index stores basic document in-
formation, such as URL, title and text, and addi-
tionally information about extracted entities and
events. It serves as a back-end for the visualiza-
tion component of the system, which is realized as
a light-weight web application. The front-end is
available at http://ta.dfki.de.

Figure 2a shows the main view of the front-end.
The view displays the most recent events on an in-
teractive map. Each icon represents a single event.
Events co-located in a particular area are clustered
to avoid cluttering. The clusters split into indi-
vidual event icons when zooming in on the loca-
tion. The map is updated frequently to refresh the
event set, giving a dynamic view of ongoing de-
velopments. The user interface provides various
filtering options for event types, data sources, and
transport modes, as well as a company search.

Events can be selected, which opens an overlay
with detailed information about the event and its
source document. Details include the event type,
time, and location, as well as an explanatory text
snippet from the source document. The detail view
also shows a set of illustrative supply chains be-
tween companies that may potentially be affected
by the event, see Figure 2b. Since data about sup-
pliers is typically non-public information, we dy-
namically generate example supply chains by ran-
domly selecting a pair of companies in the vicinity
of the event’s location, and computing a route be-
tween them using Mapbox 13.

12lucene.apache.org/solr
13mapbox.com/api-documentation

Selecting a “supply chain problem” involving
a particular company opens another detail view.
This detail view displays information about the af-
fected company, and includes infobox-style facts
from background knowledge bases, but also recent
events and news referencing the company.

6 Evaluation

We conducted a preliminary evaluation of our sys-
tem’s event extraction performance on the dataset
described in Table 1. Figure 3 shows the distri-
bution of recognized events. The largest propor-
tion of events is extracted from Twitter messages.
Company-related events are mostly found in news
articles, while mobility-related events are mainly
reported in Twitter and RSS feeds.

Figure 3: Event distribution for RSS, Twitter and
News.

To evaluate event extraction accuracy, we man-
ually judge a random sample of 150 documents
(50 per source) for each event. A document is con-
sidered to correctly state an event if it explicitly
reports a past, current or future event. All other
documents are labeled as incorrect.

Table 4 lists the precision scores per source and
micro-averaged across sources for selected event
types. On average, 64% of the identified events
are judged to be correct. Best results are observed
for RSS feeds. This is an expected result, since
traffic information RSS feeds are often well struc-
tured and employ very formalized wording. Some
events types are more reliably observed in spe-
cific sources, e.g. Strike and Layoffs in news. The
overall precision on Twitter is surprisingly high,
with the exception of Traffic Jam events. This can
be attributed to the fact that our key phrase-based
approach used the German word “Stau” (“jam”),
which often appears in non-traffic contexts to de-
note slow or halting progress.

41

(a) Event visualization UI (b) Company view with supply chain route

Figure 2: User interface of the Spree system

Event type Twitter RSS News Avg

Traffic jam 0.28 1.0 – 0.64
Strike 0.58 – 0.66 0.62
Delays 0.74 0.94 0.26 0.65
Disaster 0.52 0.94 0.48 0.57
Layoffs 0.66 – 0.76 0.71

Table 4: Precision of event recognition for se-
lected event types. Empty cells indicate that the
corresponding event did not occur in the given
document type.

7 Conclusion

We have presented Spree, a scalable, real-time
event extraction system for mobility and industry
events. Our system discovers and visualizes events
from heterogeneous data streams, including Twit-
ter, RSS feeds and news documents, on an interac-
tive map. Data streams are automatically filtered
for relevant events, and geo-located using infor-
mation from the extracted entities. Our system
recognizes an extensive set of fine-grained entities
of different types, including companies, streets,
routes and transport stops, and extracts ACE/ERE-
style events, together with their argument fillers,
using a dependency pattern-based approach. Im-
plemented in Apache Flink, it is highly scalable
and allows both batch and streaming processing.

Acknowledgments

This research was partially supported by the
German Federal Ministry of Economics and
Energy (BMWi) through the projects SDW
(01MD15010A) and SD4M (01MD15007B), and
by the German Federal Ministry of Education

and Research (BMBF) through the project BBDC
(01IS14013E).

References
A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag,

F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, F. Naumann, M. Peters, A. Rheinländer,
M. Sax, S. Schelter, Ma. Höger, K. Tzoumas, and
D. Warneke. 2014. The Stratosphere Platform for
Big Data Analytics. The VLDB Journal, 23(6):939–
964.

B. Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proc. of COLING,
pages 89–97.

W. Drozdzynski, H. Krieger, J. Piskorski, U. Schäfer,
and F. Xu. 2004. Shallow processing with unifica-
tion and typed feature structures — foundations and
applications. Künstliche Intelligenz, 1:17–23.

D. Ferrucci and A. Lally. 2004. UIMA: An archi-
tectural approach to unstructured information pro-
cessing in the corporate research environment. Nat.
Lang. Eng., 10(3–4):327–348.

Linguistic Data Consortium. 2015. Rich ERE
annotation guidelines overview. http:
//cairo.lti.cs.cmu.edu/kbp/2015/
event/summary_rich_ere_v4.1.pdf.

M. Osborne, S. Moran, R. McCreadie, A. Von Lunen,
M. Sykora, E. Cano, N. Ireson, C. Macdonald, I. Ou-
nis, Y. He, T. Jackson, F. Ciravegna, and A. O’Brien.
2014. Real-time detection, tracking, and monitoring
of automatically discovered events in social media.
In Proc. of ACL: System Demonstrations, pages 37–
42.

Feiyu Xu, Hans Uszkoreit, and Hong Li. 2007. A
Seed-driven Bottom-up Machine Learning Frame-
work for Extracting Relations of Various Complex-
ity. In Proc. of ACL, pages 584–591.

42

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 43–48,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

TranscRater:
a Tool for Automatic Speech Recognition Quality Estimation

Shahab Jalalvand(1,2), Matteo Negri(1), Marco Turchi(1),
José G. C. de Souza(1,2), Daniele Falavigna(1), Mohammed R. H. Qwaider(1)

(1) Fondazione Bruno Kessler, Trento, Italy
(2) University of Trento, Italy

{jalalvand,negri,turchi,desouza,falavi,qwaider}@fbk.eu

Abstract

We present TranscRater, an open-source
tool for automatic speech recognition
(ASR) quality estimation (QE). The tool
allows users to perform ASR evaluation
bypassing the need of reference tran-
scripts and confidence information, which
is common to current assessment proto-
cols. TranscRater includes: i) methods
to extract a variety of quality indicators
from (signal, transcription) pairs and ii)
machine learning algorithms which make
possible to build ASR QE models exploit-
ing the extracted features. Confirming the
positive results of previous evaluations,
new experiments with TranscRater indi-
cate its effectiveness both in WER predic-
tion and transcription ranking tasks.

1 Introduction

How to determine the quality of an automatic tran-
scription without reference transcripts and with-
out confidence information? This is the key prob-
lem addressed by research on ASR quality estima-
tion (Negri et al., 2014; C. de Souza et al., 2015;
Jalalvand et al., 2015b), and the task for which
TranscRater, the tool described in this paper, has
been designed.

The work on ASR quality estimation (ASR QE)
has several motivations. First, the steady increase
of applications involving automatic speech recog-
nition (e.g. video/TV programs subtitling, voice
search engines, voice question answering, spoken
dialog systems, meeting and broadcast news tran-
scriptions) calls for an accurate method to esti-
mate ASR output quality at run-time. Often, in-
deed, the nature of such applications (consider for
instance spoken dialog systems) requires quick re-

sponse capabilities that are incompatible with tra-
ditional reference-based protocols.

Second, even when real-time processing is not
a priority, standard evaluation based on computing
word-error rate (WER) against gold references is
not always a viable solution. In many situations
(as in the case of languages for which even the
ASR training data is scarce), the bottleneck repre-
sented by the limited availability of reference tran-
scripts and the costs of their manual creation calls
for a method to predict ASR output quality that
is reference-independent.

Third, even when designed to bypass the need
of references, current quality prediction methods
heavily depend on confidence information about
the inner workings of the ASR system that pro-
duced the transcriptions (Evermann and Wood-
land, 2000; Wessel et al., 2001). Such informa-
tion, describing how the system is certain about
the quality of its own hypotheses, often reflects
a biased perspective influenced by individual de-
coder features. More importantly, it is not always
accessible and, in this frequent case, the sole ele-
ments available for quality prediction are the sig-
nal and its transcription (consider, for instance, the
increasing amount of captioned Youtube videos
generated by a “black-box” ASR system1). These
issues call for a method to predict ASR output
quality that is also confidence-independent.

TranscRater (Transcription Rater) provides a
unified ASR QE framework designed to meet the
three aforementioned requirements. Its develop-
ment was inspired by software previously released
for the machine translation (MT) (Specia et al.,
2013; Shah et al., 2014; Servan et al., 2015) equiv-
alent of ASR QE, in which MT quality has to be
estimated at run-time and without reference trans-

1More than 157 millions in 10 languages, as announced
by Google already in 2012 (source: http://goo.gl/
5Wlkjl).

43

lations (Mehdad et al., 2012; Camargo de Souza
et al., 2013; C. de Souza et al., 2014). Indeed, the
two tasks deal with similar issues. In both cases,
we have an input “source” (a written sentence and
a recorded signal) and an output text (a translation
and a transcription) that has to be assessed with-
out any pre-created term of comparison. They can
also be approached with similar supervised clas-
sification (C. de Souza et al., 2015) or regression
strategies (Negri et al., 2014; C. de Souza et al.,
2015). Finally, they have similar applications like:

• Deciding if an input source has been correctly
processed;

• Ranking the output of multiple independent
systems (Jalalvand et al., 2015b);

• Estimating the human effort required to man-
ually revise an output segment;

• Performing data selection for system im-
provement based on active learning.

To support these applications, TranscRater pro-
vides an extensible ASR QE framework consist-
ing of a variety of feature extractors and ma-
chine learning algorithms. The implemented fea-
ture extraction methods allow capturing predictive
quality indicators both from the input signal and
from the output transcription. This basic set of
“black box” indicators has been successfully eval-
uated in a number of experiments, both on regres-
sion and on classification tasks, showing that ASR
QE predictions can closely approximate the qual-
ity scores obtained with standard reference-based
methods. The existing feature extractors can be
easily extended to integrate new features, either
capturing additional system-independent aspects,
or relying on confidence information about the
ASR system that produced the transcriptions, if
available. Experimental results demonstrate that,
also in the “glass-box” scenario in which the ASR
system is known, the available features are able
to improve the performance obtained with confi-
dence information.

The integration of different machine learning
algorithms makes TranscRater a powerful frame-
work to quickly set up an ASR QE model given
some training data, tune it by choosing among the
possible feature configurations and process new,
unseen test data to predict their quality. As a stand-
alone environment, with few documented external

dependencies, TranscRater provides the first off-
the-shelf solution to approach ASR QE and extend
its application to new scenarios.

2 ASR QE

The basic ASR QE task consists in training a
model from (signal, transcription, label) triplets,
and using it to return quality predictions for a test
set of unseen (signal, transcription) instances. In
this supervised learning setting, the training la-
bels can be either numeric scores (Negri et al.,
2014) or class identifiers (binary or multi-class)
(C. de Souza et al., 2015). Class assignments
can be manually done according to some criteria,
or inferred by thresholding numeric scores. Nu-
meric quality indicators can be easily obtained by
measuring the similarity (or the distance) between
the transcription and its manually-created refer-
ence. For instance, the models described in pre-
vious works on ASR QE learn from training data
labelled with real values obtained by computing
the transcription word error rate (WER2).

According to the type of training labels, the
problem can be approached either as a regression
or as a classification task. As a consequence,
also the evaluation metrics will change. Preci-
sion/recall/F1 (or other metrics, such as balanced
accuracy, in case of very unbalanced distributions)
will be used for classification while, similar to
MT QE, the mean absolute error (MAE) or sim-
ilar metrics will be used for regression.

A variant of the basic ASR QE task is to con-
sider it as a QE-based ranking problem (Jalalvand
et al., 2015b), in which each utterance is captured
by multiple microphones or transcribed by multi-
ple ASR systems. In this case, the capability to
rank transcriptions from the best to the worst can
be evaluated in terms of normalized discounted cu-
mulative gain (NDCG) or similar metrics.

3 The TranscRater tool

TranscRater combines in a single open-source
framework: i) a set of features capturing differ-
ent aspects of transcription quality and ii) different
learning algorithms suitable to address the chal-
lenges posed by different application scenarios.

TranscRater internally consists of two main

2WER is the minimum edit distance between the tran-
scription and the reference. Edit distance is calculated as the
number of edits (word insertions, deletions, substitutions) di-
vided by the number of words in the reference.

44

modules: feature extraction and machine learn-
ing. At training stage, the tool receives as in-
put a set of signal recordings, their transcriptions
and the corresponding reference transcripts. The
speech signals are provided as separate files in the
RIFF Microsoft PCM format with 16K sampling
rate. Their transcriptions and the corresponding
references are provided in single separate text files
(one transcription per row). References are used
to compute the WER label of each training in-
stance, thus connecting the problem to the task
formulation provided in §2. The features extracted
from each training instance are passed to the learn-
ing module, together with the corresponding label.
The label is a WER score which, depending on the
type of problem addressed, can be used either to
directly train a regressor or to infer a ranking for
multiple hypotheses. In either case, the learning
module will train the corresponding model with
the proper learning algorithm, and tune it using k-
fold cross-validation.

At test stage, the model is used to predict the
label of new, unseen (signal, transcription) in-
stances. For each test point, the output is either a
WER prediction or a rank, whose reliability can be
respectively evaluated in terms of MAE or NDCG
(as discussed in §2). Output predictions are pro-
vided in a single file (one WER prediction per row
for regression and one rank prediction per row for
ranking). MAE or NDCG scores are provided as
the standard output of the test functions.

Internally, TranscRater stores the extracted fea-
tures in the SVM-light3 format. This makes pos-
sible to use the tool as a feature extractor and to
embed it in applications different from the ones
described in this paper. The features to be used,
the type of learning algorithm, the input files and
the links to resources and libraries can be easily
set through a configuration file.

3.1 Feature sets
The feature extraction module of TranscRater al-
lows the user to extract 72 features that can be cat-
egorized in the following four groups:

• Signal (SIG) features, designed to capture
the difficulty of transcribing the input sig-
nal given the general recording conditions in
which it was acquired;

• Lexical (LEX) features, designed to capture
3http://svmlight.joachims.org/

the difficulty to transcribe the input signal
given the pronunciation difficulty and the am-
biguity of the terms it contains;

• Language model (LM) features, designed to
capture the plausibility of the transcription
from the fluency point of view;

• Part-of-speech (POS) features, designed to
capture the plausibility of the transcription
from the syntax point of view.

SIG (44). Signal features are extracted using
the OpenSmile4 toolkit (Eyben et al., 2013). Each
speech signal is broken down into 25ms length
frames with 10ms overlap. For each frame, we
compute 13 Mel Frequency Cepstral Coefficients
(MFCC), their delta, acceleration and log-energy
as well as the prosody features like fundamental
frequency (F0), voicing probability, loudness con-
tours and pitch. The final SIG feature vector for
the entire input signal is obtained by averaging the
values of each feature computed on all the frames.

LEX (7). Lexicon-based features are extracted
using a lexical feature dictionary (optionally pro-
vided by the user). In this dictionary each indi-
vidual word is assigned to a feature vector con-
taining the frequency of fricatives, liquids, nasals,
stops and vowels in its pronunciation. Other ele-
ments of the vector are the number of homophones
(words with the same pronunciation) and quasi-
homophones (words with similar pronunciation).

LM (12). Language model features include
the mean of word probabilities, the sum of the
log probabilities and the perplexity score for each
transcription. In previous experiments (Jalalvand
et al., 2015b; Jalalvand and Falavigna, 2015) we
showed that, instead of only one LM, using a
combination of neural network and n-gram LMs
trained on task-specific and generic data can sig-
nificantly improve the accuracy of quality predic-
tion. For this reason, TranscRater allows using up
to four different language models: two RNNLM
(Mikolov et al., 2010) trained on generic and spe-
cific data and two n-gramLM trained on generic
and specific data. To work with neural network
LMs, the tool makes use of RNNLM,5 while for
n-gram LMs it uses SRILM6 (Stolcke et al., 2000).

4http://www.audeering.com/research/
opensmile\#download

5http://www.fit.vutbr.cz/˜imikolov/
rnnlm/rnnlm-0.3e.tgz

6http://www.speech.sri.com/projects/
srilm/download.html

45

POS (9). Part-of-speech features are extracted
using the TreeTagger.7 For each word in the tran-
scription, they consider the score assigned to the
predicted POS of the word itself, the previous and
the following one. This sliding window is used
to compute the average value for the entire tran-
scription and obtain the sentence-level POS fea-
ture vector. The intuition is that a low confidence
of the POS tagger in labeling a sentence is an indi-
cator of possible syntax issues and, in turn, of poor
transcription quality. POS features also include
the number and the percentage of content words
(numbers, nouns, verbs, adjectives, adverbs).

These feature groups were successfully tested in
various conditions including clean/noisy data, sin-
gle/multiple microphones and ASR systems (Jalal-
vand et al., 2015b; Jalalvand et al., 2015a). In such
conditions, they proved to be a reliable predictor
when confidence information about the ASR sys-
tem inner workings is not accessible.

3.2 Learning algorithms
For regression-based tasks (WER prediction),
TranscRater includes an interface to the Scikit-
learn package (Pedregosa et al., 2011), a Python
machine learning library that contains a large set
of classification and regression algorithms. Based
on the empirical results reported in (Negri et al.,
2014; C. de Souza et al., 2015; Jalalvand et al.,
2015b), which indicate that Extremely Random-
ized Trees (XRT (Geurts et al., 2006)) is a very
competitive algorithm in several WER prediction
tasks, the current version of the tool exploits XRT.
However, adapting the interface to apply other al-
gorithms is an easy task and one of the future
extension directions. The main hyper-parameters
of the model, such as the number of tree bags,
the number of trees per bag, the number of fea-
tures per tree and the number of instances in the
leaves, are tuned using grid search with k-fold
cross-validation on the training set to minimize
the mean absolute error (MAE) between the true
WERs and the predicted ones.

As mentioned before, TranscRater provides the
possibility to evaluate multiple transcriptions (e.g.
obtained from different microphones or ASR sys-
tems) and rank them based on their quality. This
can be done either indirectly, by exploiting the pre-
dicted WER labels in a “ranking by regression”

7http://www.cis.uni-muenchen.
de/˜schmid/tools/TreeTagger/data/
tree-tagger-linux-3.2.tar.gz

approach (RR) or directly, by exploiting machine-
learned ranking methods (MLR). To train and test
MLR models, TranscRater exploits RankLib8, a li-
brary of learning-to-rank algorithms. The current
version of the tool includes an interface to the Ran-
dom Forest algorithm (RF (Breiman, 2001)), the
same used in (Jalalvand et al., 2015b).

MLR predicts ranks through pairwise compari-
son between the transcriptions. The main param-
eters such as the number of bags, the number of
trees per bag and the number of leaves per tree are
tuned on training set using k-fold cross-validation
to maximize the NDCG measure.

3.3 Implementation

TranscRater is written in Python and is made of
several parts linked together using bash scripts.
In order to run the toolkit on Linux, the follow-
ing libraries are required: i) Java 8 (JDK-1.8); ii)
Python 2.7 (or above) and iii) Scikit-learn (ver-
sion 0.15.2). Moreover, the user has to download
and compile the following libraries: OpenSmile,
RNNLM, SRILM and TreeTagger for the feature
extraction module as well as RankLib for using
machine-learned ranking option.

4 Benchmarking

The features and algorithms contained in Tran-
scRater have been successfully used in previous
works (Negri et al., 2014; C. de Souza et al., 2015;
Jalalvand et al., 2015b; Jalalvand et al., 2015a).
To further investigate their effectiveness, in this
section we provide new results, both in WER pre-
diction (MAE) and transcription ranking (NDCG),
together with some efficiency analysis (Time in
seconds9). To this aim, we use data from the
3rd CHiME challenge,10 which were collected for
multiple distant microphone speech recognition in
noisy environments (Barker et al., 2015). CHiME-
3 data consists of sentences of the Wall Street
Journal corpus, uttered by four speakers in four
noisy environments, and recorded by five micro-
phones placed on the frame of a tablet PC (a sixth
one, placed on the back, mainly records back-
ground noise). Training and test respectively con-
tain 1,640 and 1,320 sentences. Transcriptions are

8https://people.cs.umass.edu/˜vdang/
data/RankLib-v2.1.tar.gz

9Experiments were run with a PC with 8 Intel Xeon pro-
cessors 3.4 GHz and 8 GB RAM.

10http://spandh.dcs.shef.ac.uk/chime_
challenge/chime2015/data.html

46

produced by a baseline ASR system, provided by
the task organizers, which uses the deep neural
network recipe of Kaldi (Povey et al., 2011).

In WER prediction, different models built with
TranscRater are compared with a baseline com-
monly used for regression tasks, which labels all
the test instances with the average WER value
computed on the training set. In ranking mode,
baseline results are computed by averaging the
NDCG scores obtained in one hundred iterations
in which test instances are randomly ranked.

Features Train&Test
Time

Total
Time MAE↓

Baseline — — 28.7
SIG 00m18s 09m32s 27.3
LEX+LM+POS 00m19s 01m19s 22.2
SIG+LEX+LM+POS 00m26s 10m22s 23.5

Table 1: Time and MAE results in regression mode.

Table 1 shows the results of models trained with
different feature groups for WER prediction with
a single microphone. In terms of time, in this as
in the following experiments, the total time (fea-
ture extraction + training + test) is mostly de-
termined by feature extraction and the bottleneck
is clearly represented by the extraction of signal
(SIG) features. In terms of MAE, SIG features are
also those achieving the worst result. Although
they significantly improve over the baseline, they
are outperformed by LEX+LM+POS and, even in
combination with them, they do not help. How-
ever, as suggested by previous works like (Ne-
gri et al., 2014) in which some of the SIG fea-
tures are among the most predictive ones, the use-
fulness of signal features highly depends on data
and, in specific conditions, they definitely improve
results. Their ineffectiveness in the experiments
of this paper likely depends on the lack of word-
level time boundaries, which prevented us to com-
pute more discriminative features like word log-
energies, noise log-energies and signal-to-noise
ratio (the best indicator of the acoustic quality of
an input utterance).

Features Train&Test
Time

Total
Time NDCG↑

Baseline — — 73.6
SIG 02m03s 15m11s 73.5
LEX+LM+POS 01m10s 03m13s 80.4
SIG+LEX+LM+POS 05m53s 19m23s 79.4
Table 2: Time and NDCG results in ranking by regression.

Table 2 shows the results achieved by the same
feature groups when ranking by regression (RR)
the transcriptions from five microphones. In terms

of computation time, the higher costs of SIG fea-
tures are still evident (the significant increase for
all groups is due to the higher number of audio
files to be processed). Also in this case, SIG
features do not help, neither alone nor in combi-
nation with the other groups. Indeed, the high-
est results are achieved by the combination of
LEX+LM+POS. Their large NDCG improvement
over the baseline (+6.8), combined with the sig-
nificantly lower computation time, seems to make
this combination particularly suitable for the rank-
ing by regression strategy.

Features Train&Test
Time

Total
Time NDCG↑

Baseline — — 73.6
SIG 01m14s 13m00s 78.1
LEX+LM+POS 00m59s 03m05s 81.3
SIG+LEX+LM+POS 01m41s 15m10s 83.1
Table 3: Time and NDCG with machine-learned ranking.

Table 3 shows the results achieved, in the
same multi-microphone scenario, by the machine-
learned ranking approach (MLR). In terms of
time, MLR is slightly more efficient than RR, at
least on this dataset. Though surprising (MLR
performs lots of pairwise comparisons, which are
in principle more demanding), such difference is
not very informative as it might depend on hyper-
parameter settings (e.g. the number of iterations
for XRT, manually set to 20), whose optimization
was out of the scope of our analysis. In terms of
NDCG, the results are higher compared to RR but
the differences between feature groups are con-
firmed. Interestingly, with MLR even the SIG fea-
tures in isolation significantly improve over the
baseline (+4.5 points). The NDCG improvement
with the combined feature groups is up to 9.5
points, confirming the effectiveness of the com-
bined features shown in previous works.

5 Conclusion

We presented TranscRater, an open-source tool
for ASR quality estimation. TranscRater pro-
vides an extensible framework including feature
extractors, machine learning algorithms (for WER
prediction and transcription ranking), optimiza-
tion and evaluation functions. Its source code
can be downloaded from https://github.
com/hlt-mt/TranscRater. Its license is
FreeBSD, a lax permissive non-copyleft license,
compatible with the GNU GPL and with any use,
including commercial.

47

References
J. Barker, R. Marxer, E. Vincent, and S. Watanabe.

2015. The third ’CHiME’ Speech Separation and
Recognition Challenge: Dataset, Task and Base-
lines. In Proc. of the 15th IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 1–9, Scottsdale, Arizona, USA.

L. Breiman. 2001. Random Forests. Machine Learn-
ing, 45(1):5–32.

J. G. C. de Souza, J. González-Rubio, C. Buck,
M. Turchi, and M. Negri. 2014. FBK-UPV-
UEdin participation in the WMT14 Quality Estima-
tion shared-task. In Proc. of the Ninth Workshop
on Statistical Machine Translation, pages 322–328,
Baltimore, Maryland, USA.

J. G. C. de Souza, H. Zamani, M. Negri, M. Turchi,
and D. Falavigna. 2015. Multitask Learning for
Adaptive Quality Estimation of Automatically Tran-
scribed Utterances. In Proc. of the 2015 Conference
of the North American Chapter of the Association
for Computational Linguistics - Human Language
Technologies (NAACL-HLT), pages 714–724, Den-
ver, Colorado, USA.

J. G. Camargo de Souza, C. Buck, M. Turchi, and
M. Negri. 2013. FBK-UEdin Participation to
the WMT13 Quality Estimation Shared Task. In
Proc. of the Eighth Workshop on Statistical Machine
Translation, pages 352–358, Sofia, Bulgaria.

G. Evermann and P. Woodland. 2000. Large Vo-
cabulary Decoding and Confidence Estimation using
Word Posterior Probabilities. In Proc. of the IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 1655–1658, Is-
tanbul, Turkey.

F. Eyben, F. Weninger, and B. Schuller. 2013. Recent
developments in opensmile, the munich open-source
multimedia feature extractor. In Proc. of ACM Mul-
timedia, pages 835–838, Barcelona, Spain. ACM.

P. Geurts, D. Ernst, and L. Wehenkel. 2006. Extremely
Randomized Trees. Machine Learning, 63(1):3–42.

S. Jalalvand and D. Falavigna. 2015. Stacked Auto-
Encoder for ASR Error Detection and Word Er-
ror Rate Prediction. In Proc. of the 16th Annual
Conference of the International Speech Communi-
cation Association (INTERPSEECH), pages 2142–
2146, Dresden, Germany.

S. Jalalvand, D. Falavigna, M. Matassoni, P. Svaizer,
and M. Omologo. 2015a. Boosted Acoustic Model
Learning and Hypotheses Rescoring on the CHiME-
3 Task. In Proc. of the IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 409–415, Scottsdale, Arizona, USA.

S. Jalalvand, M. Negri, D. Falavigna, and M. Turchi.
2015b. Driving ROVER With Segment-based ASR
Quality Estimation. In Proc. of the 53rd Annual

Meeting of the Association for Computational Lin-
guistics (ACL), pages 1095–1105, Beijing, China.

Y. Mehdad, M. Negri, and M. Federico. 2012. Match
without a Referee: Evaluating MT Adequacy with-
out Reference Translations. In Proc. of the Machine
Translation Workshop (WMT2012), pages 171–180,
Montréal, Canada.

T. Mikolov, M. Karafiát, L. Burget, J. Cernocký,
and S. Khudanpur. 2010. Recurrent Neural Net-
work Based Language Model. In Proc. of IN-
TERSPEECH, pages 1045–1048, Makuhari, Chiba,
Japan.

M. Negri, M. Turchi, J. G. C. de Souza, and F. Daniele.
2014. Quality Estimation for Automatic Speech
Recognition. In Proc. of the 25th International
Conference on Computational Linguistics: Techni-
cal Papers (COLING), pages 1813–1823, Dublin,
Ireland.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. 2011. Scikit-learn: Ma-
chine Learning in Python. Machine Learning Re-
search, 12:2825–2830.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely. 2011. The Kaldi Speech Recogni-
tion Toolkit. In Proc. of the IEEE Workshop on
Automatic Speech Recognition and Understanding
(ASRU), Hawaii, USA.

C. Servan, N.-T. Le, N. Q. Luong, B. Lecouteux, and
L. Besacier. 2015. An open source toolkit for word-
level confidence estimation in machine translation.
In Proc. of the 12th International Workshop on Spo-
ken Language Translation (IWSLT), Vietnam.

K. Shah, M. Turchi, and L. Specia. 2014. An Effi-
cient and User-friendly Tool for Machine Transla-
tion Quality Estimation. In Proc. of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland.

L. Specia, K. Shah, J. G. de Souza, and T. Cohn. 2013.
Quest - a translation quality estimation framework.
In Proc. of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 79–84, Sofia, Bulgaria. Association
for Computational Linguistics.

A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. R.
Gadde, M. Plauche, C. Richey, E. Shriberg, K. Son-
mez, F. Weng, and J. Zheng. 2000. The SRI March
2000 HUBS Conversational Speech Transcription
System. In Proc. of the NIST Speech Transcription
Workshop.

F. Wessel, R. Schluter, K. Macherey, and H. Ney. 2001.
Confidence Measures for Large Vocabulary Contin-
uous Speech Recognition. IEEE Transactions on
Audio, Speech and Language Processing, 9(3):288–
298.

48

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 49–54,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

TMop: a Tool for Unsupervised Translation Memory Cleaning

Masoud Jalili Sabet(1), Matteo Negri(2), Marco Turchi(2),
José G. C. de Souza(2), Marcello Federico(2)

(1) School of Electrical and Computer Engineering, University of Tehran, Iran
(2) Fondazione Bruno Kessler, Trento, Italy

jalili.masoud@ut.ac.ir
{negri,turchi,desouza,federico}@fbk.eu

Abstract

We present TMop, the first open-source
tool for automatic Translation Memory
(TM) cleaning. The tool implements a
fully unsupervised approach to the task,
which allows spotting unreliable transla-
tion units (sentence pairs in different lan-
guages, which are supposed to be trans-
lations of each other) without requiring
labeled training data. TMop includes a
highly configurable and extensible set of
filters capturing different aspects of trans-
lation quality. It has been evaluated on
a test set composed of 1,000 translation
units (TUs) randomly extracted from the
English-Italian version of MyMemory, a
large-scale public TM. Results indicate its
effectiveness in automatic removing “bad”
TUs, with comparable performance to a
state-of-the-art supervised method (76.3
vs. 77.7 balanced accuracy).

1 Introduction

Computer-assisted translation (CAT) refers to a
framework in which the work of human translators
is supported by machines. Its advantages, espe-
cially in terms of productivity and translation con-
sistency, have motivated huge investments both
economic (by the translation industry) and intel-
lectual (by the research community). Indeed, the
high market potential of solutions geared to speed
up the translation process and reduce its costs has
attracted increasing interest from both sides.

Advanced CAT tools currently integrate the
strengths of two complementary technologies:
translation memories (TM - a high-precision
mechanism for storing and retrieving previously
translated segments) and machine translation (MT
- a high-recall technology for translating unseen

segments). The success of the integration has de-
termined the quick growth of market shares that
are held by CAT, as opposed to fully manual trans-
lation that became a niche of the global transla-
tion market. However, differently from MT that
is constantly improving and reducing the distance
from human translation, core TM technology has
slightly changed over the years. This is in contrast
with the fact that TMs are still more widely used
than MT, especially in domains featuring high text
repetitiveness (e.g. software manuals).

Translation memories have a long tradition in
CAT, with a first proposal dating back to (Arth-
ern, 1979). They consist of databases that store
previously translated segments, together with the
corresponding source text. Such (source, target)
pairs, whose granularity can range from the phrase
level to the sentence or even the paragraph level,
are called translation units (TUs). When working
with a CAT tool, each time a segment of a docu-
ment to be translated matches with the source side
of a TU, the corresponding target is proposed as
a suggestion to the user. The user can also store
each translated (source, target) pair in the TM for
future use, thus increasing the size and the cover-
age of the TM. Due to such constant growth, in
which they evolve over time incorporating users
style and terminology, the so-called private TMs
represent an invaluable asset for individual trans-
lators and translation companies. Collaboratively-
created public TMs grow in a less controlled way
but still remain a practical resource for the transla-
tors’ community at large.

The usefulness of TM suggestions mainly de-
pends on two factors: the matching process and
the quality of the TU. To increase recall, the re-
trieval is based on computing a “fuzzy match”
score. Depending on how the matching is per-
formed, its output can be a mix of perfect and par-
tial matches requiring variable amounts of correc-

49

tions by the user. For this reason, most prior works
on TM technology focused on improving this as-
pect (Gupta et al., 2014; Bloodgood and Strauss,
2014; Vanallemeersch and Vandeghinste, 2015;
Chatzitheodoroou, 2015; Gupta et al., 2015).

The other relevant factor, TU quality, relates to
the reliability of the target translations. Indeed,
a perfectly matching source text associated to a
wrong translation would make the corresponding
suggestion useless or, even worse, an obstacle to
productivity. On this aspect, prior research is lim-
ited to the work proposed in (Barbu, 2015), which
so far represents the only attempt to automatically
spot false translations in the bi-segments of a TM.
However, casting the problem as a supervised bi-
nary classification task, this approach highly de-
pends on the availability of labelled training data.

Our work goes beyond the initial effort of Barbu
(2015) in two ways. First, we propose a config-
urable and extensible open source framework
for TM cleaning. In this way, we address the de-
mand of easy-to-use TM management tools whose
development is out of the reach of individual trans-
lators and translation companies. Such demand is
not only justified by productivity reasons (remove
bad suggestions as a cause of slow production),
but also for usability reasons. Loading, searching
and editing a TM are indeed time-consuming and
resource-demanding operations. In case of very
large databases (up to millions of TUs) the accu-
rate removal of useless units can significantly in-
crease usability. Though paid, the few existing
tools that incorporate some data cleaning meth-
ods (e.g. Apsic X-Bench1) only implement very
simple syntactic checks (e.g. repetitions, open-
ing/closing tags consistency). These are insuffi-
cient to capture the variety of errors that can be en-
countered in a TM (especially in the public ones).

Second, our approach to TM cleaning is fully
unsupervised. This is to cope with the lack of la-
belled training data which, due to the high acqui-
sition costs, represents a bottleneck rendering su-
pervised solutions unpractical. It is worth remark-
ing that also current approaches to tasks closely re-
lated to TM cleaning (e.g. MT quality estimation
(Mehdad et al., 2012; C. de Souza et al., 2014))
suffer from the same problem. Besides not being
customised for the specificities of the TM clean-
ing scenario (their usefulness for the task should
be demonstrated), their dependence on labelled

1http://www.xbench.net/

training data is a strong requirement from the TM
cleaning application perspective.

2 The TM cleaning task

The identification of “bad” TUs is a multifaceted
problem. First, it deals with the recognition of a
variety of errors. These include:

• Surface errors, such as opening/closing tags
inconsistencies and empty or suspiciously
long/short translations;

• Language inconsistencies, for instance due to
the inversion between the source and target
languages;

• Translation fluency issues, such as typos and
grammatical errors (e.g. morpho-syntactic
disagreements, wrong word ordering);

• Translation adequacy issues, such as the pres-
ence of untranslated terms, wrong lexical
choices or more complex phenomena (e.g.
negation and quantification errors) for which
a syntactically correct target can be a seman-
tically poor translation of the source segment.

The severity of the errors is another aspect to
take into account. Deciding if a given error makes
a TU useless is often difficult even for humans.
For instance, judging about the usefulness of a TU
whose target side has missing/extra words would
be a highly subjective task.2 For this reason, iden-
tifying “bad” TUs with an automatic approach
opens a number of problems related to: i) defining
when a given issue becomes a real error (e.g. the
ratio of acceptable missing words), ii) combining
potentially contradictory evidence (e.g. syntactic
and semantic issues), and iii) making these actions
easily customisable by different users having dif-
ferent needs, experience and quality standards.

What action to take when one or more errors
are identified in a TU is also important. Ideally,
a TM cleaning tool should allow users either to
simply flag problematic TUs (leaving the final de-
cision to a human judgment), or to automatically
remove them without further human intervention.

Finally, two critical aspects are the external
knowledge and resources required by the TM-
cleaning process. On one side, collecting evidence

2Likely, the perceived severity of a missing word out of n
perfectly translated terms will be inversely proportional to n.

50

for each TU can involve processing steps that ac-
cess external data and tools. On the other side,
decision making can require variable amounts of
labelled training data (i.e. positive/negative exam-
ples of “good”/“bad” TUs). For both tasks, the
recourse to external support can be an advantage
in terms of performance due to the possibility to
get informed judgments taken from models trained
in a supervised fashion. At the same time, it can
be a limitation in terms of usability and portabil-
ity across languages. When available, external re-
sources and tools (e.g. syntactic/semantic parsers)
can indeed be too slow to process huge amounts
of data. Most importantly, labelled training data
are usually difficult to acquire. In case of need, a
TM cleaning tool should hence minimise the de-
pendence of its performance from the availability
of external resources.

All these aspects were considered in the design
of TMop, whose capability to cope with a vari-
ety of errors, customise its actions based on their
severity and avoid the recourse to external knowl-
edge/resources are described in the next section.

3 The TMop framework

TMop (Translation Memory open-source purifier)
is an open-source TM cleaning software written
in Python. It consists of three parts: core, filters
and policy managers. The core, the main part of
the software, manages the workflow between fil-
ters, policy managers and input/output files. The
filters (§3.2) are responsible for detecting “bad”
TUs. Each of them can detect a specific type of
problems (e.g. formatting, fluency, adequacy) and
will emit an accept or reject judgment for each
TU. Policy managers (§3.3) collect the individual
results from each filter and take a final decision for
each TM entry based on different possible strate-
gies. Filters, policies and basic parameters can be
set by means of a configuration file, which was
structured by keeping ease of use and flexibility as
the main design criteria.

TMop implements a fully unsupervised ap-
proach to TM cleaning. The accept/reject criteria
are learned from the TM itself and no training data
are required to inform the process.3 Nevertheless,
the filters’ output could be also used to instantiate
feature vectors in any supervised learning scenario
supported by training data.

3The tool has been recently used also in the unsupervised
approach by Jalili Sabet et al. (2016).

Start

Initialize Other Filters

For # of iterations

Learning

For each TU

Process TU

Finalize a full scan

Finalize Learning

For each TU

Decision

Decide on TU

For each TU

Collect Filters’ Decisions

Apply Policy

Write to Files

End

Filter i

Policy Manager

Figure 1: TMop workflow

3.1 Workflow

The input file of TMop is a TM represented as a
text file containing one TU per line in the form
(ID, source, target). The output consists of sev-
eral files, the most important of which are the ac-
cept and reject files containing the TUs identified
as “good”/“bad”, in the same format of the input.
As depicted in Figure 1, TMop filters operate in
two steps. In the first one, the learning step,
each filter i iterates over the TM or a subset of it
to gather the basic statistics needed to define its
accept/reject criteria. For instance, by computing
mean and standard deviation values for a given in-
dicator (e.g. sentence length ratio, proportion of
aligned words), quantiles or std counts in case of
normal value distributions will be used as deci-
sion boundaries. Then, in the decision step,
each filter uses the gathered information to decide
about each TU. At the end of this process, for each

51

TU the policy manager collects all the decisions
taken by the filters and applies the policy set by the
user in the configuration file to assign an accept or
reject judgment. The final labels, the TUs and the
filters outputs are saved in different files.

3.2 Filters

Our filters capture different aspects of the similar-
ity between the source and the target of a TU. The
full set consists of 23 filters, which are organized
in four groups.

Basic filters (8 in total). This group (B) ex-
tends the filters proposed by Barbu (2015) and
substantially covers those offered by commercial
TM cleaning tools. They capture translation qual-
ity by looking at surface aspects, such as the pos-
sible mismatches in the number of dates, numbers,
URLs, XML tags, ref and image tags present in the
source and target segments. Other filters model the
similarity between source and target by computing
the direct and inverse ratio between the number of
characters and words, as well as the average word
length in the two segments. Finally, two filters
look for uncommon character or word repetitions.

Language identification filter (1). This filter
(LI) exploits the Langid tool (Lui and Baldwin,
2012) to verify the consistency between the source
and target languages of a TU and those indicated
in the TM. Though simple, it is quite effective
since often the two languages are inverted or even
completely different from the expected ones.

QE-derived filters (9). This group (QE) con-
tains filters borrowed from the closely-related task
of MT quality estimation, in which the complex-
ity of the source, the fluency of the target and the
adequacy between source and target are modeled
as quality indicators. Focusing on the adequacy
aspect, we exploit a subset of the features pro-
posed by C. de Souza et al. (2013). They use word
alignment information to link source and target
words and capture the quantity of meaning pre-
served by the translation. For each segment of a
TU, word alignment information is used to calcu-
late: i) the proportion of aligned and unaligned
word n-grams (n=1,2), ii) the ratio between the
longest aligned/unaligned word sequence and the
length of the segment, iii) the average length of
the aligned/unaligned word sequences, and iv) the
position of the first/last unaligned word, normal-
ized by the length of the segment. Word alignment

models can be trained on the whole TM with one
of the many existing word aligners. For instance,
the results of WE filters reported in §4 were ob-
tained using MGIZA++ (Gao and Vogel, 2008).

Word embedding filters (5). Cross-lingual
word embeddings provide a common vector rep-
resentation for words in different languages and
allow looking at the source and target segments at
the same time. In TMop, they are computed us-
ing the method proposed in (Søgaard et al., 2015)
but, instead of considering bilingual documents
as atomic concepts to bridge the two languages,
they exploit the TUs contained in the TM itself.
Given a TU and a 100-dimensional vector repre-
sentation of each word in the source and target
segments, this group of filters (WE) includes: i)
the cosine similarity between the source and tar-
get segment vectors obtained by averaging (or us-
ing the median) the source and target word vec-
tors; ii) the average embedding alignment score
obtained by computing the cosine similarity be-
tween each source word and all the target words
and averaging over the largest cosine score of each
source word; iii) the average cosine similarity be-
tween source/target word alignments; iv) a score
that merges features (ii) and (iii) by complement-
ing word alignments (also in this case obtained us-
ing MGIZA++) with the alignments obtained from
word embedding and averaging all the alignment
weights.

3.3 Policies

Decision policies allow TMop combining the out-
put of the active filters into a final decision for each
TU. Simple decision-making strategies can con-
sider the number of accept and reject judgments,
but more complex methods can be easily imple-
mented by the user (both filters and policy man-
agers can be easily modified and extended by ex-
ploiting well-documented abstract base classes).

TMop currently implements three policies:
OneNo, 20%No and MajorityVoting. The first one
copies a TU in the reject file if at least one filter
rejects it. The second and the third policy take this
decision only if at least twenty or fifty percent of
the filters reject the TU respectively.

These three policies reflect different TM clean-
ing strategies. The first one is a very aggressive
(recall-oriented) solution that tends to flag more
TUs as “bad”. The third one is a more conser-
vative (precision-oriented) solution, as it requires

52

at least half of the judgments to be negative for
pushing a TU in the reject file. Depending on the
user needs and the overall quality of the TM, the
choice of the policy will allow keeping under con-
trol the number of false positives (“bad” TUs ac-
cepted) and false negatives (“good” TUs rejected).

4 Benchmarking

We test TMop on the English-Italian version of
MyMemory,4 one of the world’s largest collabo-
rative public TMs. This dump contains about 11M
TUs coming from heterogeneous sources: aggre-
gated private TMs, either provided by translators
or automatically extracted from the web/corpora,
as well as anonymous contributions of (source,
target) bi-segments. Its uncontrolled sources call
for accurate cleaning methods (e.g. to make it
more accurate, smaller and manageable).

From the TM we randomly extracted a subset
of 1M TUs to compute the statistics of each filter
and a collection of 2,500 TUs manually annotated
with binary labels. Data annotation was done by
two Italian native speakers properly trained with
the same guidelines prepared by the TM owner for
periodic manual revisions. After agreement com-
putation (Cohen’s kappa is 0.78), a reconciliation
ended up with about 65% positive and 35% nega-
tive examples. This pool is randomly split in two
parts. One (1,000 instances) is used as test set
for our evaluation. The other (1,500 instances) is
used to replicate the supervised approach of Barbu
(2015), which leverages human-labelled data to
train an SVM binary classifier. We use it as a
term of comparison to assess the performance of
the different groups of filters.

To handle the imbalanced (65%-35%) data dis-
tribution, and equally reward the correct classifi-
cation on both classes, we evaluate performance
in terms of balanced accuracy (BA), computed as
the average of the accuracies on the two classes
(Brodersen et al., 2010).

In Table 1, different combinations of the four
groups of filters are shown with results aggregated
with the 20%No policy, which, on this data, re-
sults to be the best performing policy among the
ones implemented in TMop. Based on the statis-
tics collected in the learning phase of each
filter, the accept/reject criterion applied in these
experiments considers as “good” all the TUs for

4http://mymemory.translated.net

Filters BA↑
(Barbu, 2015) 77.7
B 52.8
LI 69.0
QE 71.2
WE 65.0
B + LI 55.4
B + QE 70.1
B + WE 68.7
QE + LI 71.7
QE + WE 67.9
LI + WE 68.1
B + QE + LI 72.9
B + WE + LI 70.3
B + QE + WE 73.3
B + QE + LI + WE 76.3

Table 1: Balanced accuracy of different filter combinations
on a 1,000 TU, EN-IT test set. B=Basic, LI=language identi-
fication, QE=quality estimation, WE=word embedding.

which the filter value is below one standard devia-
tion from the mean and “bad” otherwise.

Looking at the results, it is worth noting that the
LI, QE and WE groups, both alone and in combi-
nation, outperform the basic filters (B), which sub-
stantially represent those implemented by com-
mercial tools. Although relying on an external
component (the word aligner), QE filters produce
the best performance in isolation, showing that
word alignment information is a good indicator of
translation quality. The results obtained by com-
bining the different groups confirm their comple-
mentarity. In particular, when using all the groups,
the performance is close to the results achieved by
the supervised method by Barbu (2015), which re-
lies on human-labelled data (76.3 vs. 77.7).

The choice of which filter combination to use
strongly depends on the application scenario and
it is often a trade-off. A first important aspect
concerns the type of user. When the expertise to
train a word aligner is not available, combining B,
WE and LI is the best solution, though it comes
at the cost of lower accuracy. Another aspect is
the processing time that the user can afford. TM
cleaning is an operation conceived to be performed
once in a while (possibly overnight), once the TM
has grown enough to justify a new sanity check.
However, although it does not require real-time
processing, the size of the TM can motivate the
selection of faster filter combinations. An analy-
sis of the efficiency of the four groups, made by

53

counting the number of processed TUs per sec-
ond,5 indicates that B and QE are the fastest filters
(processing on average ∼2,000 TUs/sec.). The LI
filter is slower, processing ∼300 TUs per second,
while the large number of times the cosine similar-
ity score is computed does not allow the WE filter
to process more than 50 TUs per second.

5 Conclusion

We presented TMop, the first open-source tool
for automatic Translation Memory (TM) clean-
ing. We summarised its design criteria, work-
flow and main components, also reporting some
efficiency and performance indicators. TMop is
implemented in Python and can be downloaded,
together with complete documentation, from
https://github.com/hlt-mt/TMOP. Its
license is FreeBSD, a very open permissive non-
copyleft license, compatible with the GNU GPL
and with any use, including commercial.

Acknowledgments

This work has been partially supported by the EC-
funded project ModernMT (H2020 grant agree-
ment no. 645487). The work carried out at
FBK by Masoud Jalili Sabet was sponsored by
the EAMT summer internships 2015 program and
supported by Prof. Heshaam Faili (University of
Tehran). The authors would also like to thank
Translated for providing a dump of MyMemory.

References
Peter Arthern. 1979. Machine Translation and

Computerized Terminology Systems: a Translator’s
Viewpoint. In Translating and the computer. Proc.
of a seminar, pages 77–108, London, UK.

Eduard Barbu. 2015. Spotting False Translation Seg-
ments in Translation Memories. In Proc. of the
Workshop Natural Language Processing for Trans-
lation Memories, pages 9–16, Hissar, Bulgaria.

Michael Bloodgood and Benjamin Strauss. 2014.
Translation Memory Retrieval Methods. In Proc. of
the 14th Conference of the EACL, pages 202–210,
Gothenburg, Sweden.

Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno
Stephan, and Joachim M. Buhmann. 2010. The Bal-
anced Accuracy and Its Posterior Distribution. In
Proc. of the 2010 20th International Conference on
Pattern Recognition, ICPR ’10, pages 3121–3124.

5Experiments were run with a PC with an Intel Core i5
M540 @ 2.53GHz and 6 GB RAM.

José G. C. de Souza, Christian Buck, Marco Turchi,
and Matteo Negri. 2013. FBK-UEdin Participation
to the WMT13 Quality Estimation Shared Task. In
Proc. of the Eighth Workshop on Statistical Machine
Translation, pages 352–358, Sofia, Bulgaria. Asso-
ciation for Computational Linguistics.

José G. C. de Souza, Jesús González-Rubio, Chris-
tian Buck, Marco Turchi, and Matteo Negri. 2014.
FBK-UPV-UEdin Participation in the WMT14
Quality Estimation Shared-task. In Proc. of the
Ninth Workshop on Statistical Machine Translation,
pages 322–328, Baltimore, Maryland, USA.

Konstantinos Chatzitheodoroou. 2015. Improving
Translation Memory Fuzzy Matching by Paraphras-
ing. In Proc. of the Workshop Natural Language
Processing for Translation Memories, pages 24–30,
Hissar, Bulgaria.

Qin Gao and Stephan Vogel. 2008. Parallel Implemen-
tations of Word Alignment Tool. In In Proc. of the
ACL 2008 Software Engineering, Testing, and Qual-
ity Assurance Workshop.

Rohit Gupta, Hanna Bechara, and Constantin Orasan.
2014. Intelligent Translation Memory Matching and
Retrieval Metric Exploiting Linguistic Technology.
In Proc. of Translating and the Computer: Vol. 36.,
pages 86–89.

Rohit Gupta, Constantin Orasan, Marcos Zampieri,
Mihaela Vela, and Josef Van Genabith. 2015. Can
Translation Memories afford not to use paraphras-
ing? In Proc. of the 18th Annual Conference of
the European Association for Machine Translation,
pages 35–42, Antalya, Turkey.

Masoud Jalili Sabet, Matteo Negri, Marco Turchi, and
Eduard Barbu. 2016. An Unsupervised Method for
Automatic Translation Memory Cleaning. In Proc.
of the 54th Annual Meeting of the Association for
Computational Linguistics, Berlin, Germany.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
Off-the-shelf Language Identification Tool. In Proc.
of the ACL 2012 system demonstrations, pages 25–
30. Association for Computational Linguistics.

Yashar Mehdad, Matteo Negri, and Marcello Federico.
2012. Match without a Referee: Evaluating MT
Adequacy without Reference Translations. In Proc.
of the Machine Translation Workshop (WMT2012),
pages 171–180, Montréal, Canada.

Anders Søgaard, Željko Agić, Héctor Martı́nez Alonso,
Barbara Plank, Bernd Bohnet, and Anders Jo-
hannsen. 2015. Inverted indexing for cross-lingual
NLP. In The 53rd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL 2015).

Tom Vanallemeersch and Vincent Vandeghinste. 2015.
Assessing Linguistically Aware Fuzzy Matching in
Translation Memories. In Proc. of the 18th Annual
Conference of the European Association for Ma-
chine Translation, pages 153–160, Antalya, Turkey.

54

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 55–60,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

MMFEAT: A Toolkit for Extracting Multi-Modal Features

Douwe Kiela
Computer Laboratory

University of Cambridge
douwe.kiela@cl.cam.ac.uk

Abstract

Research at the intersection of language
and other modalities, most notably vision,
is becoming increasingly important in nat-
ural language processing. We introduce a
toolkit that can be used to obtain feature
representations for visual and auditory in-
formation. MMFEAT is an easy-to-use
Python toolkit, which has been developed
with the purpose of making non-linguistic
modalities more accessible to natural lan-
guage processing researchers.

1 Introduction

Distributional models are built on the assumption
that the meaning of a word is represented as a
distribution over others (Turney and Pantel, 2010;
Clark, 2015), which implies that they suffer from
the grounding problem (Harnad, 1990). That is,
they do not account for the fact that human se-
mantic knowledge is grounded in the perceptual
system (Louwerse, 2008). There has been a lot
of interest within the Natural Language Processing
community for making use of extra-linguistic per-
ceptual information, much of it in a subfield called
multi-modal semantics. Such multi-modal models
outperform language-only models on a range of
tasks, including modelling semantic similarity and
relatedness (Bruni et al., 2014; Silberer and La-
pata, 2014), improving lexical entailment (Kiela
et al., 2015b), predicting compositionality (Roller
and Schulte im Walde, 2013), bilingual lexicon
induction (Bergsma and Van Durme, 2011) and
metaphor identification (Shutova et al., 2016). Al-
though most of this work has relied on vision
for the perceptual input, recent approaches have
also used auditory (Lopopolo and van Miltenburg,
2015; Kiela and Clark, 2015) and even olfactory
(Kiela et al., 2015a) information.

In this demonstration paper, we describe MM-
FEAT, a Python toolkit that makes it easy to ob-
tain images and sound files and extract visual
or auditory features from them. The toolkit in-
cludes two standalone command-line tools that
do not require any knowledge of the Python pro-
gramming language: one that can be used for
automatically obtaining files from a variety of
sources, including Google, Bing and FreeSound
(miner.py); and one that can be used for extract-
ing different types of features from directories of
data files (extract.py). In addition, the package
comes with code for manipulating multi-modal
spaces and several demos to illustrate the wide
range of applications. The toolkit is open source
under the BSD license and available at https:
//github.com/douwekiela/mmfeat.

2 Background

2.1 Bag of multi-modal words

Although it is possible to ground distributional se-
mantics in perception using e.g. co-occurrence
patterns of image tags (Baroni and Lenci, 2008)
or surrogates of human semantic knowledge such
as feature norms (Andrews et al., 2009), the de
facto method for grounding representations in per-
ception has relied on processing raw image data
(Baroni, 2016). The traditional method for ob-
taining visual representations (Feng and Lapata,
2010; Leong and Mihalcea, 2011; Bruni et al.,
2011) has been to apply the bag-of-visual-words
(BoVW) approach (Sivic and Zisserman, 2003).
The method can be described as follows:

1. obtain relevant images for a word or set of
words;

2. for each image, get local feature descriptors;
3. cluster feature descriptors with k-means to

find the centroids, a.k.a. the “visual words”;

55

4. quantize the local descriptors by comparing
them to the cluster centroids; and

5. combine relevant image representations into
an overall visual representation for a word.

The local feature descriptors in step (2) tend
to be variants of the dense scale-invariant feature
transform (SIFT) algorithm (Lowe, 2004), where
an image is laid out as a dense grid and feature
descriptors are computed for each keypoint.

A similar method has recently been applied to
the auditory modality (Lopopolo and van Mil-
tenburg, 2015; Kiela and Clark, 2015), using
sound files from FreeSound (Font et al., 2013).
Bag-of-audio-words (BoAW) uses mel-frequency
cepstral coefficients (MFCCs) (O’Shaughnessy,
1987) for the local descriptors, although other lo-
cal frame representations may also be used. In
MFCC, frequency bands are spaced along the mel
scale (Stevens et al., 1937), which has the advan-
tage that it approximates human auditory percep-
tion more closely than e.g. linearly-spaced fre-
quency bands.

2.2 Convolutional neural networks

In computer vision, the BoVW method has been
superseded by deep convolutional neural networks
(CNNs) (LeCun et al., 1998; Krizhevsky et al.,
2012). Kiela and Bottou (2014) showed that such
networks learn high-quality representations that
can successfully be transfered to natural language
processing tasks. Their method works as follows:

1. obtain relevant images for a word or set of
words;

2. for each image, do a forward pass through
a CNN trained on an image recognition task
and extract the pre-softmax layer;

3. combine relevant image representations into
an overall visual representation for a word.

They used the pre-softmax layer (referred to as
FC7) from a CNN trained by Oquab et al. (2014),
which was an adaptation of the well-known CNN
by Krizhevsky et al. (2012) that played a key role
in the deep learning revolution in computer vision
(Razavian et al., 2014; LeCun et al., 2015). Such
CNN-derived representations perform much better
than BoVW features and have since been used in
a variety of NLP applications (Kiela et al., 2015c;
Lazaridou et al., 2015; Shutova et al., 2016; Bulat
et al., 2016).

2.3 Related work
The process for obtaining perceptual representa-
tions thus involves three distinct steps: obtaining
files relevant to words or phrases, obtaining repre-
sentations for the files, and aggregating these into
visual or auditory representations. To our knowl-
edge, this is the first toolkit that spans this entire
process. There are libraries that cover some of
these steps. Notably, VSEM (Bruni et al., 2013)
is a Matlab library for visual semantics represen-
tation that implements BoVW and useful func-
tionality for manipulating visual representations.
DISSECT (Dinu et al., 2013) is a toolkit for dis-
tributional compositional semantics that makes it
easy to work with (textual) distributional spaces.
Lopopolo and van Miltenburg (2015) have also re-
leased their code for obtaning BoAW representa-
tions1.

3 MMFeat Overview

The MMFeat toolkit is written in Python. There
are two command-line tools (described below) for
obtaining files and extracting representations that
do not require any knowledge of Python. The
Python interface maintains a modular structure
and contains the following modules:

• mmfeat.miner
• mmfeat.bow
• mmfeat.cnn
• mmfeat.space

Source files (images or sounds) can be obtained
with the miner module, although this is not a re-
quirement: it is straightforward to build an in-
dex of a data directory that matches words or
phrases with relevant files. The miner module au-
tomatically generates this index, a Python dictio-
nary mapping labels to lists of filenames, which
is stored as a Python pickle file index.pkl in the
data directory. The index is used by the bow and
cnn modules, which together form the core of the
package for obtaining perceptual representations.
The space package allows for the manipulation
and combination of multi-modal spaces.

miner Three data sources are currently sup-
ported: Google Images2 (GoogleMiner), Bing Im-
ages3 (BingMiner) and FreeSound4 (FreeSound-
Miner). All three of them require API keys,

1https://github.com/evanmiltenburg/soundmodels-iwcs
2https://images.google.com
3https://www.bing.com/images
4https://www.freesound.org

56

which can be obtained online and are stored in the
miner.yaml settings file in the root folder.

bow The bag-of-words methods are contained in
this module. BoVW and BoAW are accessible
through the mmfeat.bow.vw and mmfeat.bow.aw
modules respectively, through the BoVW and
BoAW classes. These classes obtain feature de-
scriptors and perform clustering and quantization
through a standard set of methods. BoVW uses
dense SIFT for its local feature descriptors; BoAW
uses MFCC. The modules also contain an inter-
face for loading local feature descriptors from
Matlab, allowing for simple integraton with e.g.
VLFeat5. The centroids obtained by the clustering
(sometimes also called the “codebook”) are stored
in the data directory for re-use at a later stage.

cnn The CNN module uses Python bindings
to the Caffe deep learning framework (Jia et
al., 2014). It supports the pre-trained reference
adaptation of AlexNet (Krizhevsky et al., 2012),
GoogLeNet (Szegedy et al., 2015) and VGGNet
(Simonyan and Zisserman, 2015). The interface is
identical to the bow interface.

space An additional module is provided for
making it easy to manipulate perceptual represen-
tations. The module contains methods for aggre-
gating image or sound file representations into vi-
sual or auditory representations; combining per-
ceptual representations with textual representa-
tions into multi-modal ones; computing nearest
neighbors and similarity scores; and calculating
Spearman ρs correlation scores relative to human
similarity and relatedness judgments.

3.1 Dependencies

MMFeat has the following dependencies: scipy,
scikit-learn and numpy. These are standard Python
libraries that are easy to install using your favorite
package manager. The BoAW module addition-
ally requires librosa6 to obtain MFCC descriptors.
The CNN module requires Caffe7. It is recom-
mended to make use of Caffe’s GPU support, if
available, for increased processing speeds. More
detailed installation instructions are provided in
the readme file online and in the documentation
of the respective projects.

5http://www.vlfeat.org
6https://github.com/bmcfee/librosa
7http://caffe.berkeleyvision.org

4 Tools

MMFeat comes with two easy-to-use command-
line tools for those unfamiliar with the Python pro-
gramming language.

4.1 Mining: miner.py

The miner.py tool takes three arguments: the data
source (bing, google or freesound), a query file
that contains a line-by-line list of queries, and a
data directory to store the mined image or sound
files in. Its usage is as follows:

miner.py {bing,google,freesound} \
query_file data_dir [-n int]

The -n option can be used to specify the number of
images to download per query. The following ex-
amples show how to use the tool to get 10 images
from Bing and 100 sound files from FreeSound for
the queries “dog” and “cat”:

$ echo -e "dog\ncat" > queries.txt
$ python miner.py -n 10 bing \

queries.txt ./img_data_dir
$ python miner.py -n 100 freesound \

queries.txt ./sound_data_dir

4.2 Feature extraction: extract.py

The extract.py tool takes three arguments: the type
of model to apply (boaw, bovw or cnn), the data
directory where relevant files and the index are
stored, and the output file where the representa-
tions are written to. Its usage is as follows:

extract.py [-k int] [-c string] \
[-o {pickle,json,csv}] [-s float] \
[-m {vgg,alexnet,googlenet}] \
{boaw,bovw,cnn} data_dir out_file

The -k option sets the number of clusters to use in
the bag of words methods (the k in k-means). The
-c option allows for pointing to an existing code-
book, if available. The -s option allows for sub-
sampling the number of files to use for the cluster-
ing process (which can require significant amounts
of memory) and is in the range 0-1. The tool can
output representation in Python pickle, JSON and
CSV formats. The following examples show how
the three models can easily be applied:

python extract.py -k 100 -s 0.1 bovw \
./img_data_dir ./output_vectors.pkl

python extract.py -gpu -o json cnn \
./img_data_dir ./output_vectors.json

python extract.py -k 300 -s 0.5 -o csv \
boaw ./sound_data_dir ./out_vecs.csv

57

5 Getting Started

The command-line tools mirror the Python in-
terface, which allows for more fine-grained con-
trol over the process. In what follows, we walk
through an example illustrating the process. The
code should be self-explanatory.

Mining The first step is to mine some images
from Google Images:
datadir = ’/path/to/data’
words = [’dog’, ’cat’]
n_images = 10

from mmfeat.miner import *

miner = GoogleMiner(datadir, \
’/path/to/miner.yaml’)

miner.getResults(words, n_images)
miner.save()

Applying models We then apply both the
BoVW and CNN models, in a manner familiar to
scikit-learn users, by calling the fit() method:
from mmfeat.bow import *
from mmfeat.cnn import *

b = BoVW(k=100, subsample=0.1)
c = CNN(modelType=’alexnet’, gpu=True)
b.load(data_dir)
b.fit()
c.load(data_dir)
c.fit()

Building the space We subsequently construct
the aggregated space of visual representations and
print these to the screen:
from mmfeat.space import *

for lkp in [b.toLookup(), c.toLookup()]:
vs = AggSpace(lkp, ’mean’)
print vs.space

These short examples are meant to show how one
can straightforwardly obtain perceptual represen-
tations that can be applied in a wide variety of ex-
periments.

6 Demos

To illustrate the range of possible applications, the
toolkit comes with a set of demonstrations of its
usage. The following demos are available:

1-Similarity and relatedness The demo down-
loads images for the concepts in the well-known
MEN (Bruni et al., 2012) and SimLex-999 (Hill
et al., 2014) datasets, obtains CNN-derived vi-
sual representations and calculates the Spearman
ρs correlations for textual, visual and multi-modal
representations.

2-ESP game To illustrate that it is not necessary
to mine images or sound files and that an exist-
ing data directory can be used, this demo builds
an index for the ESP Game dataset (Von Ahn and
Dabbish, 2004) and obtains and stores CNN rep-
resentations for future use in other applications.

3-Matlab interface To show that local fea-
ture descriptors from Matlab can be used, this
demo contains Matlab code (run dsift.m) that uses
VLFeat to obtain descriptors, which are then used
in the BoVW model to obtain visual representa-
tions.

4-Instrument clustering The demo downloads
sound files from FreeSound for a set of instru-
ments and applies BoAW. The mean auditory rep-
resentations are clustered and the cluster assign-
ments are reported to the screen, showing similar
instruments in similar clusters.

5-Image dispersion This demo obtains images
for the concepts of elephant and happiness and ap-
plies BoVW. It then shows that the former has a
lower image dispersion score and is consequently
more concrete than the latter, as described in Kiela
et al. (2014).

7 Conclusions

The field of natural language processing has
broadened in scope to address increasingly chal-
lenging tasks. While the core NLP tasks will re-
main predominantly focused on linguistic input, it
is important to address the fact that humans ac-
quire and apply language in perceptually rich en-
vironments. Moving towards human-level AI will
require the integration and modeling of multiple
modalities beyond language.

Advances in multi-modal semantics show how
textual information can fruitfully be combined
with other modalities, opening up many avenues
for further exploration. Some NLP researchers
may consider non-textual modalities challenging
or outside of their area of expertise. We hope that
this toolkit enables them in carrying out research
that uses extra-linguistic input.

Acknowledgments

The author was supported by EPSRC grant
EP/I037512/1 and would like to thank Anita Verö,
Stephen Clark and the reviewers for helpful sug-
gestions.

58

References
Mark Andrews, Gabriella Vigliocco, and David Vin-

son. 2009. Integrating experiential and distribu-
tional data to learn semantic representations. Psy-
chological review, 116(3):463.

Marco Baroni and Alessandro Lenci. 2008. Concepts
and properties in word spaces. Italian Journal of
Linguistics, 20(1):55–88.

Marco Baroni. 2016. Grounding distributional seman-
tics in the visual world. Language and Linguistics
Compass, 10(1):3–13.

Shane Bergsma and Benjamin Van Durme. 2011.
Learning bilingual lexicons using the visual similar-
ity of labeled web images. In IJCAI, pages 1764–
1769.

Elia Bruni, Giang Binh Tran, and Marco Baroni. 2011.
Distributional semantics from text and images. In
Proceedings of the GEMS 2011 workshop on ge-
ometrical models of natural language semantics,
pages 22–32. Association for Computational Lin-
guistics.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In ACL, pages 136–145.

Elia Bruni, Ulisse Bordignon, Adam Liska, Jasper Ui-
jlings, and Irina Sergienya. 2013. Vsem: An open
library for visual semantics representation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 187–192,
Sofia, Bulgaria.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni.
2014. Multimodal distributional semantics. Journal
of Artifical Intelligence Research, 49:1–47.

Luana Bulat, Douwe Kiela, and Stephen Clark. 2016.
Vision and Feature Norms: Improving automatic
feature norm learning through cross-modal maps. In
Proceedings of NAACL-HLT 2016, San Diego, CA.

Stephen Clark. 2015. Vector Space Models of Lexical
Meaning. In Shalom Lappin and Chris Fox, editors,
Handbook of Contemporary Semantics, chapter 16.
Wiley-Blackwell, Oxford.

Georgiana Dinu, Nghia The Pham, and Marco Baroni.
2013. DISSECT - DIStributional SEmantics Com-
position Toolkit. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics, pages 31—36, Sofia, Bulgaria.

Yansong Feng and Mirella Lapata. 2010. Visual infor-
mation in semantic representation. In Proceedings
of NAACL, pages 91–99.

Frederic Font, Gerard Roma, and Xavier Serra. 2013.
Freesound technical demo. In Proceedings of the
21st acm international conference on multimedia,
pages 411–412. ACM.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D, 42:335–346.

Felix Hill, Roi Reichart, and Anna Korhonen.
2014. SimLex-999: Evaluating semantic mod-
els with (genuine) similarity estimation. CoRR,
abs/1408.3456.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross B. Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Con-
volutional architecture for fast feature embedding.
In ACM Multimedia, pages 675–678.

Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of
EMNLP, pages 36–45.

Douwe Kiela and Stephen Clark. 2015. Multi- and
cross-modal semantics beyond vision: Grounding
in auditory perception. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2461–2470, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen
Clark. 2014. Improving multi-modal representa-
tions using image dispersion: Why less is sometimes
more. In Proceedings of ACL, pages 835–841.

Douwe Kiela, Luana Bulat, and Stephen Clark. 2015a.
Grounding semantics in olfactory perception. In
Proceedings of ACL, pages 231–236, Beijing, China,
July.

Douwe Kiela, Laura Rimell, Ivan Vulić, and Stephen
Clark. 2015b. Exploiting image generality for lex-
ical entailment detection. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 119–124, Beijing,
China, July. Association for Computational Linguis-
tics.

Douwe Kiela, Ivan Vulić, and Stephen Clark. 2015c.
Visual bilingual lexicon induction with transferred
convnet features. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 148–158, Lisbon, Portugal,
September. Association for Computational Linguis-
tics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet classification with deep con-
volutional neural networks. In Proceedings of NIPS,
pages 1106–1114.

Angeliki Lazaridou, Dat Tien Nguyen, Raffaella
Bernardi, and Marco Baroni. 2015. Unveiling the
dreams of word embeddings: Towards language-
driven image generation. CoRR, abs/1506.03500.

59

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436—444.

Chee Wee Leong and Rada Mihalcea. 2011. Going
beyond text: A hybrid image-text approach for mea-
suring word relatedness. In Proceedings of IJCNLP,
pages 1403–1407.

A. Lopopolo and E. van Miltenburg. 2015. Sound-
based distributional models. In Proceedings of the
11th International Conference on Computational
Semantics (IWCS 2015).

Max M. Louwerse. 2008. Symbol interdependency in
symbolic and embodied cognition. Topics in Cogni-
tive Science, 59(1):617–645.

David G. Lowe. 2004. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110.

Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef
Sivic. 2014. Learning and transferring mid-level
image representations using convolutional neural
networks. In Proceedings of CVPR, pages 1717–
1724.

D. O’Shaughnessy. 1987. Speech communication: hu-
man and machine. Addison-Wesley series in electri-
cal engineering: digital signal processing. Universi-
ties Press (India) Pvt. Limited.

Ali Razavian, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson. 2014. CNN features off-the-
shelf: an astounding baseline for recognition. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages
806–813.

Stephen Roller and Sabine Schulte im Walde. 2013.
A multimodal LDA model integrating textual, cog-
nitive and visual modalities. In Proceedings of
EMNLP, pages 1146–1157.

Ekaterina Shutova, Douwe Kiela, and Jean Maillard.
2016. Black holes and white rabbits: Metaphor
identification with visual features. In Proceedings
of NAACL-HTL 2016, San Diego. Association for
Computational Linguistics.

Carina Silberer and Mirella Lapata. 2014. Learn-
ing grounded meaning representations with autoen-
coders. In Proceedings of ACL, pages 721–732.

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In Proceedings of ICLR.

Josef Sivic and Andrew Zisserman. 2003. Video
google: A text retrieval approach to object match-
ing in videos. In Proceedings of ICCV, pages 1470–
1477.

Stanley Smith Stevens, John Volkmann, and Edwin B.
Newman. 1937. A scale for the measurement of
the psychological magnitude pitch. Journal of the
Acoustical Society of America, 8(3):185—190.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–9.

Peter D. Turney and Patrick Pantel. 2010. From
Frequency to Meaning: vector space models of se-
mantics. Journal of Artifical Intelligence Research,
37(1):141–188, January.

Luis Von Ahn and Laura Dabbish. 2004. Labeling
images with a computer game. In Proceedings of the
SIGCHI conference on human factors in computing
systems, pages 319–326. ACM.

60

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 61–66,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

JEDI: Joint Entity and Relation Detection using Type Inference

Johannes Kirschnick1, Holmer Hemsen1, Volker Markl1,2

1DFKI Project Office Berlin, Alt-Moabit 91c, Berlin
firstname.lastname@dfki.de

2Technische Univeristät Berlin
Database Systems and Information Management Group

Einsteinufer 17, 10587 Berlin, Germany
firstname.lastname@tu-berlin.de

Abstract

FREEBASE contains entities and relation
information but is highly incomplete. Rel-
evant information is ubiquitous in web
text, but extraction deems challenging. We
present JEDI, an automated system to
jointly extract typed named entities and
FREEBASE relations using dependency
pattern from text. An innovative method
for constraint solving on entity types of
multiple relations is used to disambiguate
pattern. The high precision in the evalua-
tion supports our claim that we can detect
entities and relations together, alleviating
the need to train a custom classifier for an
entity type1.

1 Introduction

Finding, tagging and extracting relations in web
text is one of the more challenging tasks in In-
formation Extraction (IE). It consists of correctly
labeling entities as instances of a particular type
(such as Person, Organization or Location) and de-
tecting relations between them, such as worksIn,
bornIn or even more fine grained ones such as re-
ceiveDegree. These relations are stored for fur-
ther analysis in knowledge bases, but often exist-
ing ones are highly incomplete. Min et al. (2013)
report that in the collaborative-edited FREEBASE2

knowledge base 93.8% of the person entities are
missing a place of birth entry. To close the cap au-
tomated methods are needed that can detect these
relations, by analyzing the abundance of web text.

A typical process to detect relations uses the
linking words (pattern) between two entities to la-
bel a relation, but this poses the challenge of deal-
ing with ambiguous pattern.

1Demonstrator is available at jedi.textmining.tu-berlin.de
2Freebase is available at www.freebase.com

Dependency
Parse

Detect Relations
Create Candidate

Multigraph

Pattern Corpus

Input Text Entities and Relations

JE
D

I S
ys

te
m

Figure 1: JEDI System Overview. Text is anno-
tated with dependency information. Candidate en-
tities connecting shortest path pattern are scored
against a corpus. Constraint solving on the rela-
tion types resolves ambiguities and determines the
final relations.

Consider the following sentences that both con-
tain the pattern receive indicating completely dif-
ferent relations: “Bill received his B.A. in Bibli-
cal Studies from Wheaton College.”, and “Leo re-
ceived an Oscar for Revenant.”.

The first sentence contains the binary relation
receiveDegree, linking a person to a degree, but
in the second, the same pattern indicates the per-
sonAward relation. To correctly disambiguate, we
need to incorporate context. This paper proposes
the novel method of using the entity types of mul-
tiple binary relations to solve the disambiguation.

Motivation Typically labeling relations and en-
tities is done in sequence, leading to a pipeline
architecture which first detects entities and subse-
quently tries to link them to extract relations. As
detection errors can easily propagate, there is po-
tential in executing these steps jointly. It is driven
by the motivation that instead of focusing on indi-
vidual binary assignments, multiple entities found
in the text can be used to constraint and restrict
each other’s entity and relation types.

Figure 1 shows an overview of the entire solu-
tion. Entity mentions and potential relations indi-

61

cated by a pattern form a multi graph. Selecting
a particular type for an entity prunes the number
of potential relations that this entity can partici-
pate in. Furthermore, having established a relation
between a pair of entities further restricts the po-
tential relations that can hold between any other
entity and one of the pair’s members due to in-
ferred type restrictions. Thus all candidate entities
in a sentence are considered together to support or
restrict any contained relations.

Contributions This paper presents and evalu-
ates JEDI a system to translate the relation detec-
tion problem into a constraint satisfaction prob-
lem. The graph of entities and potential relations
forms a resolution graph, where each entity is con-
strained on the potential types it can hold. Solv-
ing this problem jointly resolves entity and rela-
tion types without training an entity classifier, al-
lowing to detect the large number of relation and
types defined in FREEBASE.

The evaluation shows high precision across a
variety of texts and relations. We furthermore re-
lease the implementation as open source and pro-
vide a web demonstrator to showcase the system.

2 Related Work

Most prominent for relation extraction is the idea
that entities that co-occur with a similar context
have similar meanings, driven by the distribu-
tional hypothesis (Harris, 1954). The shortest
path kernel is a good estimator for approximat-
ing the distribution and has been used by Bunescu
and Mooney (2005). Culotta and Sorensen (2004)
showed that it is possible to train a relation clas-
sifier on the extracted pattern to predict a small
number of relations.

Kate and Mooney (2010) proposed a card style
resolution algorithm, which infers recursively the
most probable relation assignment for a given en-
tity pair, but still requires an entity classifier and
only works for a small number of relations.

Mintz et al. (2009) proposed to use clustering
to group together entity co-occurrences based on
their shortest path, to extract relation types. This
eliminates the need for a classifier for relation de-
tection, but requires one for entity extraction. Pat-
tern can only be assigned to one relation and thus
capture only the most dominating meaning. The
problem of relation extraction can also be solved
using matrix decomposition, as shown by Riedel
et al. (2013). Their work targets FREEBASE rela-

tions, but demands a complex training step which
decomposes the co-occurrence matrix and is de-
pendent on the text domain as well.

The SOFIE system (Suchanek et al., 2009) uses
logical reasoning to find instances of a relation
in text. It does not require any pre-training as it
learns the extraction rules alongside the relation
detection, but is limited in the amount of data it
can process, because of the costly resolution step.
Similar to our approach Singh et al. (2013) pro-
posed to model the entity tagging and relation ex-
traction problem jointly, using belief propagation
to find relation instances, but targeting a much
smaller number of relations. The idea to incorpo-
rate types into the relation extraction process was
explored by Koch et al. (2014) improving the re-
lation detection performance.

Contrary to existing systems JEDI does not need
a pre-trained entity classifier. We leverage a very
large corpus of shortest path patterns as reference
and use constraint propagation to solve ambigui-
ties. Our system also maps into the large number
of predefined FREEBASE relations, alleviating the
need to manually specify any relations. The sys-
tem can be easily incorporated into a more com-
plex IE pipeline that uses the results for example
for entity linking.

3 Pattern Corpus

To detect meaningful patterns we use FREEPAL

(Kirschnick et al., 2014). A dataset of 10 mil-
lion lexico-syntactic pattern-relation assignments
built using distant supervision (Mintz et al., 2009).
Each pattern was generated from a shortest depen-
dency path between two known FREEBASE enti-
ties in a sentence that participate in a known rela-
tion. The corpus uses CLUEWEB09 as text basis
and the FACC1 entity annotations (Gabrilovich et
al., 2013) to generate a distribution of relations
over pattern. An entropy score indicates the degree
of ambiguity, which we use for scoring the relation
assignments. Overall more than 75% of the con-
tained pattern were observed with more than one
relation, requiring a disambiguation method.

4 Jointly Detecting Entities and
Relations

The process of detecting relations is described in
Figure 2 and consists of the following steps, de-
scribed in the following:

• Pre-process input text

62

1. Input Text

2. Candidate
Entities

3. Shortest Path Between Entities 4. Pattern-relation assignment Database
Entity1 (X)
Bill Gothard
Bill Gothard
B.A.

Entity2 (Y)
B.A.
Wheaton College
Wheaton College

Shortest Path
[X] receive [Y]
[X] receive from [Y]
receive [X] from [Y]

Dependency Path
[X] receive [Y]

[X] receive from [Y]

receive [X[from [Y]

Typed Relation
personDegree
personNomiantedForAward
personReceivedAward
personEducationInstitution
personEmployeeHistoryCompany
awardPresentingOrganization
awardPresentedBy
degreeFromEducationInstitution

B.A. {Degree, Award}
Bill Gothard {Person, Award}
Wheaton College {Educational Institution, Organization}

 BA = Degree Wheaton College = Educational Institute
 BA = Award Wheaton College = Organization

 Bill Gothard = Person B.A. = Degree
 Bill Gothard = Person B.A. = Award

 Bill Gothard = Person Wheaton College = Educational Institution
 Bill Gothard = Person Wheaton College = Organization

Type Domain of Entities

Constraints

Entity1 (X)
Bill Gothard
Bill Gothard
B.A.

Entity2 (Y)
B.A.
Wheaton College
Wheaton College

Relation
personDegree
personEducationInstitution
degreeFromEducationInstitution

7. Solution to constraint problem

Bill
Gothard

B.A.

Wheaton
College[X] receive from [Y]

[X] receive [Y]

5. Entity Multigraph

receive [X] from [Y]

Figure 2: Solution overview: Candidate Entities (2) are selected from the source text (1). Shortest path
in the dependency tree is extracted (3), pruned against pattern-relation assignment database (4), type
information is translated into a multi graph (5) which defines the constraint satisfaction problem (6). The
solution yields an assignment of entity types and relations (7). (Types are omitted for readability)

• Selection of candidate entities
• Extract shortest dependency path (pattern)

between all pairwise candidate entities
• Match the pattern using the FREEPAL corpus

to determine candidate relations
• Translate the relation detection into a con-

straint satisfaction problem which determines
the potential types of all entities and thus the
connecting relations

4.1 Pre-Processing

The target text is annotated with part-of-speech
tags and dependency information using the Stan-
ford CoreNLP Toolkit (Manning et al., 2014). Co-
reference resolution is applied to further link en-
tity mentions across sentence boundaries provid-
ing more link targets between entities.

4.2 Selecting Candidate Entities

Instead of trying to find any of the 10 million pat-
tern from the pattern corpus in a given text, where
every match would provide a candidate subject

and object pair for a relation, we reverse the prob-
lem and produce a set of candidate entities and try
to match the connecting pattern with the corpus.

JEDI works with any candidate entities, pro-
duced for example by an existing entity tagger or
just based on simple heuristics. One such simple
heuristic is to use nouns, with the extension to join
together adjacent nouns to effectively form noun
phrases. Nouns are grouped, if they are directly
adjacent and connected through a dependency link
of the type poss or nsubj, while also allowing the
connecting word “of”. This captures entities of
the form “University of Illinois” and “Wheaton
College”, but fails to separate appositions such as
“Bishop Oldham” or ”Professor Smith”, but this
can be later rectified. This heuristic can be easily
changed as the remaining processing does not de-
pend on the text form or type of the entities. Using
nouns also helps in finding entities generally not
covered by specific NER systems, such as ”bibli-
cal studies” as a field of study, without specifically
training a tagger for this target type.

63

4.3 Extracting the Shortest Path

Finding the shortest path between two entities
equals finding a path in the dependency graph be-
tween the head words of each entity. We use a
simplified instance of Collins Head finding rule
(Collins, 2003) to determine the head in multi-
word entities. The pattern is derived by picking
up all tokens in their lemmatized form on the path,
substituting the start with X and the end with the
label Y. To make the pattern more readable, all to-
kens are sorted based on their appearance in the
source text.

This produces pattern of the form [X] receive
[Y] [1-dobj-2,1-nsubj-0]. The pattern is further
enriched with the individual dependency annota-
tions to differentiate similar textual pattern3.

Conjunctions We apply a simple normalization
to conjunctions inspired by CLAUSIE (Corro and
Gemulla, 2013). Removing the last token in pat-
terns containing a conjunction dependency.

Coreference Resolution Coreference informa-
tion expands mentions across sentence bound-
aries. Mentions that are connected through a chain
are treated as if they are the same entity, if the
source of the chain is marked as a candidate entity.
Thus we substitute the coreference target with the
source in the extraction process.

4.4 Pattern-Relation Assignments

The shortest path generation process generates a
large number of pattern. To reduce the search
space, all extracted pattern are matched against the
FREEPAL corpus. This produces for each match
a list of potential relations that this pattern has
been observed with. Only pattern with an entropy
smaller than 3.74 and that have been observed at
least five times are considered. This reduces the
noise by filtering out very unspecific pattern such
as [X] be [Y], but at the same time still allows for
a lot of ambiguous pattern.

Each pattern is associated with a list of FREE-
BASE relations, for which the argument types are
retrieved. This is used to restrict the X and Y en-
tity types of the pattern respectively. We use the
FREEBASE type normalization presented in FIGER

(Ling and Weld, 2012) to reduce the number of en-
tity types down to 112.

3Dependency information for all pattern is omitted in the
paper for readability, but used during the resolution process.

4This entropy cutoff was derived empirically.

To address the problem of arbitrary granularity,
we broaden the accepted argument types using a
simple type hierarchy. For example, the diedIn
relation, which indicates that a person died in a
particular location, restricts the subject argument
to be of type deceased person. While this is very
specific it prevents linking to this entity in other
relations, which only accept the more generic per-
son type. The type hierarchy is generated by re-
trieving the type hints category for each type, us-
ing the FREEBASE API. While this does not pro-
duce a complete type hierarchy, it adds the most
commonly used sub types for a given type.

4.5 Constraint Solving using Type Inference

The extracted pattern for each pair of entities form
a multi-graph, where edges are assigned a confi-
dence score based on the FREEPAL entropy. The
resolution process tries to eagerly generate a type
assignment for each entity, so that at least one edge
between connected vertices, a particular relation,
holds according to the type requirements. The
choco library (Prud’homme et al., 2015) is used
for constraint solving. Each edge is transformed
into a constraint, using logical conjunctions be-
tween all connected vertex pairs and disjunction
for each edge between two vertices and their types.
This emits for each relation a constraint with all
possible type and subtype combinations.

Scoring Constraint solving produces more than
one potential solution. We use a scoring mecha-
nism to rank the different solutions, taking into ac-
count the number of matched entities, the entropy
score taken from the FREEPAL dataset, as well as
the type hierarchy. This ensures that if possible,
the most specific type assignment for a large num-
ber of entities is favored in the resolution process.

Backtracking If there is no assignment possi-
ble - there is a conflict in the graph. Conflicts
can arise when detecting relations that are not part
of the corpus for a given pattern or wrong pat-
tern as a result of erroneously linking entities in
a co-reference chain. Backtracking is used to re-
peatedly remove vertices and all associated edges
from the graph until either a solution is found or
all nodes are removed in which case there is no
solution. To find the highest scoring assignment
backtracking is used to evaluate multiple different
graphs, even when a solution is found.

64

Relation P R F
Education Degree 0 0 0
Place of Birth 0.76 0.60 0.68
Place of Death 0.89 0.27 0.41
Student Graduate 0.78 0.41 0.53

Table 1: Baseline performance. Precision, Re-
call and F-measure without Coreference Resolu-
tion and type inference using the Noun strategy.

Stopping The search is terminated early when
an adjustable time limit is hit, to ensure that the
most probable solution is found early. This trade-
off guarantees that the algorithm finishes in fi-
nite time, at the expense of not always finding the
global optimal solution.

Result Once a solution is found, all vertices of
the graph are bound to a type. The qualifying re-
lation between any two connected vertices is se-
lected as the one which has the highest score as-
sociated with it. This produces triples of the form
<entity, entity, relation>.

5 Evaluation

The “Relation Extraction Corpus”5 is used for
evaluation – comparing precision, recall and F-
measure. The corpus contains text snippets for
four separate relations: person holding an educa-
tion degree educationDegree (1580 triples), place
of death (1955 triples), place of birth (8703
triples) and person graduated from education in-
stitute studentGraduate (32653 triples). Each ex-
cerpt is annotated by humans as to whether it sup-
ports a particular binary relation.

5.1 Results

Baseline Table 1 shows the baseline perfor-
mance of the noun strategy without constraint
solving, using the most likely relation for an iden-
tified pattern based on the FREEPAL entropy score.

The results show high precision for all relations
except for education degree. This supports the
use of the FREEPAL dataset for relation extrac-
tion, as it covers already a large variety of pattern
instances. No instances of the education degree
relation were found as almost all pattern for this
relation are dominated by the received award rela-
tion.

5https://code.google.com/p/relation-extraction-corpus/

Relation P R F
Education Degree 0.94 0.61 0.74
Place of Birth 0.77 0.60 0.67
Place of Death 0.88 0.35 0.50
Student Graduate 0.76 0.37 0.50

Table 2: Type inference performance without
Coreference Resolution using the Noun strategy.

Resolution Strategies and Comparison Results
Named Entities Nouns Akbik (2014)

Relation P R F P R F P R F
Education Degree 0.96 0.03 0.05 0.96 0.74 0.83 0.87 0.29 0.44
Place of Birth 0.77 0.52 0.62 0.83 0.58 0.68 0.82 0.19 0.31
Place of Death 0.92 0.48 0.63 0.92 0.48 0.63 0.82 0.13 0.22
Student Graduate 0.78 0.51 0.62 0.77 0.51 0.61 0.92 0.17 0.29

Table 3: Performance with type inference and
Coreference Resolution using Named Entities
and Nouns as entity markers, comparing to Ak-
bik (2014), reporting Precision, Recall and F-
measures.

Type Inference The effect of type inference can
be seen in Table 2. Instances of the degree rela-
tion are found with high precision, while the other
relations are still found, highlighting that the reso-
lution process is not introducing errors.

Table 3 shows the performance of the entity
candidate selection strategy (See section 4.2), in-
cluding Coreference Resolution. The Noun strat-
egy is compared with Named Entities obtained
with the Stanford NER classifier (Finkel et al.,
2005). For reference we present the results from
Akbik et al. (2014), where the authors used a man-
ual process to find a set of extraction pattern for a
given relation.

Using the simple NOUNS strategy for selecting
candidate entities performs on par or better to the
NER strategy. Coreferences further improve the
F-measure by up to .11 points. This supports our
claim that we can detect entities and relations to-
gether, alleviating the need to train a custom clas-
sifier for an entity type - nouns are sufficient. The
education degree relation (not part of the results)
is a good example for an entity type, where the
standard NER tagger almost always fails to iden-
tify the degree entity.

6 Conclusion

We present JEDI a system to extract typed named
entities and FREEBASE relations together. Short-
est dependency pattern are used to link entities,
and constraint solving on the relation argument

65

Figure 3: Demo system showing output of the re-
lation detection process with found entity types
and connecting FREEBASE relations.

types is used to disambiguate pattern with multi-
ple meanings.

The evaluation shows that the method increases
the precision and recall scores for ambiguous re-
lations significantly. As the resolution takes ad-
vantage of entities that are connected in chains, it
is further possible to detect n-ary relations using
only binary pattern. The method proves to work
well without any pre-training of NER classifiers
and validates that pattern learned using distant su-
pervision are effective. This makes it possible to
expand existing knowledge bases with information
found in web text.

A web demonstrator of the complete sys-
tem as shown in Figure 3 is available at
jedi.textmining.tu-berlin.de. The system is imple-
mented as an UIMA module such that it can be
easily incorporated into existing IE pipelines, the
source code is hosted at github.com/jkirsch/jedi.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments. Johannes Kirschnick
received funding from the German Federal Min-
istry of Economics and Energy (BMWi) un-
der grant agreement 01MD15007B (SD4M) and
Holmer Hemsen under 01MD15010A (SDW).

References
Alan Akbik, Thilo Michael, and Christoph Boden.

2014. Exploratory Relation Extraction in Large Text
Corpora. In COLING, pages 2087–2096.

Razvan C Bunescu and Raymond J Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In HLT/EMNLP, pages 724–731.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. Computational lin-
guistics, 29(4):589–637.

Luciano Del Corro and Rainer Gemulla. 2013.
ClausIE : Clause-Based Open Information Extrac-
tion. In WWW, pages 355–365.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. ACL, pages 423–
429.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. ACL, pages 363–370.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. FACC1: Freebase anno-
tation of ClueWeb corpora, Version 1 (Release date
2013-06-26, Format version 1, Correction level 0).

ZS Harris. 1954. Distributional structure. Word, pages
775–794.

Rohit J. Kate and Raymond J. Mooney. 2010. Joint en-
tity and relation extraction using card-pyramid pars-
ing. CoNLL, pages 203–212.

Johannes Kirschnick, Alan Akbik, and Holmer Hem-
sen. 2014. Freepal: A Large Collection of Deep
Lexico-Syntactic Patterns for Relation Extraction.
In LREC, pages 2071–2075.

Mitchell Koch, John Gilmer, Stephen Soderland, and
Daniel S Weld. 2014. Type-Aware Distantly Super-
vised Relation Extraction with Linked Arguments.
In EMNLP, pages 1891–1901.

Xiao Ling and DS Weld. 2012. Fine-Grained Entity
Recognition. AAAI, pages 94–100.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL (System Demon-
strations), pages 55–60.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for
relation extraction with an incomplete knowledge
base. In HLT-NAACL, pages 777–782.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. ACL, pages 1003–1011.

Charles Prud’homme, Jean-Guillaume Fages, and
Xavier Lorca, 2015. Choco Documentation. Avail-
able at http://www.choco-solver.org.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation Extraction
with Matrix Factorization and Universal Schemas.
In HLT-NAACL, pages 74–84.

Sameer Singh, Sebastian Riedel, Brian Martin, Jiap-
ing Zheng, and Andrew McCallum. 2013. Joint
inference of entities, relations, and coreference. In
AKBC, pages 1–6.

Fabian M. Suchanek, Mauro Sozio, and Gerhard
Weikum. 2009. SOFIE: A Self-Organizing Frame-
work for Information Extraction. In WWW 2009.

66

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 67–72,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

OpenDial: A Toolkit for Developing Spoken Dialogue Systems
with Probabilistic Rules

Pierre Lison
Language Technology Group
University of Oslo (Norway)

plison@ifi.uio.no

Casey Kennington∗
Department of Computer Science

Boise State University (USA)
casey.kennington@cs.boisestate.edu

Abstract

We present a new release of OpenDial,
an open-source toolkit for building and
evaluating spoken dialogue systems. The
toolkit relies on an information-state ar-
chitecture where the dialogue state is rep-
resented as a Bayesian network and acts as
a shared memory for all system modules.
The domain models are specified via prob-
abilistic rules encoded in XML. Open-
Dial has been deployed in several appli-
cation domains such as human–robot in-
teraction, intelligent tutoring systems and
multi-modal in-car driver assistants.

1 Introduction

The recent advent of voice-controlled personal as-
sistants (such as Siri, Cortana or Alexa) has pop-
ularised the use of speech as a means for interfac-
ing with everyday devices. These dialogue sys-
tems are built on complex architectures that in-
clude components such as speech recognition, lan-
guage understanding, dialogue management, gen-
eration, speech synthesis, situation awareness and
multi-modal inputs/outputs. To allow developers
to abstract from implementation details and fo-
cus on high-level domain modelling, a number
of software frameworks have been developed to
glue together these components, such as Olym-
pus/Ravenclaw (Bohus and Rudnicky, 2009), the
AT&T Statistical Dialog toolkit (Williams et al.,
2010), InproTK (Baumann and Schlangen, 2012)
or IrisTK (Skantze and Al Moubayed, 2012).

Existing frameworks can be grouped in two cat-
egories. On the one hand, symbolic frameworks
rely on finite-state automata or logical methods
to represent and reason over the current dialogue

∗The present work was conducted while the author was
affiliated to CITEC, Bielefeld University (Germany).

state. While they provide fine-grained control over
the dialogue, these approaches are often poor at
handling errors and uncertainty. On the other
hand, statistical frameworks capture the interac-
tion dynamics in a probabilistic manner and seek
to optimise the dialogue behaviour from data.
However, these methods typically require large
amounts of data, making them difficult to apply
in domains for which dialogue data is scarce.

In this paper, we present a new release of Open-
Dial1, a Java-based, open-source software toolkit
designed to facilitate the development of spoken
dialogue systems in domains such as personal as-
sistants, in-car driving interfaces, intelligent tutor-
ing systems, or even autonomous robots. Open-
Dial adopts a hybrid approach that combines the
benefits of logical and statistical methods to di-
alogue modelling into a single framework. The
toolkit relies on probabilistic rules to represent the
internal models of the domain (i.e. the probabil-
ity and utility models employed to update the dia-
logue state and make decisions) in a compact and
human-readable format. Crucially, the probabilis-
tic rules can contain unknown parameters that can
be efficiently estimated from dialogue data using
supervised or reinforcement learning.

This paper is structured as follows. Section 2
presents the toolkit architecture and Section 3 ex-
plains how to specify dialogue domains with prob-
abilistic rules. Section 4 reviews the toolkit’s im-
plementation and Section 5 its deployment in sev-
eral application domains. Finally, Sections 6 and 7
relate OpenDial with other frameworks and sum-
marise the key contributions of the toolkit.

2 Architecture

OpenDial relies on a information-state architec-
ture (Larsson and Traum, 2000) in which all com-

1http://www.opendial-toolkit.net

67

Dialogue
state

Speech
recognition

Language
Understanding

Dialogue
management

Generation

Speech
synthesis

Situation
awareness Extra-verbal

modalities
...

User
utterance uu

User dialogue
act au

System
action am System

utterance um

Figure 1: Information-state architecture for the
toolkit, with the dialogue state acting as a central
shared memory for all system components.

ponents work together on a shared memory that
represents the current dialogue state. This dia-
logue state is factored into distinct variables, each
representing a particular aspect of the interaction
(e.g. the user intention, the dialogue history or the
external context). The dialogue state is encoded
as a Bayesian network, which is a directed graphi-
cal model where the nodes represent the state vari-
ables and the edges are conditional dependencies.
The key benefit of this probabilistic representation
of the dialogue state is the ability to capture uncer-
tainties and partially observable variables, which
are commonplace in most dialogue domains.

Figure 1 illustrates the general architecture. The
dialogue system is composed of a set of compo-
nents which are continuously monitoring the di-
alogue state for relevant changes. When such a
change occurs, the corresponding modules can re-
act to such events and further modify the dialogue
state, thereby generating new updates. A typical
information flow starts with the speech recogniser,
which periodically outputs recognition hypothe-
ses uu.2 Language understanding maps these hy-
potheses into representations of the dialogue act
au expressed by the user. Dialogue management
then selects the system action am to perform. If
the selected action is a communicative act, lan-
guage generation is triggered to find its linguistic
realisation, denoted um. Finally, the constructed
utterance is sent to the speech synthesiser.

OpenDial provides two ways to integrate new
components into a dialogue system. The first is
to specify a model, which is a collection of prob-
abilistic rules (see next section). Each model is

2We denote user-specific variables with the subscript u
and machine-specific variables with the subscript m.

associated with one or more trigger variables,
i.e. variables that trigger the instantiation of the
rules upon their update. Alternatively, one can
also implement an external module from scratch
and connect it to the dialogue state. OpenDial pro-
vides a Java API to easily integrate such external
modules, which may either wait for update events
from the dialogue state or run asynchronously.

3 Dialogue domains

OpenDial is fully domain-independent. To apply it
to a particular domain, the system developer pro-
vides a specification of the dialogue domain en-
coded in XML. This XML file contains the fol-
lowing information:

1. The initial dialogue state;

2. A collection of domain models, which are
themselves composed of probabilistic rules;

3. Prior distributions for unknown parameters in
the probabilistic rules (if any);

4. Optional configuration settings.

3.1 Probabilistic rules
The probabilistic rules in the domain models are
expressed as if...then...else constructions that map
logical conditions on some state variables to prob-
abilistic effects on some other state variables. Due
to space constraints, we only provide here a brief
overview of the formalism, the reader is invited to
consult Lison (2015) for more details.

The rule conditions are expressed as logical for-
mulae, using the usual logic operators (conjunc-
tions, disjunctions, and negations) and various bi-
nary relations (equality, inequalities, string match-
ing, etc.). The conditions may also include under-
specified (i.e. free) variables which are universally
quantified on the top of the rule. Each condition is
associated with a distribution over mutually exclu-
sive effects, where each effect is an assignment of
values to some state variable(s). Here is a simple
example of probabilistic rule:

∀x, if (au =Request(x) ∧ am =Verify(x)) then{
P (au

′=Confirm(x)) = 0.9

The rule expresses a prediction on the future user
dialogue act a′u based on the last user dialogue act
au and system’s action am. The rule stipulates that
if the user requested some x and the system replied

68

by asking whether the request is indeed x, the user
is expected to comply and confirm their request
with probability 0.9. A void effect with no pre-
diction is implicitly associated with the remaining
probability mass (0.1 here). The universal quan-
tification on x indicates that this probability is in-
dependent of the type of user request.

The if...then...else structure of the probabilistic
rules partitions the state space into groups of simi-
lar states (corresponding to the logical conditions).
In particular, the sequential ordering of the con-
ditions enable dialogue developers to write rules
with “backoff strategies”, starting from the most
specific conditions and then gradually moving to
more generic cases if the top conditions do not
apply. Such partitioning of the state space is im-
portant to ensure the probabilistic rules are able to
generalise to new, unseen situations.

Probabilistic rules can express both conditional
probability distributions and utility functions. At
runtime, the rules are instantiated as latent nodes
in the Bayesian network representing the dialogue
state. The rules can therefore be seen as high-level
templates for the construction of directed graph-
ical models (Lison, 2015). The latest release of
OpenDial offers several new functionalities such
as the support for custom functions and the ability
to directly manipulate relational structures – such
as dependency trees, semantic graphs or hierarchi-
cal task networks – in the probabilistic rules.

3.2 Example

Listing 1 provides a simple example of dialogue
domain in XML. The domain specifies the be-
haviour of a elevator that can move between three
floors through a voice-controlled interface. The
interaction starts with a system prompt (“Which
floor do you want?”) followed by the user request
(e.g. “third floor, please”). If the request is un-
certain, the elevator should ask the user to confirm
(e.g. “Do you want the third floor?”).

The domain contains an initial state with one
variable (the initial prompt) and three models: an
intent recognition model mapping the user utter-
ance uu to the corresponding dialogue act au, an
action selection model encoding the utility of the
system actions am, and a third model responsible
for generating the system responses um and pre-
dicting the next user act a′u. Each model is as-
sociated with a trigger variable and is composed
of a set of probabilistic rules. The rules are writ-

<domain>
<initialstate>

<variable id=”u m”>
<value prob=”1”>Which floor do you want?</value>

</variable>
</initialstate>

<!−− Intent recognition −−>
<model trigger=”u u”>

<rule>
<case>

<condition operator=”and”>
<if var=”X” relation=”in” value=”[first,second,third]”/>
<if var=”u u” relation=”contains” value=”{X} (floor)?”/>

</condition>
<effect prob=”1”>

<set var=”a u” value=”Request({X})”/>
</effect>

</case>
<case>

<condition operator=”and”>
<if var=”u u” relation=”contains” value=”(yes|exactly)”/>
<if var=”a m” relation=”=” value=”Verify({X})”/>

</condition>
<effect prob=”1”>

<set var=”a u” value=”Confirm({X})”/>
</effect>

</case>
</rule>

</model>

<!−− Action selection model −−>
<model trigger=”a u”>

<rule>
<case>

<condition operator=”or”>
<if var=”a u” relation=”=” value=”Request({X})”/>
<if var=”a u” relation=”=” value=”Confirm({X})”/>

</condition>
<effect util=”1”>

<set var=”a m” value=”GoTo({X})”/>
</effect>
<effect util=”0.5”>

<set var=”a m” value=”Verify({X})”/>
</effect>

</case>
<case>

<effect util=”−2”>
<set var=”a m” value=”GoTo({X})”/>

</effect>
</case>

</rule>
</model>

<!−− Generation and user action models −−>
<model trigger=”a m”>

<rule>
<case>

<condition>
<if var=”a m” relation=”=” value=”GoTo({X})”/>

</condition>
<effect util=”1”>

<set var=”u m” value=”Ok, going to the {X} floor”/>
</effect>

</case>
<case>

<condition>
<if var=”a m” relation=”=” value=”Verify({X})”/>

</condition>
<effect util=”1”>

<set var=”u m” value=”Do you want the {X} floor?”/>
</effect>

</case>
</rule>

<rule>
<case>

<condition operator=”and”>
<if var=”a m” relation=”=” value=”Verify({X})”/>
<if var=”a u” relation=”=” value=”Request({X})”/>

</condition>
<effect prob=”0.9”>

<set var=”a uˆp” value=”Confirm({X})”/>
</effect>

</case>
</rule>

</model>

</domain>

Listing 1: Dialogue domain example in XML.

69

ten as sequences of if-then-else cases, where each
case has a (possibly void) condition and a set of
corresponding effects. Curly brackets such as {X}
denote underspecified variables.

Intent recognition contains one single rule
which maps utterances matching the pattern “x
(floor)?” where x ∈ [“first”, “second”,“third”]
to the dialogue act Request(x), and maps the re-
sponses “yes” or “exactly” following the system
action Verify(x) to the dialogue act Confirm(x). This
rule is deterministic, since all its effects have a
probability 1 if their condition is met. A default
value is assigned to au if no condition applies.

The action selection model expresses the utility
of two system actions: GoTo(x), representing the
action of moving to the floor x, and the clarifica-
tion Verify(x). The two actions respectively have a
utility of 1 and 0.5 if the last user act is Request(x)
or Confirm(x). Otherwise, the action GoTo(x) has
a negative utility of -2. The action GoTo(x) will
therefore be selected if the probability of the user
act Request(x) is higher than 0.8, while Verify(x)
will be chosen if this probability is lower.

The generation model simply maps the sys-
tem actions to their corresponding surface realisa-
tions.3 Finally, the prediction model (correspond-
ing to the example in the previous section) states
that the probability of the user confirming their re-
quest when asked to do so is set to 0.9.

The example could of course be extended in
many ways – for instance by explicitly specifying
the current floor as state variable, and providing
prior distributions on the floor requested by the
user, conditioned on the current one. The user
guide on the OpenDial website provides several
additional examples of dialogue domains.

3.3 Parameter Estimation

The probabilistic rules in the example were associ-
ated with fixed probabilities or utilities. However,
in most domains, these values are difficult to de-
termine in advance and are best learned from em-
pirical data. The toolkit allows dialogue develop-
ers to estimate unknown parameters via Bayesian
learning. In practice, this is done by replacing
the probability or utility values in the rules by pa-
rameters associated with prior distributions. For
instance, the utilities 1, 0.5 and -2 in the action
selection model can be replaced by three Gaus-

3In a real elevator, an external module will of course need
to convert the actions GoTo(x) into a physical motion.

sians representing the spread of possible utility
values, and the probability 0.9 in the prediction
rule can be replaced by a Dirichlet expressing the
prior belief about the user response. System de-
velopers can then exploit dialogue data to auto-
matically learn the posterior distributions for these
parameters. Two methods have been developed:
supervised learning from Wizard-of-Oz data (Li-
son, 2015) and reinforcement learning from real or
simulated experience (Lison, 2013). Both learning
methods assume that the rule structure – the map-
ping between conditions and effects – is provided
by the developer, while the numerical parameters
are determined via statistical estimation. Indeed,
system developers often have a good grasp of the
general structure of the dialogue domain but are
typically unable to quantify the precise probabil-
ity of a prediction or utility of an action.

4 Implementation

OpenDial is implemented in Java and is released
under an open-source MIT license. The software
comes along with a graphical user interface which
allows developers to run a given dialogue domain
and test its behaviour in an interactive manner.
Three views are available in the interface. The
“chat window” view, shown in Figure 2(a), dis-
plays the dialogue history and let the user en-
ter new (text or speech) inputs. In the “dialogue
monitor” view, shown in Figure 2(b), the user
can inspect the Bayesian network representing the
current dialogue state, perform various inference
queries (e.g. calculating marginal distributions),
and look at previous state updates. This last fea-
ture is particularly useful for debugging. Finally,
the “domain editor” view provides an interactive
editor for the XML domain file.

To ensure the system can quickly react to new
events, most processes operate in anytime mode,
which implies they can be gracefully interrupted
and deliver their outputs at any time. Both exact
and approximate inference are employed to update
the dialogue state and plan system actions.

A collection of plugins extends the toolkit with
additional modules. Plugins are notably available
to connect OpenDial to Nuance and AT&T cloud-
based speech APIs, to the MaltParser for data-
driven dependency parsing, the Sphinx speech
recogniser and the MARY speech synthesiser.4

4See http://developer.nuance.com, http://developer.att.com/
apis/speech (to be closed), http://cmusphinx.sourceforge.net,

70

(a) Chat window (b) Dialogue state monitor

Figure 2: Graphical user interface for OpenDial.

5 Application Domains

OpenDial has been deployed in several applica-
tion domains, either directly as an end-to-end di-
alogue system, or as a specific component in a
larger software architecture, typically to handle di-
alogue state tracking and management tasks.

An important application domain is human–
robot interaction. Lison (2015) illustrates how
OpenDial is used in a human–robot interaction do-
main where a humanoid robot is instructed to navi-
gate through a simple environment, fetch an object
and bring it to a particular landmark. The exper-
iment shows in particular how the parameters of
probabilistic rules can be efficiently learned from
limited amounts of Wizard-of-Oz data.

OpenDial was used in another human–robot
interaction domain with multiple human partic-
ipants. Kennington et al. (2014) describe how
OpenDial was employed as the primary dialogue
manager in a twenty-questions game scenario be-
tween a robot and up to three human participants.
Using Wizard-of-Oz data, the parameters were es-
timated with the toolkit’s training regime. Dur-
ing evaluation, multiple instantiations of Open-
Dial were used to model the interaction with
each participant. Even though the instantiations
were mutually independent, all shared the same
modules, allowing communication between them
when turn-taking decisions needed to be made.

OpenDial was also deployed as a dialogue man-
ager in an in-car dialogue scenario (Kousidis et
al., 2014). The objective was to deliver upcom-
ing calendar entries to the driver (e.g. “on Tues-
day you have lunch with John at the cafeteria”)

http://www.maltparser.org and http://mary.dfki.de.

Figure 3: Driver’s view from the OpenDS driving
simulator [http://www.opends.eu].

via speech and the toolkit was employed to deter-
mine when the speech should be interrupted. The
driver could also indicate to the system via speech
or a head nod that the interrupted speech should
continue. Information from the simulated driving
environment (see Figure 3) was used to make the
system “situationally aware” and able to react to
dangerous events by interrupting speech, allowing
the driver to focus on the primary task of driving.
OpenDial was employed to dynamically track the
state of the dialogue system over time.

6 Discussion

The purpose of OpenDial is to combine the expres-
sivity of logic-based frameworks with the robust-
ness and adaptivity of statistical systems. In line
with logic-based frameworks (Larsson and Traum,
2000; Bohus and Rudnicky, 2009), the toolkit pro-
vides system developers with powerful abstrac-
tions to structure the domain models, since proba-
bilistic rules can make use of complex logical for-
mulae and universal quantification. And in line
with statistical approaches (Young et al., 2013),

71

OpenDial is also able to explicitly handle uncer-
tain knowledge and stochastic relations between
variables thanks to its probabilistic representation
of the dialogue state and its ability to estimate un-
known parameters from data.

The presented framework is very general and
can be employed to design a wide spectrum of
models, from traditional handcrafted models (such
as finite-state automata) on one extreme to prob-
abilistic models fully estimated from data on the
other extreme. The choice of model within this
spectrum boils down to a design decision based on
the relative availabilities of training data and do-
main knowledge. Furthermore, OpenDial enables
users to quickly develop a working system with
little or no data, then gradually extend and refine
their models as more data becomes available.

The primary focus of OpenDial is on high-
level processes such as language understanding,
dialogue management and generation. Com-
pared to frameworks such as IrisTK (Skantze and
Al Moubayed, 2012) or InproTK (Baumann and
Schlangen, 2012), OpenDial offers more limited
support for lower-level interaction control such
as attentional behaviours or turn-taking strategies.
How to reconcile the “low-level” and “high-level”
aspects of dialogue modelling in a principled man-
ner is an important question for future work.

7 Conclusion

We presented a new release of OpenDial, a Java-
based toolkit for developing and evaluating spo-
ken dialogue systems. The toolkit rests on a hy-
brid modelling framework that seeks to combine
the benefits of logical and probabilistic approaches
to dialogue. The dialogue state is represented as
a Bayesian network, and the domain models are
specified using probabilistic rules. Unknown rule
parameters can be automatically estimated from
dialogue data using Bayesian learning.

OpenDial is in our view particularly well-suited
to handle dialogue domains that exhibits both
a complex state-action space and high levels of
noise and uncertainty. Typical examples of such
dialogue domains are human-robot interaction,
virtual assistants and tutoring systems. These do-
mains must often deal with state-action spaces that
include multiple tasks to perform in rich interac-
tion contexts. They are also confronted with sub-
stantial levels of uncertainty, arising from speech
recognition errors and partially observable envi-

ronments. Due its hybrid modelling approach, the
toolkit is able to capture such dialogue domains
in a relatively small set of probabilistic rules and
associated parameters, allowing them to be tuned
from modest amounts of training data, which is a
critical requirement in many applications.

Source code and documentation

The www.opendial-toolkit.net website presents the
release along with the source code and a step-by-
step user guide. A screencast is also available at
https://www.youtube.com/watch?v=X8x8Qj5Z7Ag.

References
T. Baumann and D. Schlangen. 2012. The InproTK

2012 release. In NAACL-HLT Workshop on Future
Directions and Needs in the Spoken Dialog Commu-
nity, pages 29–32, Montréal, Canada.

D. Bohus and A. Rudnicky. 2009. The RavenClaw di-
alog management framework: Architecture and sys-
tems. Computer Speech & Language, 23(3):332–
361.

C. Kennington, K. Funakoshi, Y. Takahashi, and
M. Nakano. 2014. Probabilistic multiparty dialogue
management for a game master robot. In Proceed-
ings of the ACM/IEEE international conference on
Human-robot interaction, pages 200–201.

S. Kousidis, C. Kennington, T. Baumann,
H. Buschmeier, S. Kopp, and D. Schlangen.
2014. A Multimodal In-Car Dialogue System That
Tracks The Driver’s Attention. In Proceedings of
ICMI, Istanbul, Turkey.

S. Larsson and D. R. Traum. 2000. Information state
and dialogue management in the TRINDI dialogue
move engine toolkit. Natural Language Engineer-
ing, 6(3-4):323–340.

P. Lison. 2013. Model-based Bayesian reinforcement
learning for dialogue management. In Proceedings
of the 14th Annual Conference of the International
Speech Communication Association, Lyon, France.

P. Lison. 2015. A hybrid approach to dialogue man-
agement based on probabilistic rules. Computer
Speech & Language, 34(1):232 – 255.

G. Skantze and S. Al Moubayed. 2012. IrisTK: A
statechart-based toolkit for multi-party face-to-face
interaction. In Proceedings of the 14th International
Conference on Multimodal Interaction (ICMI 2012),
pages 69–76, New York, USA.

J. Williams, I. Arizmendi, and A. Conkie. 2010.
Demonstration of AT&T Let’s Go: A production-
grade statistical spoken dialog system. In Proceed-
ings of the the IEEE Spoken Language Technology
Workshop, pages 157–158.

S. Young, M. Gasic, B. Thomson, and J. Williams.
2013. POMDP-based statistical spoken dialogue
systems: A review. Proceedings of the IEEE,
PP(99):1–20.

72

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 73–78,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

MUSEEC: A Multilingual Text Summarization Tool

Marina Litvak1, Natalia Vanetik1, Mark Last2, and Elena Churkin1

1Department of Software Engineering
Shamoon College of Engineering, Beer Sheva, Israel
{marinal,natalyav}@sce.ac.il, elenach@ac.sce.ac.il

2Department of Information Systems Engineering
Ben Gurion University of the Negev, Beer Sheva, Israel

mlast@bgu.ac.il

Abstract

The MUSEEC (MUltilingual SEntence
Extraction and Compression) summariza-
tion tool implements several extractive
summarization techniques – at the level of
complete and compressed sentences – that
can be applied, with some minor adapta-
tions, to documents in multiple languages.

The current version of MUSEEC pro-
vides the following summarization meth-
ods: (1) MUSE – a supervised summa-
rizer, based on a genetic algorithm (GA),
that ranks document sentences and ex-
tracts top–ranking sentences into a sum-
mary, (2) POLY – an unsupervised sum-
marizer, based on linear programming
(LP), that selects the best extract of docu-
ment sentences, and (3) WECOM – an un-
supervised extension of POLY that com-
piles a document summary from com-
pressed sentences. In this paper, we pro-
vide an overview of MUSEEC methods
and its architecture in general.

1 Introduction

High quality summaries can significantly reduce
the information overload of many professionals in
a variety of fields. Moreover, the publication of
information on the Internet in an ever–increasing
variety of languages dictates the importance of de-
veloping multi–lingual summarization tools that
can be readily applied to documents in multiple
languages.

There is a distinction between extractive sum-
marization that is aimed at the selection of a sub-
set of the most relevant fragments – mostly com-
plete sentences – from a source text, and abstrac-
tive summarization that generates a summary as a

reformulated synopsis expressing the main idea of
the input documents.

Unlike the abstractive summarization methods,
which require natural language processing oper-
ations, language-independent summarizers work
in an extractive manner, usually via ranking frag-
ments of a summarized text by a relevance score
and selecting the top-ranked fragments (e.g., sen-
tences) into a summary. Because sentence scor-
ing methods, like MUSE (MUltilingual Sentence
Extractor) (Last and Litvak, 2012), use a greedy
approach, they cannot necessarily find the best ex-
tract out of all possible combinations of sentences.

Another approach, based on the maximum cov-
erage principle (McDonald, 2007; Gillick and
Favre, 2009), tries to find the best subset of ex-
tracted sentences. This problem is known as NP-
hard (Khuller et al., 1999), but an approximate so-
lution can be found by the POLY algorithm (Lit-
vak and Vanetik, 2013) in polynomial time.

Given the tight length constraints, extractive
systems that select entire sentences are quite lim-
ited in the quality of summaries they can produce.
Compressive summarization seeks to overcome
this limitation by compiling summaries from com-
pressed sentences that are composed of strictly rel-
evant information(Knight and Marcu, 2002). WE-
COM (Weighted COMpression) summarization
approach (Vanetik et al., 2016) combines methods
for term weighting and sentence compression into
a weighted compression model. WECOM extends
POLY by utilizing the choice of POLY’s objective
functions for the term-weighting model.

In this paper, we present MUSEEC, a multi-
lingual text summarization platform, which cur-
rently implements three single-document sum-
marization algorithms: MUSE (Last and Lit-
vak, 2012), POLY algorithm (Litvak and Vanetik,
2013), and WECOM (Vanetik et al., 2016).

73

Figure 1: MUSEEC pipeline

2 MUSEEC: Overview

MUSEEC can be applied to documents in multi-
ple languages. The current version was tested on
nine languages: English, Hebrew, Arabic, Persian,
Russian, Chinese, German, French, and Spanish,
and its summarization quality was evaluated on
three languages: English, Hebrew and Arabic.1

The sections below provide brief descriptions of
the system architecture and its main components.

2.1 MUSEEC Architecture
As shown in Figure 1, MUSEEC runs a pipeline
that is composed of the following components:
1. Preprocessing. MUSEEC can work with docu-
ments written in any language by treating the text
as a sequence of UTF-8 characters. It performs the
following pre-processing operations: (1) sentence
segmentation, (2) word segmentation, (3) stem-
ming, and (4) stop-word removal. The last two
operations are skipped if they are unavailable for
a given language. Some optional, linguistic fea-
tures require Part-of Speech (POS) tagging as a
pre-processing step as well.
2. Training. This stage is optional and it is rel-
evant only for the supervised MUSE algorithm.
Given a set of training parameters, MUSE finds
the best vector of weights for a linear combination
of chosen sentence features. The resulting vector
(trained model) can be saved and used for future
summarization of documents in the same or any
other language.
3. Ranking. At this stage, entire sentences or their
parts (in case of compressive summarization) are
ranked.
4. Sentence Compression. This stage is also op-
tional and it is relevant only for compressive sum-
marization performed by WECOM. Given ranked
sentence parts, new, shorter sentences are com-
piled and ranked.

1MUSEEC also participated in MultiLing 2011, 2013,
and 2015 contests on English, Hebrew and Arabic, and
demonstrated excellent results.

5. Extraction. Complete sentences are selected
in the case of MUSE and POLY, and compressed
sentences in the case of WECOM.
6. Postprocessing. The generated summaries can
be post-processed by anaphora resolution (AR)
and named entity (NE) tagging operations, if
the corresponding tools are provided for a given
language. MUSEEC utilizes Stanford CoreNLP
package for English.
7. Results Presentation. Summaries are pre-
sented in two formats: sentences highlighted in
the original document, selected by the user from
a list of input documents, and a list of extracted
sentences shown in their original order. The user
can also sort sentences by their rank and see their
scores.
MUSEEC allows the user to setup various sum-
marization parameters, general and specific for a
chosen algorithm, which are listed in Table 1. The
table does not contain explicit WECOM settings
because running WECOM equivalent to running
POLY with “compressive” choice for the summary
type.

2.2 MUltilingual Sentence Extractor (MUSE)

MUSE implements a supervised learning ap-
proach to extractive summarization, where the
best set of weights for a linear combination of sen-
tence scoring metrics is found by a GA trained
on a collection of documents and their gold stan-
dard summaries. MUSE training can be performed
from the MUSEEC tool. The obtained weighting
vector is used for sentence scoring in future sum-
marizations. Since most sentence scoring methods
have a linear computational complexity, only the
training phase of MUSE, which may be applied
in advance, is time-consuming. In MUSEEC, one
can use ROUGE-1 and ROUGE-2, Recall (Lin and
Hovy, 2003) 2 as fitness functions for measuring
summarization quality—similarity with gold stan-

2We utilized the language-independent implementation of
ROUGE that operates Unicode characters (Krapivin, 2014)

74

Parameter Description Possible Default
name values value

General
Input path Documents folder Path name
Output path Summaries folder Path name
Summary type Summarization Compressive, Extractive

approach Extractive
Method Summarization MUSE, POLY MUSE (extr.),

method WECOM (comp.)
Limit by Summary length unit Words, Sentences,

Ratio, Characters Words
Limit Summary length limit Numeric value Depends

on unit
AR Anaphora resolution Check box unchecked
NER Named Entity tagging Check box unchecked

MUSE
Mode Train a new model, Train, Summarize, Summarize

summarize documents Evaluate
evaluate summarizer

Model Model to save Path name
(training mode), or
model to use
(summarize mode)

Sent. features Sentence scoring 31 basic metrics, 31 basic metrics
features 75 linguistic features

GA training
Ratio split Ratio of training data [0..1] 1
Population GA settings 500
Size GA settings 100
Elite count GA settings 5
Rouge Rouge type as 1, 2 Rouge-1

a fitness func.
POLY

Objective Optimization 8 functions, Function 2
function function described in in Section 2.3

Section 2.3

Table 1: MUSEEC general and method-specific
parameters.

dard summaries, which should be maximized dur-
ing the training. The reader is referred to (Litvak
et al., 2010) for a detailed description of the opti-
mization procedure implemented by MUSE.

The user can choose a subset of sentence met-
rics that will be included by MUSE in the lin-
ear combination. By default, MUSEEC will use
the 31 language-independent metrics presented
in (Last and Litvak, 2012). MUSEEC also allows
the user to employ additional, linguistic features,
which are currently available only for the English
language. These features are based on lemmatiza-
tion, multi-word expressions (MWE), NE recogni-
tion (NER), and POS tagging, all performed with
Stanford CoreNLP package. The list of linguistic
features is available in (Dlikman, 2015).

The training time of the GA is proportional to
the number of GA iterations3 multiplied by the
number of individuals in a population, times the
fitness (ROUGE) evaluation time. The summa-
rization time (given a model) is linear in number
of terms for all basic features.

3On average, in our experiments the GA performed 5− 6
iterations of selection and reproduction before reaching con-
vergence.

2.3 POLYnomial summarization with
POLYtopes (POLY)

Following the maximum coverage principle, the
goal of POLY, which is an unsupervised summa-
rizer, is to find the best subset of sentences that,
under length constraints, can be presented as a
summary. POLY uses an efficient text represen-
tation model with the purpose of representing all
possible extracts4 without computing them explic-
itly, that saves a great portion of computation time.
Each sentence is represented by a hyperplane, and
all sentences derived from a document form hyper-
plane intersections (polytope). Then, all possible
extracts can be represented by subplanes of hyper-
plane intersections that are not located far from the
boundary of the polytope. POLY is aimed at find-
ing the extract that optimizes the chosen objective
function.

MUSEEC provides the following categories of
objective functions, described in detail in (Litvak
and Vanetik, 2013).
1. Maximal weighted term sum, that maximizes
the information coverage as a weighted term sum
with following weight options supported:

1. Term sum: all terms get weight 1;

2. POS F: terms appearing earlier in the text get
higher weight;

3. POS L: terms appearing close to the end of
the text get higher weight;

4. POS B: terms appearing closer to text bound-
aries (beginning or end) get higher weight;

5. TF: weight of a term is set to its frequency in
the document;

6. TF IDF: weight of a term is set to its tf*idf
value;

2. McDonald – maximal sentence coverage and
minimal sentence overlap, that maximizes the
summary similarity to the text and minimizes the
similarity between sentences in a summary, based
on the Jaccard similarity measure (based on (Mc-
Donald, 2007));
3. Gillick – maximal bigram sum and minimal
sentence overlap, that maximizes the information
coverage as a bigram sum while minimizing the
similarity between sentences (based on (Gillick

4exponential in the number of sentences

75

and Favre, 2009)).
All functions produce term weights in [0, 1] that
are then used for calculating the importance scores
of each sentence.

Like in MUSE, the sentences with the highest
score are added to the summary in a greedy man-
ner. The overall complexity of POLY is polyno-
mial in number of sentences. Further details about
the POLY algorithm can be found in (Litvak and
Vanetik, 2013).

2.4 WEighted Compression (WECOM)

In WECOM (Vanetik et al., 2016), we shorten
sentences by iteratively removing Elementary
Discourse Units (EDUs), which were defined as
grammatically independent parts of a sentence
in (Marcu, 1997). We preserve the important
content by optimizing the weighting function that
measures cumulative importance and preserve a
valid syntax by following the syntactic structure
of a sentence. The implemented approach consists
of the following steps:
Term weight assignment. We apply a weighting
model (using one of the options available for
POLY) that assigns a non-negative weight to each
occurrence of every term in all sentences of the
document.
EDU selection and ranking. At this stage,
we prepare a list of candidate EDUs for re-
moval. First, we generate the list of EDUs from
constituency-based syntax trees (Manning and
Schütze, 1999) of sentences. Then, we omit
from the list those EDUs that may create a
grammatically incorrect sentence if they were
to be removed. Finally, we compute weights
for all remaining EDU candidates from term
weights obtained in the first stage and sort them
by increasing weight.
Budgeted sentence compression and selection.
We define a summary cost as its length measured
in words or characters5. We are given a budget
for the summary cost, for example, the maximal
number of words in a summary. The compressive
part of WECOM is responsible for selecting
EDUs in all sentences such that
(1) the weight to cost ratio of the summary is
maximal; and
(2) the summary length does not exceed a given
budget.

5depends on the user’s choice of a summary maximal
length

The compressed sentences are expected to be
more succinct than the originals, to contain the
important content from the originals, and to be
grammatically correct. The compressed sentences
are selected to a summary by the greedy manner.
The overall complexity of WECOM is bound by
Nlog(N), where N is a number of terms in all
sentences.

3 Experimental Results

Tables 2, 3, and 4 contain the summarized re-
sults of automated evaluations for the MultiL-
ing 2015, single-document summarization (MSS)
task. The quality of the summaries is measured
by ROUGE-1 (Recall, Precision, and F-measure),
(C.-Y, 2004). We also demonstrate the absolute
ranks of each submission–P-Rank, R-Rank, and
F-Rank–with their scores sorted by Precision, Re-
call, and F-measure, respectively. Only the best
submissions (in terms of F-measure) for each par-
ticipating system are presented and sorted in de-
scending order of their F-measure scores. Two
systems–Oracles and Lead–were used as top-line
and baseline summarizers, respectively. Oracles
compute summaries for each article using the
combinatorial covering algorithm in (Davis et al.,
2012)–sentences were selected from a text to max-
imally cover the tokens in the human summary.
Since the Oracles system can actually “see” the
human summaries, it is considered as the optimal
algorithm and its scores are the best scores that ex-
tractive approaches can achieve. The Lead system
simply extracts the leading substring of the body
text of the articles having the same length as the
human summary of the article.

system P score R score F score P-Rank R-Rank F-Rank

Oracles 0.601 0.619 0.610 1 1 1
MUSE 0.488 0.500 0.494 2 3 2
CCS 0.477 0.495 0.485 4 6 3
POLY 0.475 0.494 0.484 5 8 5
EXB 0.467 0.495 0.480 9 13 4
NTNU 0.470 0.456 0.462 13 12 17
LCS-IESI 0.461 0.456 0.458 15 15 18
UA-DLSI 0.457 0.456 0.456 17 18 16
Lead 0.425 0.434 0.429 20 24 20

Table 2: MSS task. English.

As can be seen, MUSE outperformed all other
participating systems except for CCS in Hebrew.
CCS (the CCS-5 submission, to be precise) uses
the document tree structure of sections, subsec-
tions, paragraphs, and sentences, and compiles a
summary from the leading sentences of recursive

76

system P score R score F score P-Rank R-Rank F-Rank

CCS 0.202 0.213 0.207 1 1 1
MUSE 0.196 0.210 0.203 2 2 2
POLY 0.189 0.203 0.196 4 4 6
EXB 0.186 0.205 0.195 5 5 4
Oracles 0.182 0.204 0.192 6 6 5
Lead 0.168 0.178 0.173 12 13 12
LCS-IESI 0.181 0.170 0.172 13 7 14

Table 3: MSS task. Hebrew.

system P score R score F score P-Rank R-Rank F-Rank

Oracles 0.630 0.658 0.644 1 1 1
MUSE 0.562 0.569 0.565 2 4 2
CCS 0.554 0.571 0.562 4 3 3
EXB 0.546 0.571 0.558 8 2 7
POLY 0.545 0.560 0.552 10 9 9
LCS-IESI 0.540 0.527 0.531 11 13 12
Lead 0.524 0.535 0.529 13 12 13

Table 4: MSS task. Arabic.

bottom-up interweaving of the node leading sen-
tences, starting from leaves (usually, paragraphs
in a section). POLY got very close scores, though
it is an unsupervised approach and its comparison
to a supervised summarizer is not fair.

MUSEEC also participated in the multi-
document summarization (MMS) task, on En-
glish, Hebrew and Arabic. MUSE got first place
on Hebrew, and 2nd places on English and Ara-
bic languages, out of 9 participants. POLY got
third place on Hebrew, 4th place on English, and
5th place on Arabic, out of 9 participants. We
explain the differences between scores in Hebrew
and other languages by the lack of NLP tools for
this language. For example, none of the competing
systems performed stemming for Hebrew. Also,
it is possible that the quality of the gold standard
summaries or the level of agreement between an-
notators in Hebrew was lower than in other lan-
guages.

WECOM was evaluated in (Vanetik et al., 2016)
on three different datasets (DUC 2002, DUC 2004,
and DUC 2007) using automated and human ex-
periments. Both automated and human scores
have shown that compression significantly im-
proves the quality of generated summaries. Ta-
ble 5 contains results for POLY and WECOM
summarizers on the DUC 2002 dataset. Statis-
tical testing (using a paired T-test) showed that
there is a significant improvement in ROUGE-
1 recall between ILP concept-based extraction
method of Gillick and Favre (2009) and WECOM
with weights generated by Gillick and Favre’s
method. Another significant improvement is be-
tween ILP extraction method of McDonald (2007)
and WECOM with weights generated by McDon-

ald’s method.

System R-1 R R-1 P R-1 F R-2 R R-2 P R-2 F
POLY + Gillick 0.401 0.407 0.401 0.160 0.162 0.160
WECOM + Gillick 0.410* 0.413 0.409 0.166 0.166 0.165
POLY + McDonald 0.393 0.407 0.396 0.156 0.159 0.156
WECOM + McDonald 0.401* 0.403 0.399 0.158 0.158 0.157
POLY + POS F 0.448 0.453 0.447 0.213 0.214 0.212
WECOM + POS F 0.450 0.450 0.447 0.211 0.210 0.210

Table 5: ROUGE-1 and -2 scores. DUC 2002.

Practical running times for MUSE (summariza-
tion) and POLY are tens of milliseconds per a text
document of a few thousand words. WECOM
running time is strictly dependent on the running
time of dependency parsing performed by Stan-
ford CoreNLP package, which takes 2−3 seconds
per sentence. Given pre-saved pre-processing re-
sults, WECOM takes tens of milliseconds per doc-
ument as well.

4 Possible Extensions

MUSEEC functionality can be easily extended us-
ing its API. New algorithms can be added by im-
plementing new ranking and/or compression mod-
ules of the pipeline. The pipeline is dynamically
built before running a summarization algorithm,
and it can be configured by a programmer6. The
currently implemented algorithms can also be ex-
tended. For example, a new sentence feature for
MUSE can be implemented by preparing one con-
crete class implementing a predefined interface.
Using Java reflection, it does not require changes
in any other code. New objective functions can
be provided for POLY by implementation of one
concrete class implementing the predefined inter-
face and adding a few rows in the objective func-
tions factory for creation instances of a new class
(using factory method design pattern). Using de-
pendency injections design pattern, MUSEEC can
switch from Stanford CoreNLP package to any
other tool for text preprocessing. MUSEEC is
totally language-independent and works for any
language with input texts provided in UTF-8 en-
coding. If no text processing tools for a given
language are provided, MUSEEC skips the rele-
vant stages in its pipeline (for example, it does
not perform stemming for Chinese). Providing
new NLP tools can improve MUSEEC summa-
rization quality on additional languages. The sub-
sequent stages in the MUSEEC pipeline (sentence

6Because building pipeline requires programming skills,
this option cannot be applied from GUI.

77

ranking and compression) are totally language-
independent and work with structured data gener-
ated during pre-processing. The optional capabil-
ities of NE tagging and AR in the post-processing
stage may be also extended with additional NLP
tools for specific languages.

The programmer and user guidelines for ex-
tending and using MUSEEC can be provided upon
request.

5 Final Remarks

In this paper, we present MUSEEC - a plat-
form for summarizing documents in multiple lan-
guages. MUSEEC implements several variations
of three single-document summarization methods:
MUSE, POLY, and WECOM. The big advantage
of MUSEEC is its multilinguality. The system has
been successfully evaluated on benchmark docu-
ment collections in three languages (English, Ara-
bic, and Hebrew) and tested on six more lan-
guages. Also, MUSEEC has a flexible architec-
ture and API, and it can be extended to other algo-
rithms and languages.

However, MUSEEC has the following limita-
tions: all its methods, especially compressive, are
dependent on the pre-processing tools, in terms of
summarization quality and performance. In order
to improve coherency of the generated summaries,
the MUSEEC user can apply AR as well as NE
tagging to the generated summaries. More sophis-
ticated post-processing operations performed on
the extracted text in MUSEEC can further improve
the user experience.

The MUSEEC tool, along with its
code, is available under a BSD license on
https://bitbucket.org/elenach/
onr_gui/wiki/Home. In the future, we intend
to prepare a Web application allowing users to
apply MUSEEC online.

Acknowledgments

This work was partially funded by the U.S. De-
partment of the Navy, Office of Naval Research.

References
Lin C.-Y. 2004. ROUGE: A Package for Auto-

matic Evaluation of summaries. In Proceedings of
the Workshop on Text Summarization Branches Out
(WAS 2004), pages 25–26.

S.T. Davis, J.M. Conroy, and J.D. Schlesinger. 2012.
OCCAMS – An Optimal Combinatorial Covering

Algorithm for Multi-document Summarization. In
Proceedings of the IEEE 12th International Confer-
ence on Data Mining Workshops, pages 454–463.

A. Dlikman. 2015. Linguistic features and ma-
chine learning methods in single-document
extractive summarization. Master’s thesis, Ben-
Gurion University of the Negev, Beer-Sheva, Israel.
http://www.ise.bgu.ac.il/faculty/mlast/papers/Thesis-
ver7.pdf.

D. Gillick and B. Favre. 2009. A scalable global model
for summarization. In Proceedings of the NAACL
HLT Workshop on Integer Linear Programming for
Natural Language Processing.

S. Khuller, A. Moss, and J. Naor. 1999. The budgeted
maximum coverage problem. Information Precess-
ing Letters, 70(1):39–45.

K. Knight and D. Marcu. 2002. Summarization be-
yond sentence extraction: A probabilistic approach
to sentence compression. Artificial Intelligence,
139:91–107.

E. Krapivin. 2014. JRouge—
Java ROUGE Implementation.
https://bitbucket.org/nocgod/jrouge/wiki/Home.

M. Last and M. Litvak. 2012. Cross-lingual training
of summarization systems using annotated corpora
in a foreign language. Information Retrieval, pages
1–28, September.

C.-Y. Lin and E. Hovy. 2003. Automatic evaluation
of summaries using N-gram co-occurrence statistics.
In NAACL ’03: Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology, pages 71–78.

M. Litvak and N. Vanetik. 2013. Mining the gaps:
Towards polynomial summarization. In Proceed-
ings of the International Joint Conference on Nat-
ural Language Processing, pages 655–660.

M. Litvak, M. Last, and M. Friedman. 2010. A new
approach to improving multilingual summarization
using a Genetic Algorithm. In ACL ’10: Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 927–936.

C. D. Manning and H. Schütze. 1999. Foundations of
statistical natural language processing, volume 999.
MIT Press.

D. Marcu. 1997. From discourse structures to text
summaries. In Proceedings of the ACL, volume 97,
pages 82–88.

R. McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Ad-
vances in Information Retrieval, pages 557–564.

N. Vanetik, M. Litvak, M. Last, and E. Churkin. 2016.
An unsupervised constrained optimization approach
to compressive summarization. Manuscript submit-
ted for publication.

78

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 79–84,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Language Muse: Automated Linguistic Activity Generation
for English Language Learners

Nitin Madnani Jill Burstein John Sabatini Kietha Biggers Slava Andreyev
{nmadnani,jburstein,jsabatini,kbiggers,sandreyev}@ets.org

Educational Testing Service
Princeton, NJ 08541

Abstract

Current education standards in the U.S. re-
quire school students to read and under-
stand complex texts from different subject
areas (e.g., social studies). However, such
texts usually contain figurative language,
complex phrases and sentences, as well as
unfamiliar discourse relations. This may
present an obstacle to students whose na-
tive language is not English — a growing
sub-population in the US. 1 One way to
help such students is to create classroom ac-
tivities centered around linguistic elements
found in subject area texts (DelliCarpini,
2008). We present a web-based tool that
uses NLP algorithms to automatically gen-
erate customizable linguistic activities that
are grounded in language learning research.

1 Introduction
Recent educational standards adopted by several
states in the U.S. (CCSSO, 2010) explicitly em-
phasize the need for students to read progressively
more complex texts in different subject areas, to
prepare for college and careers. However, to accom-
plish this, learners need to have a grasp of linguistic
features related to vocabulary, word senses, figura-
tive language, English conventions, and discourse
structures.

English language learners (ELLs) generally
struggle to acquire English language skills: reading,
writing, speaking, and listening. These learners
could be disadvantaged further if there were simply
an increase in the complexity of texts without con-
current scaffolding to help them with the demands
likely to enter the curriculum as a result of the
new Standards (Coleman and Goldenberg, 2012).

1See http://www.ncela.us/files/uploads/
9/growingLEP_0809.pdf

This suggests the need for subject area teachers to
incorporate a more linguistically-based approach
to support content comprehension (Christie, 1989;
Christie, 1999). Yet, teachers often lack the train-
ing necessary to identify English language features
that may challenge diverse groups of ELLs (Slavin
and Cheung, 2004; Walqui and Heritage, 2012).

In this paper, we present Language Muse, an
open-access, web-based tool that can address these
needs.2 Specifically, Language Muse can help
subject area teachers support ELLs by automat-
ically generating customizable activities derived
from actual texts used in their classrooms. The
activities are generated using several existing NLP
algorithms and are designed to help ELLs with mul-
tiple aspects of language learning needed to support
content comprehension: vocabulary, grammatical
structures, and discourse & text organization.

Although Language Muse is related to existing
work in the NLP literature on automatic question
generation (Mitkov and Ha, 2003; Brown et al.,
2005; Heilman and Smith, 2010), it can generate
multiple activities for teachers’ own texts, cover a
significantly larger set of language constructs, and
offer teachers much more customizability.

In subsequent sections, we first provide a de-
scription of the Language Muse NLP. Next, we
describe how teachers interact with the backend
and create activities. Finally, we present the results
of a survey conducted with actual ELL teachers,
and conclude with future work.

2 NLP Backend
Language Muse relies on a backend that uses NLP
techniques and resources to identify a variety of
linguistic features contained in an input text. The
features being identified can be categorized as: (a)
lexical entities (single word and multi-word expres-
sions), (b) syntactic structure, and (c) rhetorical

2http://languagemuse.10clouds.com.

79

(a) Lexical Entities
Cognates Identified using a manually-created dictionary that was verified by a native

Spanish speaker (most U.S. ELLs speak Spanish as their native language).
Academic Words &
Definitions

Words that describe complex and abstract concepts, and are used across disci-
plines, e.g., analyze, benefit. Identified using a manually-created list and defi-
nitions extracted using the Wordnik API (http://developer.wordnik.
com).

Frequent Concepts Words that appear repeatedly across the text. Identified using a heuristic that
measures repetitions across paragraphs.

Multiword Expres-
sions

Idioms, Phrasal Verbs, etc. Identified using a rank-ratio based collocation
detection algorithm trained on the Google Web1T n-gram corpus (Futagi et al.,
2008)

Contractions Identified using regular expressions defined on constituency parses.
Complex Words Morphologically complex or irregular verbs. Identified using a rule-based

morphological analyzer (Leacock and Chodorow, 2003).
Morphological
Variants

Generated using an algorithm that first over-generates variants using rules and
then filters using co-occurrence statistics computed over Gigaword.

Synonyms Generated using a thresholded combination of WordNet (Fellbaum, 1998), a
distributional thesaurus (Lin, 1998), and SMT-based paraphrases (Bannard and
Callison-Burch, 2005).

Antonyms Generated using WordNet.
Homonyms Generated using a manually-created list (Burstein et al., 2004).

(b) Syntactic Structure
Note: All modules below use regular expressions on constituency parses.

Relative Clauses Sentences containing an explicit relative clause.
1+ Clauses Sentences containing 1 independent clause and >= 1 one dependent clause.

Note that this can also include sentences with relative clauses.
Complex NPs Noun phrases with a hyphenated adjective or a prepositional phrase modifier.
Complex Verbs Verb phrases with >= 2 verb forms, e.g., will have gone, plans to leave

(c) Rhetorical and Discourse Relations
Note: All modules below use an adapted rule-based discourse analyzer (Burstein et al., 1998).

Cause-Effect Terms indicating a cause-effect relation between text segments, e.g., “The
discovery of fossils of tropical plants in Antarctica led to the hypothesis that
. . . ”

Compare-Contrast Terms indicating a comparison or contrast between text segments, e.g., “He was
a wise and patient leader; however, his son . . . ”

Evidence & Details Terms indicating specific evidence or details between text segments, e.g., “Re-
cent theories, such as the influence of plate tectonics on the movement of
continents, have . . . ”

Table 1: The inventory of features provided by the backend NLP engine in Language Muse.

80

and discourse relations. Before we describe each
category in detail, it is important to note that since
the primary use case for Language Muse is to help
teachers plan appropriate classroom activities for
ELLs, it is important for the automatically gener-
ated activities to be as accurate as possible. There-
fore, for many of the features, we rely on manually
crafted resources, either directly or indirectly as a
filter for a noisier statistical approach.

Table 1 shows the linguistic features that our
system can identify in the three aforementioned
categories and provides a brief description of the
backend module is used to generate it.

3 Activity Generation
In this section, we describe how users interact with
Language Muse, i.e., how they can automatically
generate linguistic activities for any text and cus-
tomize them to their own liking. Language Muse
is completely free to use for all teachers. Teachers
request an account using the form on the web site
and receive their login information via email.

Once a teacher logs into Language Muse, she
can get started either by choosing one of the 33
texts that we provide across three different content
areas (English Language Arts, Science, and So-
cial Studies), or by uploading her own classroom
text (in plain text/.doc/.docx formats). The system
currently limits the texts to 5000 words. All texts
uploaded by a teacher are saved into her personal
library for later re-use.

The text is then sent to the NLP backend for pro-
cessing, which returns a JSON object containing
all identified (or generated) linguistic features. At
that point, the teacher can generate any of the avail-
able linguistic activities, each of which is based on
one of the linguistic features. All activities were
designed based on input from ELL content-area
teachers. There are a total of 24 activities, grouped
according to whether an activity is word-based,
sentence-based, or paragraph-based. This form
of hierarchical grouping is based on ELL litera-
ture which suggests that each level in the hierarchy
presents distinct challenges and opportunities for
language learning. Table 2 shows a few of the
available activities and provides a brief description.

3.1 Recommended Activities

Based on the number of feature instances detected
by the backend, Language Muse may recommend
certain activities over others to the teacher. For
example, if there were more words with synonyms

but only a few cause-effect terms, it might recom-
mend the Synonyms in Paragraphs activity but not
the Cause/Effect Relationships activity. Some ac-
tivities may also be unavailable since no instances
of the corresponding linguistic feature could be
detected by the backend. Language Muse makes
a visual distinction between recommended activi-
ties, possible activities, and unavailable activities
as shown in Figure 1. Clicking on an activity shows
its description and a sample question.

3.2 Same Feature, Multiple Activities

Some activities are based on the same underlying
linguistic feature but use it differently, depending
on their level. For example, a word-level activity
asks students to match words in one list to words
in another list based on how similar they are in
meaning. That activity uses automatically gener-
ated synonyms for the words in the text and then
automatically populates the two lists – one with
the original words and the other with the generated
synonyms. There is a similar paragraph-level cloze
activity that shows students a paragraph from the
text and asks them to replace pre-identified words
with their synonyms such that the meaning is un-
changed. This activity uses the same underlying
feature — automatically generated synonyms —
but presents it differently. This exposes ELLs to a
different part of the language construct.

3.3 Automatically-generated Answers

The questions for all activities are automatically
generated based on linguistic features in the text.
However, for 15 of those activities, Language Muse
also automatically populates an answer key for
the teacher. For example, for the word-based syn-
onym activity described in §3.2, we know which
pairs of words in the two lists match each other
since the synonyms were automatically generated.
Automatically-generated answers reduce the time
that a teacher needs to edit an activity for her class-
room. See Table 2 for additional examples.

3.4 Customizability

It is impossible for Language Muse to always pro-
vide exactly what every teacher is looking for.
Therefore, almost all aspects of the activities it gen-
erates can be customized to suit a teacher’s needs.
Among other things, the teacher can choose to:

• edit the instructions shown to the students,
• hide any or all automatically chosen

words/sentences/paragraphs,

81

Sentence activities
Multiple Clause Sentences. Shows multi-clause sentences and asks students to break them
up into two or more shorter sentences. Although the sentences for the activity are identified
automatically in the text, the answers are not generated automatically. Example: Organelles are
structures visible within a cell that have their own structure. ⇒ (1) Organelles are structures
visible within a cell. (2) Organelles have their own structure.
Cause/Effect Relationships. Shows sentences containing causal relationships and asks students
to identify the cause, the effect, and the connector word that denotes the causal relationship.
The sentences with causal relationships in the text are identified automatically but only the
connector word part of the answer is automatically generated. Example: Off the coast of Canada,
commercial cod fishing had to stop because the population of cod collapsed. ⇒ The population
of cod collapsed off the coast of Canada (cause), Commercial cod fishing had to stop (effect),
because (connector).
Homonyms in Sentences. Shows sentences with blanks and asks students to fill in the right
word from a list that contains homonyms as distractors. Examples can be seen in Figure 2.

Paragraph activities
Variant Word Forms in Paragraphs. Uses inflectional and derivational word variants gener-
ated by the backend. Shows students a paragraph of text with blanks and asks them to fill in the
right morphological variant. Answers and distractors are automatically generated. Example:
Scientists suspect that there are more than 10 million (different/difference) types of life
forms on Earth.
Phrasal Verbs. Asks students to pick the correct preposition to complete the phrasal verbs
found in the paragraph. Answers and distractors are automatically generated. Example: People
usually think (at/on/of) the heart, lungs and brain as vital organs.

Table 2: A subset of the linguistic activities available to teachers in Language Muse.

Figure 1: Activities where 5 or more questions can be generated are recommended by Language Muse
and marked with a star. Activities with fewer than 5 questions are not marked but can still be chosen by
the teacher. Activities with no available questions are greyed out and cannot be chosen.

82

Figure 2: The Homonyms in Sentences activity generated from a Language Arts text on Virginia Woolf.
The questions, answers, and distractors are all automatically generated.

Figure 3: An example of a customizable multiple choice activity (Variant Word Forms in Paragraphs).
Teachers can (a) change the generated correct answer, (b) hide any generated distractors, (c) add their own
answers, and (d) hide a paragraph entirely or use it only as context without generating questions.

83

• edit the automatically generated answers or
add her own, and
• edit the list of automatically generated distrac-

tors for multiple choice questions.

Figure 3 illustrates this by showing the Variant
Word Forms in Paragraphs activity in edit mode.

4 Teacher Survey

We wanted to evaluate whether activities generated
by Language Muse are useful to teachers. To do
this, we worked with seventeen 6th-8th grade teach-
ers who taught English language arts, science, and
social studies. Four teachers had been teaching for
two years or less, five for 3-9 years, and the rest for
> 10 years. All but two currently had responsibil-
ity for teaching ELLs and eight had been teaching
ELLs for > 5 years. We asked them to examine
9 different activities from Language Muse and tell
us whether they would consider using them in their
classrooms. Figure 4 shows the results of our sur-
vey which are encouraging for a first version.

Figure 4: A heatmap showing the results of our
teacher survey. Each cell shows the number of
middle school teachers responding to whether they
would use the corresponding activity in classrooms.

5 Conclusions & Future Work

We presented Language Muse, an open-access,
web-based tool that can help content-area teachers
support ELL students with content comprehension.
We are currently working on the next version which
will allow students to log into Language Muse to
complete any activities assigned to them by their
teachers and also receive feedback. All develop-
ment on Language Muse continues to be informed
by frequent and detailed interactions with teachers.

Acknowledgments
Research presented in this paper was supported by
the Institute of Education Science, U.S. Depart-
ment of Education, Award Number R305A140472,
and by the 10Clouds front-end development team.

References
Colin Bannard and Chris Callison-Burch. 2005. Paraphrasing

with Bilingual Parallel Corpora. In Proceedings of ACL.

Jonathan C Brown, Gwen A Frishkoff, and Maxine Eskenazi.
2005. Automatic Question Generation for Vocabulary As-
sessment. In Proceedings of EMNLP.

Jill Burstein, Karen Kukich, Susanne Wolff, Chi Lu, and Mar-
tin Chodorow. 1998. Enriching Automated Scoring using
Discourse Marking. In Proceedings of the ACL Workshop
on Discourse Relations and Discourse Marking.

Jill Burstein, Martin Chodorow, and Claudia Leacock. 2004.
Automated Essay Evaluation: The Criterion Online Writing
Service. AI Magazine, 25(3):27.

CCSSO. 2010. Common Core State Standards for English
language Arts & Literacy in History/Social Studies, Sci-
ence, and Technical Subjects. Appendix A: Research sup-
porting key elements of the Standards. Washington, DC.

Frances Christie. 1989. Language Education. Oxford Univer-
sity Press, Oxford, UK.

Frances Christie. 1999. Pedagogy and the Shaping of Con-
sciousness: Linguistics and Social Processes. Continuum,
London, UK.

Rhonda Coleman and Claude Goldenberg. 2012. The Com-
mon Core Challenge for English Language Learners. Prin-
cipal Leadership, pages 46–51.

Margo DelliCarpini. 2008. Success with ELLs. English
Journal, 98(2):98–101.

Christiane Fellbaum. 1998. WordNet. Blackwell Publishing
Ltd.

Yoko Futagi, Paul Deane, Martin Chodorow, and Joel Tetreault.
2008. A Computational Approach to Detecting Collocation
Errors in the Writing of Non-native Speakers of English.
Computer Assisted Language Learning, 21(4).

Michael Heilman and Noah A Smith. 2010. Good question!
Statistical Ranking for Question Generation. In Proceed-
ings of NAACL.

Claudia Leacock and Martin Chodorow. 2003. C-rater: Auto-
mated scoring of Short-answer Questions. Computers and
the Humanities, 37(4).

Dekang Lin. 1998. Automatic Retrieval and Clustering of
Similar Words. In Proceedings of COLING.

Ruslan Mitkov and Le An Ha. 2003. Computer-aided Gen-
eration of Multiple-choice Tests. In Proceedings of the
Workshop on Building Educational Applications.

R. E. Slavin and A. Cheung. 2004. How do English language
Learners Learn to Read? Educational Leadership, 61.

A. Walqui and M. Heritage. 2012. Instruction for Diverse
Groups of ELLs. In Understanding Language Conference,
Stanford, CA.

84

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 85–90,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

ccg2lambda: A Compositional Semantics System

Pascual Martı́nez-Gómez4

pascual.mg@aist.go.jp
Koji Mineshima1

mineshima.koji@ocha.ac.jp

Yusuke Miyao2

yusuke@nii.ac.jp
Daisuke Bekki1,2

bekki@is.ocha.ac.jp

1Ochanomizu University
Tokyo, Japan

2NII
Tokyo, Japan

4AIRC, AIST
Tokyo, Japan

Abstract

We demonstrate a simple and easy-to-use
system to produce logical semantic rep-
resentations of sentences. Our software
operates by composing semantic formu-
las bottom-up given a CCG parse tree. It
uses flexible semantic templates to spec-
ify semantic patterns. Templates for En-
glish and Japanese accompany our soft-
ware, and they are easy to understand, use
and extend to cover other linguistic phe-
nomena or languages. We also provide
scripts to use our semantic representations
in a textual entailment task, and a visu-
alization tool to display semantically aug-
mented CCG trees in HTML.

1 Introduction

We are motivated by NLP problems that bene-
fit from any degree of computer language un-
derstanding or semantic parsing. Two prominent
examples are Textual Entailment and Question-
Answering, where the most successful ap-
proaches (Abzianidze, 2015; Berant et al., 2013)
require symbolic representations of the semantics
of sentences. We are inspired by the theoreti-
cal developments in the formal semantics litera-
ture, where higher-order logical (HOL) formulas
are used to derive meaning representations (MR);
despite what is typically believed in the NLP com-
munity, Mineshima et al. (2015) demonstrated that
HOL can be used effectively at a reasonable speed.

In this paper, we describe ccg2lambda, our
system to obtain MRs given derivations (trees) of a
Combinatory Categorial Grammar (CCG) (Steed-
man, 2000). In order to obtain the MRs, our sys-
tem is guided by the combinatory characteristics
of CCG derivations and a list of manually de-
signed semantic templates. The linguistic intu-

itions behind the design of those semantic tem-
plates and the evaluation of the MRs that they pro-
duce is detailed in Mineshima et al. (2015), and
is not repeated here. In that paper, we tackled a
Textual Entailment task, where the meanings of
premises and conclusions were represented sym-
bolically, and their entailment relation was judged
with a theorem prover of higher-order logics. With
this system, we obtained a state-of-the-art perfor-
mance on the FraCaS dataset (Cooper et al., 1994).
ccg2lambda and the accompanying semantic

templates are open source1. Semantic templates
are already available for English and Japanese,
and they are easily extensible to other linguistic
phenomena and other languages for which CCG
parsers are available. Here we describe how to use
ccg2lambda and how to specify semantic tem-
plates for other researchers to extend our work.

2 Related Work

The most similar system to ours is Boxer (Bos et
al., 2004), which outputs first order formulas given
CCG trees. Our system can additionally produce
higher-order formulas, which are more expressive
and potentially accurate (Mineshima et al., 2015).

There are three prominent textbook systems
for computational semantics, that of Bird et al.
(2009), Blackburn and Bos (2005) and van Ei-
jck and Unger (2010). These three systems, to-
gether with the Lambda Calculator2 (Champollion
et al., 2007) are excellent educational resources
that are very accessible to beginner linguists in
general, and semanticists in particular. The devel-
opment of ccg2lambda is inspired by these sys-
tems, in that we aimed to produce a software that is
easy to understand, use and extend with only basic
knowledge of formal semantics and lambda calcu-

1https://github.com/mynlp/ccg2lambda
2http://lambdacalculator.com/

85

lus. However, these systems are mainly developed
for educational purposes and are not connected to
fully fledged parsers, hence not immediately us-
able as a component of larger NLP systems.

We have developed ccg2lambda to process
trees that are produced by wide-coverage CCG
parsers (e.g. C&C and Jigg3). Other seman-
tic parsers such as those developed by Bos et al.
(2004), Abzianidze (2015) and Lewis and Steed-
man (2013) also connect to wide-coverage CCG
parsers, but they do not emphasize easy accessi-
bility or extensibility. NL2KR (Vo et al., 2015) is
an interactive system with powerful generalization
capabilities, but it does not allow fine-grained lexi-
con specifications (only CCG categories) and does
not output machine readable semantics. Instead,
ccg2lambda produces XML machine-readable
MRs, which make our system easy to integrate in
larger logic or statistical NLP systems.

3 System Overview

Although our main system contribution is a se-
mantic parser, we use the problem of textual en-
tailment as an end-to-end task. Figure 1 schemati-
cally shows the several components of our system.

The first stage is to parse sentences into CCG
trees (see Figure 2 for an example). Our system
currently supports the C&C parser (Clark and Cur-
ran, 2004) for English, and Jigg (Noji and Miyao,
2016) for Japanese.

The second stage is the semantic composition,
where MRs are constructed compositionally over
CCG trees using lambda calculus, thus allowing
higher-order logics if necessary. To this end, our
system is guided by the compositional rules of the
CCG tree and the semantic templates provided by
the user. In Section 4 we describe in detail how
these semantic templates are specified and how
they control the semantic outputs. The output
of this stage is a Stanford CoreNLP-style XML
file (Manning et al., 2014) where each sentence
has three XML nodes: <tokens>, <ccg> and
<semantics>. Thus, sentence semantics can
simply be read off the root node of the CCG tree.

In the case of recognizing textual entailment,
the third stage is the theorem construction, defini-
tion of predicate types, and execution with a logic
prover. This stage is not essential to our system,
but it is added to this paper to show the usefulness
of our semantic representations in an NLP task.

3https://github.com/mynlp/jigg

4 Semantic Composition

ccg2lambda receives CCG trees and outputs
(possibly higher-order) logic formulas. To that
end, we use i) the combinatory characteristics of
CCG trees to guide the semantic compositions,
and ii) a list of semantic templates to assign a pre-
cise meaning to CCG constituents.

See Figure 2 for an example of CCG deriva-
tion for the sentence “Some woman ordered tea”,
augmented with its semantics. Nodes have CCG
syntactic categories (e.g. N or S\NP), which is
what our system receives as input. On the same
figure, we have added the logical semantic repre-
sentations (e.g. λx.woman(x)) below the syntac-
tic categories. Our system outputs these logical
formulas. For clarity, leaves also display the to-
ken base forms. The symbols <,> and lex stand
for left and right function application rules, and
the type-shift rule in C&C, respectively. These
rules and the syntactic categories guide the seman-
tic composition, provided with semantic templates
that describe the specific semantics.

4.1 Semantic templates

Semantic templates are defined declaratively in
a YAML4 file, typically by a formal semanticist
after an appropriate linguistic analysis. A tem-
plate applies to a node of the CCG derivation
tree if certain conditions are met. Each template
has two required attributes: semantics and (syn-
tactic) category. The attribute semantics is a
lambda term in NLTK semantics format (Garrette
and Klein, 2009). In case a template applies on a
CCG leaf (that is, a word), the lambda term in the
template is applied on the base form of the word,
and β-reduction is performed. For example, the
semantic template
− semantics : \E.\x.E(x)
category : N

applying on a leaf whose base word is “woman”
and its syntactic category is N , would produce
the expression (λE.λx.E(x))(woman) which is
β-reduced to λx.woman(x). Here, the base form
“woman” substitutes all occurrences of the vari-
able E in the semantics expression.

In case a template applies on a CCG inner node
(a node with children), the lambda abstraction is
applied on the semantics of the children, in order.

4http://www.yaml.org/spec/

86

Figure 1: System pipeline for recognizing textual entailment. Syntactic structures of sentences are ob-
tained with a CCG parser. Then, we perform the semantic composition using semantic templates. The
resulting meaning representations are used to perform various logical inferences with a theorem prover.

Some
NP/N

λFλG.∃x.(Fx ∧Gx)
woman
N

λx.woman(x)

NP
λG.∃x(woman(x) ∧G(x))

>

ordered
(S\NP)/NP

λQ1λQ2.Q2(λx.Q1(λy.order(x, y)))

tea
N

λy.tea(y)

NP
λF.∃y.(tea(y) ∧ F (y))

lex

S\NP
λQ2.Q2(λx.∃y.(tea(y) ∧ order(x, y)))

>

S
∃x.(woman(x) ∧ ∃y.(tea(y) ∧ order(x, y)))

<

Figure 2: CCG derivation tree of the sentence “Some woman ordered tea”, with its semantics (simplified
for illustrative purposes). The actual output of ccg2lambda with our provided templates is in Figure 6.

For example, in Figure 2, the template
− semantics : \E.\F.∃y.(E(y) ∧ F (y))
category : NP
rule : lex

produces a type-raise from N to NP , and when
applied to the CCG node whose child’s semantics
are λy.tea(y), it will produce, after β-reduction,
the formula λF.∃y.(tea(y) ∧ F (y)). Here, the
child’s semantics λy.tea(y) substitute all occur-
rences of the variable E. The newly composed se-
mantic representation λF.∃y.(tea(y)∧F (y)) now
expects another predicate (a verb) as an argument
F (i.e. “order”), which will be filled in the next
step of the composition.

The category attribute of a semantic template
may also specify conditions on the feature struc-
tures of CCG nodes (which are provided by the
CCG parser), in which case templates apply if the
syntactic category matches and the feature struc-
ture subsumes that of the CCG node. For example,
if the semantic template specifies a syntactic cat-
egory NP[dcl = true], it matches a CCG node
with a category NP[dcl = true] or a category
NP[dcl = true, adj = true].

Other conditions for matching templates to
CCG nodes can be specified by adding more at-
tributes to the semantic template. In the exam-
ple above, the attribute rule : lex is used to
specify the combination rule of that inner CCG
node. In practice, any XML attribute of a CCG

node can be used to specify matching conditions,
which means that users of ccg2lambda can en-
rich CCG trees with arbitrary annotations such as
Named Entities or Events and use them as match-
ing conditions when defining semantic templates
without modifying the software. It is also possible
to specify attributes of the children of the target
CCG node. These conditions are always prefixed
by the string child, followed by the branch in-
dex 0 or 1. For example, a semantic template with
the attribute child1 child0 pos : NN matches
a node whose right child’s (child1) left child’s
(child0) POS tag is an NN. Moreover, paths to
child nodes can be left unspecified, by using the
keyword child any X : Y; in this case, any child
whose attribute X has value Y will be matched by
the template. If more than one template matches a
CCG node, the first appearing template is selected.

4.2 System Usage and Output

The command for the semantic composition is:
python semparse.py ccgtrees.xml

templates.yaml semantics.xml

where ccgtrees.xml is a Jigg’s XML style
CCG tree, templates.yaml contains the
semantic templates, and semantics.xml is the
XML output of the system. We also provide a
script to convert C&C XML trees into Jigg’s XML
style. The output of semparse.py follows the
conventions of Stanford coreNLP (see Figure 3).
However, we follow Jigg’s style to represent

87

1 <r o o t>
2 <s e n t e n c e s>
3 <s e n t e n c e>
4 <t o k e n s>
5 <t o k e n base=” t e a ” s u r f =” t e a ” pos=”NN” />
6 <t o k e n . . . />
7 </ t o k e n s>
8 <ccg>
9 <span id =” s1 ” c h i l d =” s2 ” c a t e g o r y =”N”

r u l e =” l e x ” />
10
11 </ ccg>
12 <s e m a n t i c s>
13 <span id =” s1 ” c h i l d =” s2 ” sem=”\y . t e a (y) ”

t y p e =” t e a : E n t i t y −> Prop ” />
14
15 </ s e m a n t i c s>
16 </ s e n t e n c e>
17 </ s e n t e n c e s>
18 </ r o o t>

Figure 3: XML output of the semantic composi-
tion. Span nodes of the semantics tag contain log-
ical semantic representations of that constituent.

element characteristics as XML node attributes.
For example, the base and surface forms, and the
POS tag of a token are all represented as XML
attributes in a <token> tag.

Our semantic composition produces the
<semantics> tag, which has as many children
nodes () as the CCG tree, the same span
identifiers and structure. However, semantic
spans also have a “sem” attribute encoding the
semantics (using NLTK’s semantics format) that
have been composed for that constituent. An
example of a resulting semantic logic formula in
NLTK semantics format is:

\F.exists y. (tea(y) & F (y))
Note that predicates are prefixed with an under-
score to avoid collisions with reserved predicates
in NLTK semantics format or in a potential prover.

Semantic spans also provide the type of single
predicates (attribute “type”). For instance, the type
of the predicate tea is a function that receives an
entity as an argument, and produces a proposition:

tea : Entity→ Prop

Types are automatically inferred using NLTK se-
mantics functionality. However, it is possible to
force arbitrary types in a semantic template by
adding the attribute “coq type”. For example, we
can specify the type for a transitive verb as:
− semantics : . . .
category : (S\NP)/NP
coq type : Entity→ Entity→ Prop

We can activate these types with the flag
--arbi-types in the call to semparse.py.

5 Textual Entailment

The logical formulas that ccg2lambda outputs
can be used in a variety of applications. In this
demonstration, we use them to recognize textual
entailment, an NLP problem that often requires
precise language understanding. We assume that
the user inputs a file with one sentence per line.
All sentences are assumed to be premises, except
the last sentence, which is assumed to be the con-
clusion. An entailment problem example is:
premise1: All women ordered coffee or tea.
premise2: Some woman did not order coffee.
conclusion: Some woman ordered tea.

Contrarily to other textual entailment systems
based on logics (Angeli and Manning, 2014; Mac-
Cartney and Manning, 2007), we do not assume
single-premise problems, which makes our system
more general. The MRs of the problem above are:

p1 : ∀x.(woman(x)→ ∃y.((tea(y) ∨ coffee(y)) ∧ order(x, y)))

p2 : ∃x.(woman(x) ∧ ¬∃y.(coffee(y) ∧ order(x, y)))

c : ∃x.(woman(x) ∧ ∃y.(tea(y) ∧ order(x, y)))

We build a theorem by concatenating mean-
ing representations of the premises {p1, . . . , pn}
and the conclusion c with the implication opera-
tor, which is a convenience in theorem proving:

Theorem : p1 → . . .→ pn → c. (1)
And then, we define predicate types as:
Parameter tea : Entity → Prop.

Parameter order : Entity → Entity → Prop.

Finally, we pipe the theorem and type definitions
to Coq (Castéran and Bertot, 2004), an interactive
higher-order prover that we run fully automated
with the use of some tactics (including arithmetics
and equational reasoning), as described in Mi-
neshima et al. (2015). We return the label yes (en-
tailment) if the conclusion can be logically proved
from the premises, no if the negated conclusion
can be proved, and unknown otherwise.

The recognition of textual entailment can be
performed with the following command:

python prove.py semantics.xml

where the entailment judgment (yes, no, unknown)
is printed to standard output. Moreover, the flag
--graph out allows to specify an HTML file
to print a graphical visualization of the CCG tree
structure of sentences, their semantic composition
(every constituent annotated with a component of
the formula), and the prover script. An excerpt of
the visualization is shown in Section 6.

88

Figure 4: Visualization of the semantic output of ccg2lambda for the sentence “All women ordered
coffee or tea.” where logical semantic representations appear below their respective CCG nodes.

Figure 5: Visualization of the semantic output of ccg2lambda for the sentence “Some woman did not
order coffee.” where logical semantic representations appear below their respective CCG nodes.

Figure 6: Visualization of the semantic output of ccg2lambda for the sentence “Some woman ordered
tea.” where logical semantic representations appear below their respective CCG nodes.

6 Visualization

For visualization purposes, we provide a separate
script that can be called as:

python visualize.py semantics.xml

> semantics.html

which produces a file semantics.html with
an HTML graphical representation of the CCG
tree, augmented at every node with the seman-
tics composed up to that node (see Figures 4, 5
and 6 for an excerpt). These semantic representa-
tions are obtained with the semantic templates that
accompany our software and that were developed
and evaluated in Mineshima et al. (2015). The
trivial propositions “TrueP” have no effect and ap-
pear in the formulas in place of potential modifiers
(such as adjectives or adverbs) of more complex
sentences. The visualization can be configured to
display the root on top, change colors and sizes of
the syntactic categories, feature structures, logical
formulas and base forms at the leaves.

7 Future Work and Conclusion

As an extension to ccg2lambda, it would be
valuable to produce (possibly scored) N-best lists
of logical formulas, instead of the current single
1-best. Moreover, our current semantic templates
do not cover all syntactic categories that C&C or
Jigg produce, and we need a good default combi-
nation mechanism. Other minor enhancements are
to produce logical formulas for each CCG deriva-
tion in an N-best list, and to allow features other
than the base form to become predicates.

In this paper we have demonstrated our sys-
tem to convert CCG trees to logic MRs. It oper-
ates by composing semantics bottom-up, guided
by the combinatory characteristics of the CCG
derivation and semantic templates provided by the
user. In this release, semantic templates for En-
glish and Japanese are also included. As Mi-
neshima et al. (2015) has shown, the MRs obtained
by ccg2lambda are useful to recognize textual

89

entailment. We believe that these easy-to-produce
MRs can be useful to NLP tasks that require pre-
cise language understanding or that benefit from
using MRs as features in their statistical systems.

Acknowledgments

This work was supported by CREST, JST.

References
Lasha Abzianidze. 2015. A tableau prover for natu-

ral logic and language. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2492–2502, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Gabor Angeli and Christopher D. Manning. 2014.
NaturalLI: Natural logic inference for common
sense reasoning. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 534–545, Doha, Qatar,
October. Association for Computational Linguistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA, October. Association for Computa-
tional Linguistics.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc.

Patrick Blackburn and Johan Bos. 2005. Represen-
tation and Inference for Natural Language: A First
Course in Computational Semantics. CSLI.

Johan Bos, Stephen Clark, Mark Steedman, James R
Curran, and Julia Hockenmaier. 2004. Wide-
coverage semantic representations from a CCG
parser. In Proceedings of the 20th international con-
ference on Computational Linguistics, pages 1240–
1246. Association for Computational Linguistics.

Pierre Castéran and Yves Bertot. 2004. Interac-
tive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions.
Springer Verlag.

Lucas Champollion, Joshua Tauberer, and Maribel
Romero. 2007. The Penn Lambda Calculator: Ped-
agogical software for natural language semantics.
In Tracy Holloway King, editor, Proceedings of the
Grammar Engineering Across Frameworks (GEAF0
7) Workshop, pages 106–127, Stanford. CSLI Publi-
cations.

Stephen Clark and James R Curran. 2004. Parsing the
WSJ using CCG and log-linear models. In Proceed-
ings of the 42nd Annual Meeting on Association for

Computational Linguistics, pages 104–111. Associ-
ation for Computational Linguistics.

Robin Cooper, Richard Crouch, Jan van Eijck, Chris
Fox, Josef van Genabith, Jan Jaspers, Hans Kamp,
Manfred Pinkal, Massimo Poesio, Stephen Pulman,
et al. 1994. FraCaS–a framework for computational
semantics. deliverable, D6.

Dan Garrette and Ewan Klein. 2009. An extensible
toolkit for computational semantics. In Proceed-
ings of the Eighth International Conference on Com-
putational Semantics, IWCS-8 ’09, pages 116–127,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Mike Lewis and Mark Steedman. 2013. Combin-
ing distributional and logical semantics. Transac-
tions of the Association for Computational Linguis-
tics, 1:179–192.

Bill MacCartney and Christopher D Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 193–200. Associa-
tion for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland, June. Association for Computa-
tional Linguistics.

Koji Mineshima, Pascual Martı́nez-Gómez, Yusuke
Miyao, and Daisuke Bekki. 2015. Higher-order log-
ical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2055–
2061, Lisbon, Portugal, September. Association for
Computational Linguistics.

Hiroshi Noji and Yusuke Miyao. 2016. Jigg: A
framework for an easy natural language process-
ing pipeline. In Proceedings of ACL 2016 System
Demonstrations, Berlin, Germany, August. Associa-
tion for Computational Linguistics.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

Jan van Eijck and Christina Unger. 2010. Compu-
tational Semantics with Functional Programming.
Cambridge University Press.

Nguyen Vo, Arindam Mitra, and Chitta Baral. 2015.
The NL2KR platform for building natural language
translation systems. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 899–908, Beijing, China, July.
Association for Computational Linguistics.

90

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 91–96,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

META: A Unified Toolkit for Text Retrieval and Analysis

Sean Massung, Chase Geigle and ChengXiang Zhai
Computer Science Department, College of Engineering

University of Illinois at Urbana-Champaign
{massung1,geigle1,czhai}@illinois.edu

Abstract

META is developed to unite machine
learning, information retrieval, and natu-
ral language processing in one easy-to-use
toolkit. Its focus on indexing allows it to
perform well on large datasets, supporting
online classification and other out-of-core
algorithms. META’s liberal open source
license encourages contributions, and its
extensive online documentation, forum,
and tutorials make this process straight-
forward. We run experiments and show
META’s performance is competitive with
or better than existing software.

1 A Unified Framework

As NLP techniques become more and more ma-
ture, we have great opportunities to use them to
develop and support many applications, such as
search engines, classifiers, and integrative applica-
tions that involve multiple components. It’s possi-
ble to develop each application from scratch, but
it’s much more efficient to have a general toolkit
that supports multiple application types.

Existing tools tend to specialize on one partic-
ular area, and as such there is a wide variety of
tools one must sample when performing different
data science tasks. For text-mining tasks, this is
even more apparent; it is extremely difficult (if not
impossible) to find tools that support both tradi-
tional information retrieval tasks (like tokeniza-
tion, indexing, and search) alongside traditional
machine learning tasks (like document classifica-
tion, regression, and topic modeling).

Table 1 compares META’s many features
across various dimensions. Note that only META
satisfies all the areas while other toolkits focus on
a particular area. In the case where the desired
functionality is scattered, data science students, re-

searchers, and practitioners must find the appro-
priate software packages for their needs and com-
pile and configure each appropriate tool. Then,
there is the problem of data formatting—it is un-
likely that the tools all have standardized upon a
single input format, so a certain amount of “data
munging” is required. All of this detracts from the
actual task at hand, which has a marked impact on
productivity.

The goal of the META project is to address
these issues. In particular, we provide a uni-
fying framework for existing machine learning
and natural language processing algorithms, al-
lowing researchers to quickly run controlled ex-
periments. We have modularized the feature gen-
eration, instance representation, data storage for-
mats, and algorithm implementations; this allows
users to make seamless transitions along any of
these dimensions with minimal effort. Finally,
META is dual-licensed under the University of
Illinois/NCSA Open Source Licence and the MIT
License to reach the broadest audience possible.

Due to space constraints, in this paper, we only
delve into META’s natural language processing
(NLP), information retrieval (IR), and machine
learning (ML) components in section 3. However,
we briefly outline all of its components here:

Feature generation. META has a collection of
tokenizers, filters, and analyzers that convert raw
text into a feature representation. Basic features
are n-gram words, but other analyzers make use
of different parts of the toolkit, such as POS tag n-
grams and parse tree features. An arbitrary num-
ber of feature representations may be combined;
for example, a document could be represented as
unigram words, bigram POS tags, and parse tree
rewrite rules. Users can easily add their own fea-
ture types as well, such as sentence length distri-
bution in a document.

Search. The META search engine can store

91

Indri Lucene MALLET LIBLINEAR SVMMULT scikit CoreNLP META
IR IR ML/NLP ML ML ML/NLP ML/NLP all

Feature generation X X X X X X
Search X X X
Classification X X X X X X
Regression X X X X X X
POS tagging X X X
Parsing X X
Topic models X X X
n-gram LM X
Word embeddings X X X
Graph algorithms X
Multithreading X X X X X

Table 1: Toolkit feature comparison. Citations for all toolkits may be found in their respective comparison sections.

document feature vectors in an inverted index and
score them with respect to a query. Rankers
include vector space models such as Okapi
BM25 (Robertson et al., 1994) and probabilistic
models like Dirichlet prior smoothing (Zhai and
Lafferty, 2004). A search demo is online1.

Classification. META includes a normalized
adaptive stochastic gradient descent (SGD) im-
plementation (Ross et al., 2013) with pluggable
loss functions, allowing creation of an SVM clas-
sifier (among others). Both `1 (Tsuruoka et al.,
2009) and `2 regularization are supported. Ensem-
ble methods for binary classifiers allow multiclass
classification. Other classifiers like naı̈ve Bayes
and k-nearest neighbors also exist. A confusion
matrix class and significance testing framework al-
low evaluation and comparison of different meth-
ods and feature representations.

Regression. Regression via SGD predicts
real-valued responses from featurized documents.
Evaluation metrics such as mean squared error and
R2 score allow model comparison.

POS tagging. META contains a linear-chain
conditional random field for POS tagging and
chunking applications, learned using `2 regular-
ized SGD (Sutton and McCallum, 2012). It also
contains an efficient greedy averaged perceptron
tagger (Collins, 2002).

Parsing. A fast shift-reduce constituency parser
using generalized averaged perceptron (Zhu et al.,
2013) is META’s grammatical parser. Parse tree
featurizers implement different types of structural
tree representations (Massung et al., 2013). An
NLP demo online presents tokenization, POS-
tagging, and parsing2.

Topic models. META can learn topic

1https://meta-toolkit.org/search-demo.html
2https://meta-toolkit.org/nlp-demo.html

models over any feature representation using
collapsed variational Bayes (Asuncion et al.,
2009), collapsed Gibbs sampling (Griffiths and
Steyvers, 2004), stochastic collapsed variational
Bayes (Foulds et al., 2013), or approximate dis-
tributed LDA (Newman et al., 2009).

n-gram language models (LMs). META takes
an ARPA-formatted input3 and creates a language
model that can be queried for token sequence
probabilities or used in downstream applications
like SyntacticDiff (Massung and Zhai, 2015).

Word embeddings. The GloVe algorithm (Pen-
nington et al., 2014) is implemented in a streaming
framework and also features an interactive seman-
tic relationship demo. Word vectors can be used
in other applications as part of the META API.

Graph algorithms. Directed and undirected
graph implementations exist and various algo-
rithms such as betweenness centrality, PageRank,
and myopic search are available. Random graph
generation models like Watts-Strogatz and prefer-
ential attachment exist. For these algorithms see
Easley and Kleinberg (2010).

Multithreading. When possible, META algo-
rithms and applications are parallelized using C++
threads to make full use of available resources.

2 Usability

Consistency across components is a key fea-
ture that allows META to work well with large
datasets. This is accomplished via a three-layer
architecture. On the first layer, we have tokeniz-
ers, analyzers, and all the text processing that ac-
companies them. Once a document representa-
tion is determined, this tool chain is run on a cor-
pus. The indexes are the second layer; they pro-

3http://www.speech.sri.com/projects/srilm/
manpages/ngram-format.5.html

92

vide an efficient format for storing processed data.
The third layer—the application layer—interfaces
solely with indexes. This means that we may use
the same index for running an SVM as we do to
evaluate a ranking function, without processing
the data again.

Since all applications use these indexes, META
supports out-of-core classification with some clas-
sifiers. We ran our large classification dataset that
doesn’t fit in memory—Webspam (Webb et al.,
2006)—using the sgd classifier. Where LIBLIN-
EAR failed to run, META was able to finish the
classification in a few minutes.

Besides using META’s rich built-in feature gen-
eration, it is possible to directly use LIBSVM-
formatted data. This allows preprocessed datasets
to be run under META’s algorithms. Additionally,
META’s forward index (used for classifica-
tion), is easily convertible to LIBSVM format. The
reverse is also true: you may do feature genera-
tion with META, and use it to generate input for
any other program that supports LIBSVM format.

META is hosted publicly on GitHub4, which
provides the project with community involvement
through its bug/issue tracker and fork/pull request
model. Its API is heavily documented5, allowing
the creation of Web-based applications (listed in
section 1). The project website contains several tu-
torials that cover the major aspects of the toolkit6

to enable users to get started as fast as possible
with little friction. Additionally, a public forum7

is accessible for all users to view and participate in
user support topics, community-written documen-
tation, and developer discussions.

A major design point in META is to allow for
most of the functionality to be configured via a
configuration file. This enables minimal effort ex-
ploratory data analysis without having to write (or
recompile) any code. Designing the code in this
way also encourages the components of the system
to be pluggable: the entire indexing process, for
example, consists of several modular layers which
can be controlled by the configuration file.

An example snippet of a config file is given
below; this creates a bigram part-of-speech ana-
lyzer. Multiple [[analyzers]] sections may
be added, which META automatically combines
while processing input.

4https://github.com/meta-toolkit/meta/
5https://meta-toolkit.org/doxygen/namespaces.html
6https://meta-toolkit.org/
7https://forum.meta-toolkit.org/

[[analyzers]]
method = "ngram-pos"
ngram = 2
filter = [{type = "icu-tokenizer"},

{type = "ptb-normalizer"}]
crf-prefix = "crf/model/folder"

A simple class hierarchy allows users to add fil-
ters, analyzers, ranking functions, and classifiers
with full integration to the toolkit (e.g. one may
specify user-defined classes in the config file). The
process for adding these is detailed in the META
online tutorials.

This low barrier of entry experiment setup ease
led to META’s use in text mining and analysis
MOOCs reaching over 40,000 students8,9.

Multi-language support is hard to do correctly.
Many toolkits sidestep this issue by only support-
ing ASCII text or the OS language; META sup-
ports multiple (non-romance) languages by de-
fault, using the industry standard ICU library10.
This allows META to tokenize arbitrarily-encoded
text in many languages.

Unit tests ensure that contributors are confident
that their modifications do not break the toolkit.
Unit tests are automatically run after each commit
and pull request, so developers immediately know
if there is an issue (of course, unit tests may be run
manually before committing). The unit tests are
run in a continuous integration setup where META
is compiled and run on Linux, Mac OS X11, and
Windows12 under a variety of compilers and soft-
ware development configurations.

3 Experiments

We evaluate META’s performance in NLP, IR, and
ML tasks. All experiments were performed on a
workstation with an Intel(R) Core(TM) i7-5820K
CPU, 16 GB of RAM, and a 4 TB 5900 RPM disk.

3.1 Natural Language Processing
META’s part-of-speech taggers for English pro-
vide quite reasonable performance. It provides a
linear-chain CRF tagger (CRF) as well as an av-
eraged perceptron based greedy tagger (AP). We
report the token level accuracy on sections 22–24
of the Penn Treebank, with a few prior model re-
sults trained on sections 0–18 in Table 3. “Hu-
man annotators” is an estimate based on a 3% er-
ror rate reported in the Penn Treebank README

8https://www.coursera.org/course/textretrieval
9https://www.coursera.org/course/textanalytics

10http://site.icu-project.org/
11https://travis-ci.org/meta-toolkit/meta
12https://ci.appveyor.com/project/skystrife/meta

93

CoreNLP META
Training Testing F1 Training Testing F1

Greedy 7m 27s 18.6s 86.7 17m 31s 12.9s 86.98.85 GB 1.53 GB 0.79 GB 0.29 GB

Beam (4) 6h 10m 43s 46.8s 89.9 2h 17m 25s 59.2s 88.110.84 GB 3.83 GB 2.29 GB 0.94 GB

Table 2: (NLP) Training/testing performance for the shift-reduce constituency parsers. All models were trained for 40 iterations
on the standard training split of the Penn Treebank. Accuracy is reported as labeled F1 from evalb on section 23.

Extra Data Accuracy
Human annotators 97.0%

CoreNLP X 97.3%
LTag-Spinal 97.3%

SCCN X 97.5%
META (CRF) 97.0%

META (AP) 96.9%

Table 3: (NLP) Part-of-speech tagging token-level accura-
cies. “Extra data” implies the use of large amounts of extra
unlabeled data (e.g. for distributional similarity features).

Docs Size |D|avg |V |
Blog06 3,215,171 26 GB 782.3 10,971,746
Gov2 25,205,179 147 GB 515.5 21,203,125

Table 4: (IR) The two TREC datasets used. Uncleaned ver-
sions of blog06 and gov2 were 89 GB and 426 GB respec-
tively.

and is likely overly optimistic (Manning, 2011).
CoreNLP’s model is the result of Manning (2011),
LTag-Spinal is from Shen et al. (2007), and SCCN
is from Søgaard (2011). Both of META’s taggers
are within 0.6% of the existing literature.

META and CoreNLP both provide implementa-
tions of shift-reduce constituency parsers, follow-
ing the framework of Zhu et al. (2013). These can
be trained greedily or via beam search. We com-
pared the parser implementations in META and
CoreNLP along two dimensions—speed, mea-
sured in wall time, and memory consumption,
measured as maximum resident set size—for both
training and testing a greedy and beam search
parser (with a beam size of 4). Training was per-
formed on the standard training split of sections 2–
21 of the Penn Treebank, with section 22 used as
a development set (only used by CoreNLP). Sec-
tion 23 was held out for evaluation. The results are
summarized in Table 2.

META consistently uses less RAM than
CoreNLP, both at training time and testing time.
Its training time is slower than CoreNLP for the
greedy parser, but less than half of CoreNLP’s
training time for the beam parser. META’s beam
parser has worse labeled F1 score, likely the result

Indri Lucene MeTA
Blog06 55m 40s 20m 23s 11m 23s
Gov2 8h 13m 43s 1h 59m 42s 1h 12m 10s

Table 5: (IR) Indexing speed.

Indri Lucene MeTA
Blog06 31.02 GB 2.06 GB 2.84 GB
Gov2 170.50 GB 11.02 GB 10.24 GB

Table 6: (IR) Index size.

of its simpler model averaging strategy13. Overall,
however, META’s shift-reduce parser is competi-
tive and particularly lightweight.

3.2 Information Retrieval

META’s IR performance is compared with two
well-known search engine toolkits: LUCENE’s
latest version 5.5.014 and INDRI’s version
5.9 (Strohman et al., 2005)15.

We use the TREC blog06 (Ounis et al.,
2006) permalink documents and TREC gov2 cor-
pus (Clarke et al., 2004). To ensure a more uni-
form indexing environment, all HTML is cleaned
before indexing. In addition, each corpus is con-
verted into a single file with one document per line
to reduce the effects of many file operations.

During indexing, terms are lower-cased, stop
words are removed from a common list of 431 stop
words, Porter2 (META) or Porter (Indri, Lucene)
stemming is performed, a maximum word length
of 32 characters is set, original documents are not
stored in the index, and term position information
is not stored16.

We compare the following: indexing speed (Ta-
ble 5), index size (Table 6), query speed (Table 7),
and query accuracy (Table 8) with BM25 using
k1 = 0.9 and b = 0.4. We use the standard
TREC queries associated with each dataset and

13At training time, both CoreNLP and META perform model averaging, but
META computes the average over all updates and CoreNLP performs cross-
validation over a default of the best 8 models on the development set.

14http://lucene.apache.org/
15Indri 5.10 does not provide source code packages and thus could not be

used. It is also known as LEMUR.
16For Indri, we are unable to disable positions information storage.

94

Indri Lucene MeTA
Blog06 55.0s 1.60s 3.67s
Gov2 24m 6.73s 57.53s 1m 3.98s

Table 7: (IR) Query speed.

Indri Lucene MeTA
MAP P@10 MAP P@10 MAP P@10

Blog06 29.13 63.20 29.10 63.60 32.34 64.70
Gov2 25.96 53.69 30.23 59.26 29.97 57.43

Table 8: (IR) Query performance via Mean Average Precision
and Precision at 10 documents.

score each system’s search results with the usual
trec eval program17.

META leads in indexing speed, though we
note that META’s default indexer is multithreaded
and LUCENE does not provide a parallel one18.
META creates the smallest index for gov2 while
LUCENE creates the smallest index for blog06;
INDRI greatly lags behind both. META follows
LUCENE closely in retrieval speed, with INDRI

again lagging. As expected, query performance
between the three systems is relatively even, and
we attribute any small difference in MAP or preci-
sion to idiosyncrasies during tokenization.

3.3 Machine Learning

META’s ML performance is compared with LI-
BLINEAR (Fan et al., 2008), SCIKIT-LEARN (Pe-
dregosa et al., 2011), and SVMMULTICLASS19.
We focus on linear classification with SVM across
these tools (MALLET (McCallum, 2002) does not
provide an SVM, so it is excluded from the com-
parisons). Statistics for the four ML datasets can
be found in Table 9.

The 20news dataset (Lang, 1995)20 is split into
its standard 60% training and 40% testing sets by
post date. The Blog dataset (Schler et al., 2006) is
split into 80% training and 20% testing randomly.
Both of these two textual datasets were prepro-
cessed using META using the same settings from
the IR experiments.

The rcv1 dataset (Lewis et al., 2004) was pro-
cessed into a training and testing set using the
prep rcv1 tool provided with Leon Bottou’s
SGD tool21. The resulting training set has 781,265
documents and the testing set has 23,149. The

17http://trec.nist.gov/trec_eval/
18Additionally, we did not feel that writing a correct and threadsafe indexer

as a user is something to be reasonably expected.
19http://www.cs.cornell.edu/people/tj/svm_light/

svm_multiclass.html
20http://qwone.com/˜jason/20Newsgroups/
21http://leon.bottou.org/projects/sgd

Docs Size k Features
20news 18,846 86 MB 20 112,377
Blog 19,320 778 MB 3 548,812
rcv1 804,414 1.1 GB 2 47,152
Webspam 350,000 24 GB 2 16,609,143

Table 9: (ML) Datasets used for k-class categorization.

liblinear scikit SVMmult META

20news 79.4% 74.3% 67.1% 80.1%
2.58s 0.326s 2.54s 0.648s

Blog 75.8% 76.2% 72.2% 72.2%
61.3s 0.801s 17.5s 1.11s

rcv1 94.7% 94.0% 83.6% 94.8%
17.6s 1.66s 2.01s 3.44s

Webspam 7
97.4%

7
99.4%

11m 52s 1m 16s

Table 10: (ML) Accuracy and speed classification results.
Reported time is to both train and test the model. For all
except Webspam, this excludes IO.

Webspam corpus (Webb et al., 2006) consists
of the subset of the Webb Spam Corpus used
in the Pascal Large Scale Learning Challenge22.
The corpus was processed using the provided
convert.py into byte trigrams. The first 80%
of the resulting file is used for training and the last
20% for testing.

In Table 10, we can see that META performs
well both in terms of speed and accuracy. Both
LIBLINEAR and SVMMULTICLASS were unable
to produce models on the Webspam dataset due to
memory limitations and lack of a minibatch frame-
work. For SCIKIT-LEARN and META, we broke
the training data into 4 equal sized batches and
ran one iteration of SGD per batch. The timing
result includes the time to load each chunk into
memory; for META this is from its forward-index
format23 and for SCIKIT-LEARN this is from LIB-
SVM-formatted text files.

4 Conclusion

META is a valuable resource for text mining ap-
plications; it is a viable and competitive alternative
to existing toolkits that unifies algorithms from
NLP, IR, and ML. META is an extensible, con-
sistent framework that enables quick development
of complex application systems.

Acknowledgements

This material is based upon work supported by the
NSF GRFP under Grant Number DGE-1144245.

22ftp://largescale.ml.tu-berlin.de/largescale/
23It took 12m 24s to generate the index.

95

References

Arthur Asuncion, Max Welling, Padhraic Smyth,
and Yee Whye Teh. 2009. On Smoothing and
Inference for Topic Models. In UAI.

Charles L. A. Clarke, Nick Craswell, and Ian
Soboroff. 2004. Overview of the TREC 2004
Terabyte Track. In TREC.

Michael Collins. 2002. Discriminative Training
Methods for Hidden Markov Models: Theory
and Experiments with Perceptron Algorithms.
In EMNLP.

David Easley and Jon Kleinberg. 2010. Net-
works, Crowds, and Markets: Reasoning About
a Highly Connected World. Cambridge Univer-
sity Press, New York, NY, USA.

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin.
2008. LIBLINEAR: A Library for Large Linear
Classification. JMLR pages 1871–1874.

J. Foulds, L. Boyles, C. DuBois, P. Smyth, and
M. Welling. 2013. Stochastic Collapsed Vari-
ational Bayesian Inference for Latent Dirichlet
Allocation. In KDD.

T. L. Griffiths and M. Steyvers. 2004. Finding Sci-
entific Topics. PNAS 101.

Ken Lang. 1995. Newsweeder: Learning to filter
netnews. In ICML.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. 2004.
RCV1: A New Benchmark Collection for Text
Categorization Research. JMLR 5.

Christopher D. Manning. 2011. Part-of-speech
tagging from 97% to 100%: Is it time for some
linguistics? In Proc. CICLing.

Sean Massung and ChengXiang Zhai. 2015. Syn-
tacticDiff: Operator-based Transformation for
Comparative Text Mining. In IEEE Interna-
tional Conference on Big Data.

Sean Massung, ChengXiang Zhai, and Julia Hock-
enmaier. 2013. Structural Parse Tree Features
for Text Representation. In Proc. IEEE ICSC.

Andrew Kachites McCallum. 2002. MALLET:
A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu/.

David Newman, Arthur Asuncion, Padhraic
Smyth, and Max Welling. 2009. Distributed Al-
gorithms for Topic Models. JMLR 10.

I. Ounis, C. Macdonald, M. de Rijke, G. Mishne,
and I. Soboroff. 2006. Overview of the TREC
2006 Blog Track. In TREC.

F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derPlas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine Learning in Python. JMLR 12.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors
for Word Representation. In EMNLP.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline Hancock-Beaulieu, and Mike Gat-
ford. 1994. Okapi at TREC-3. In TREC.

Stéphane Ross, Paul Mineiro, and John Langford.
2013. Normalized online learning. In UAI.

Jonathan Schler, Moshe Koppel, Shlomo Arga-
mon, and James W. Pennebaker. 2006. Ef-
fects of Age and Gender on Blogging. In AAAI
Spring Symposium: Computational Approaches
to Analyzing Weblogs.

Libin Shen, Giorgio Satta, and Aravind Joshi.
2007. Guided learning for bidirectional se-
quence classification. In ACL.

Anders Søgaard. 2011. Semi-supervised con-
densed nearest neighbor for part-of-speech tag-
ging. In ACL-HLT .

Trevor Strohman, Donald Metzler, Howard Turtle,
and W. Bruce Croft. 2005. Indri: A language-
model based search engine for complex queries
(extended version). IR 407, University of Mas-
sachusetts.

Charles Sutton and Andrew McCallum. 2012. An
Introduction to Conditional Random Fields. In
Foundations and Trends in Machine Learning.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia
Ananiadou. 2009. Stochastic gradient descent
training for l1-regularized log-linear models
with cumulative penalty. In ACLIJCNLP.

Steve Webb, James Caverlee, and Carlton Pu.
2006. Introducing the webb spam corpus: Us-
ing email spam to identify web spam automati-
cally. In CEAS.

ChengXiang Zhai and John Lafferty. 2004. A
Study of Smoothing Methods for Language
Models Applied to Information Retrieval. ACM
Trans. Inf. Syst. 22(2).

Muhua Zhu, Yue Zhang, Wenliang Chen, Min
Zhang, and Jingbo Zhu. 2013. Fast and Accu-
rate Shift-Reduce Constituent Parsing. In ACL.

96

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 97–102,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

MDSWriter: Annotation tool for creating high-quality
multi-document summarization corpora

Christian M. Meyer,†‡ Darina Benikova,†‡ Margot Mieskes,†¶ and Iryna Gurevych†‡
† Research Training Group AIPHES

‡ Ubiquitous Knowledge Processing (UKP) Lab,
Technische Universität Darmstadt, Germany

¶ University of Applied Sciences, Darmstadt, Germany
http://www.aiphes.tu-darmstadt.de

Abstract

In this paper, we present MDSWriter, a
novel open-source annotation tool for cre-
ating multi-document summarization cor-
pora. A major innovation of our tool is
that we divide the complex summarization
task into multiple steps which enables us
to efficiently guide the annotators, to store
all their intermediate results, and to record
user–system interaction data. This allows
for evaluating the individual components
of a complex summarization system and
learning from the human writing process.
MDSWriter is highly flexible and can be
adapted to various other tasks.

1 Introduction

Motivation. The need for automatic summariza-
tion systems has been rapidly increasing since
the amount of textual information in the web and
at large data centers became intractable for hu-
man readers. While single-document summariza-
tion systems can merely compress the information
of one given text, multi-document summaries are
even more important, because they can reduce the
actual number of documents that require attention
by a human. In fact, they enable users to acquire
the most salient information about a topic with-
out having to deal with the redundancy typically
contained in a set of documents. Given that most
search engine users only access the documents
linked on the first result pages (cf. Jansen and
Pooch, 2001), multi-document summaries even
have the potential to radically influence our infor-
mation access strategies to such textual data that
remains unseen by most current search practices.

At the same time, automatic summarization is
one of the most challenging natural language pro-
cessing tasks. Successful approaches need to per-

form several subtasks in a complex setup, includ-
ing content selection, redundancy removal, and
coherent writing. Training and evaluating such
systems is extremely difficult and requires high-
quality reference corpora covering each subtask.

Currently available corpora are, however, still
severely limited in terms of domains, genres, and
languages covered. Most of them are addition-
ally focused on the results of only one subtask,
most often the final summaries, which prevents the
training and evaluation of intermediate steps (e.g.,
redundancy detection). A major corpus creation is-
sue is the lack of tool support for complex annota-
tion setups. Existing annotation tools do not meet
our demands, as they are limited to creating fi-
nal summaries without storing intermediate results
and user interactions or are not freely available or
support only single document summarization.

Contribution. In this paper, we present MDS-
Writer, a software for manually creating multi-
document summarization corpora. The core inno-
vation of our tool with regard to previous work is
that we allow dividing the complex summarization
task into multiple steps. This has two major advan-
tages: (i) By linking each step to detailed annota-
tion guidelines, we support the human annotators
in creating high-quality summarization corpora in
an efficient and reproducible way. (ii) We sepa-
rately store the results of each intermediate step.
This is necessary to properly evaluate the individ-
ual components of a complex automatic summa-
rization system, but was largely neglected previ-
ously. Storing the intermediate results enables us
to improve the evaluation setup beyond measuring
inter-annotator agreement for the content selection
and ROUGE for the final summaries.

Furthermore, we put a particular focus on
recording the interactions between the users and
the annotation tool. Our goal is to learn summa-

97

rization writing strategies from the recorded user–
system interactions and the intermediate results
of the individual steps. Thus, we envision next-
generation summarization systems that learn the
human summarization process rather than trying
to only replicate its result.

To the best of our knowledge, MDSWriter is
the first attempt to support the complex annotation
task of creating multi-document summaries with
flexible and reusable software providing access to
process data and intermediate results. We designed
an initial, multi-step workflow implemented in
MDSWriter. However, our tool is flexible to de-
viate from this initial setup allowing a wide range
of summary creation workflows, including single-
document summarization, and even other complex
annotation tasks. We make MDSWriter available
as open-source software, including our exemplary
annotation guidelines and a video tutorial.1

2 Related work

There is a vast number of general-purpose tools
for annotating corpora, for example, WebAnno
(Yimam et al., 2013), Anafora (Chen and Styler,
2013), CSNIPER (Eckart de Castilho et al., 2012),
and the UAM CorpusTool (O’Donnell, 2008).
However, neither of these tools is suitable for
tasks that require access to multiple documents at
the same time, as they are focused on annotating
linguistic phenomena within single documents or
search results with limited contexts.

Tools for cross-document annotation tasks are
so far limited to event and entity co-reference,
e.g., CROMER (Girardi et al., 2014). These tools
are, however, not directly applicable to the task of
multi-document summarization. In fact, all tools
discussed so far lack a definition of complex anno-
tation workflows spanning multiple steps, which
we consider necessary for obtaining intermediate
results and systematically guiding the annotators.

With regard to the user–system interactions, the
work on the Webis text reuse corpus (Potthast et
al., 2013) is similar to ours. They ask crowdsource
workers to retrieve sources for a given topic and
record their search and text reuse actions. How-
ever, they approach a plagiarism detection task and
therefore focus on writing essays rather than sum-
maries and they do not provide detailed guidelines
which is necessary to create high-quality corpora.

Summarization-specific software tools address
1https://github.com/UKPLab/mdswriter

the assessment of written summaries, computer-
assisted summarization, or the manual construc-
tion of summarization corpora. The Pyramid an-
notation tool (Nenkova and Passonneau, 2004) and
the tool2 used for the MultiLing shared tasks (Gi-
annakopoulos et al., 2015) are limited to compar-
ing and scoring summaries, but do not provide any
writing functionality. Orăsan et al.’s (2003) CAST
tool assists users with summarizing a document
based on the output of an automatic summariza-
tion algorithm. However, their tool is restricted to
single-document summarization.

The works by Ulrich et al. (2008) and Nakano
et al. (2010) are most closely related to ours, since
they discuss the creation of multi-document sum-
marization corpora. Unfortunately, their proposed
annotation tools are not available as open-source
software and thus cannot be reused. In addition to
that, they do not record user–system interactions,
which we consider important for next-generation
automatic summarization methods.

3 MDSWriter

MDSWriter is a web-based tool implemented in
Java/JSP and JavaScript. The user interface con-
sists of a dashboard providing access to all anno-
tation projects and their steps. Each step commu-
nicates with a server application that is responsible
for recording the user–system interactions and the
intermediate results. Below, we describe our pro-
posed setup with seven subsequent steps motivated
by our initial annotation guidelines.

Dashboard. Our tool supports multiple users
and topics (i.e., the document sets that are to be
summarized). After logging in, a user receives a
list of all topics assigned to her or him, the num-
ber of documents per topic, and the status of the
summarization process. That is, for each annota-
tion step, the tool shows either a green checkmark
(if completed), a red cross (if not started), or a yel-
low circle (if this step comes next) to indicate the
user’s progress. By clicking on the yellow circle
of a topic, the user can continue his or her work.
Figure 2 (a) shows an example with ten topics.

Step 1: Nugget identification. The first step
aims at the selection of salient information within
the multiple source documents, which is the most
important and most time-consuming annotation
step. Figure 1 shows the overall setup. Two thirds

2http://143.233.226.97:60091/MMSEvaluator/

98

Figure 1: Nugget identification step with explanations of the most important components

of the screen are reserved for displaying the source
documents. In the current setup, a user can choose
to view a single source document over the full
width or display two different source documents
next to each other. The latter is useful for compar-
ison and for ensuring consistent annotation.

Analogous to a marker pen, users can select
salient parts of the text with the mouse. When re-
leasing the mouse button, the selected text part
receives a different background color and the se-
lected text is included in the list of all selections
shown on the right-hand side. The users may use
three different colors to organize their selections.
Existing selections can be modified and deleted.

To systematize the selection process, we define
the term important information nugget in our an-
notation guidelines. Each nugget should consist of
at least one verb with at least one of its arguments.
It should be important, topic-related, and coherent,
but not cross sentence boundaries. Typically, each
selection in the source document corresponds to
one nugget. But nuggets might also be discontinu-
ous in order to support the exclusion of parentheti-
cal phrases and other information of minor impor-
tance. Our tool models these cases by defining two

distinct selections and merging them by means of
a dedicated merge button.

Two special cases are nuggets referring to a cer-
tain source (e.g., a book) and nuggets within di-
rect or indirect speech, which indicate a speaker’s
opinion. In figure 1, the 2005 biography is the
source for the music-related selection. If a user
would select only the subordinate clause, some
people would be the speaker. As information about
the source or speaker is highly important for both
automatic methods and human writers, we provide
a method to select this information within the text.
The selection list shows the source/speaker in gray
color at the beginning of a selection (default: [?]).

Having finished the nugget identification for all
source documents, a user can return to the dash-
board by clicking on “step complete”.

Step 2: Redundancy detection. Redundancy is
a key characteristic of multiple documents about
a given topic. Automatic summarization methods
aim at removing this redundancy. But, at the same
time, most methods rely on the redundancy sig-
nal when estimating the importance of a phrase or
sentence. Therefore, our annotation guidelines for

99

(a) (b)

(c) (d)

Figure 2: Screenshots of the dashboard (a) and the steps 3 (b), 5 (c), and 7 (d)

step 1 suggest to identify all important nuggets, in-
cluding redundant ones. This type of intermediate
result will allow us to create a better setup for eval-
uating content selection algorithms than compar-
ing their outcome to redundancy-free summaries.

As our ultimate goal is, however, to compose
an actual summary, we still need to remove the
redundancy, which motivates our second annota-
tion step. Each user receives a list of his or her ex-
tracted information nuggets and may now reorder
them using drag and drop. As a result, nuggets
with the same or a highly similar content will yield
a single group. To allow for an informed decision,
users may expand each nugget to view a context
box showing the title of the source document and
a ±10 words window around the nugget text.

Step 3: Best nugget selection. In the third step,
users select a representative nugget from each
group, which we call the best nugget. We guide
their decision by suggesting to prefer declarative
and objective statements and to minimize context
dependence (e.g., by avoiding deixis or anaphora).

To select the best nugget, users can click on one of
the nuggets within a group, which then turns red.
Users may change their decisions and open a con-
text box similar to step 2. Figure 2 (b) shows an
example with two groups and a context box.

Step 4: Co-reference resolution. Although the
users should avoid nuggets with co-references in
step 3, there is often no other choice. Therefore,
we aim at resolving the remaining co-references
as part of a fourth annotation step. Even though
human writers make vast use of co-references in a
final summary, they usually change them with re-
gard to the source documents. For example, it is
uncommon to use a personal pronoun in the very
first sentence of a summary, even if this cataphor
would be resolved in the following sentences.
Therefore, our approach is to first resolve all co-
references in the best nuggets during step 4 and
establish a meaningful discourse structure later
when composing the actual summary in step 7.

To achieve this, MDSWriter displays one best
nugget at a time and allows the user to navigate

100

through them. For each best nugget, we show its
direct context, but also provide the entire source
document in case the referring expression is not
included in the surrounding ten words.

Step 5: Sentence formulation. Since our notion
of information nuggets is on sub-sentence level,
we ask our users to formulate each best nugget as a
complete, grammatical sentence. This type of data
will be useful for evaluating sentence compression
algorithms, which start with an entire sentence ex-
tracted from one of the source documents and aim
at compressing it to the most salient information.
In our guidelines, we suggest that the changes to
the nugget text should be minimal and that both
the statement’s source (step 1) and the resolved
co-references (step 4) should be part of the refor-
mulated sentence. We use the same user interface
as in the previous step. That is, we display a single
best nugget in its context and ask for the reformu-
lated version. Figure 2 (c) shows a screenshot of a
reformulated discontinuous nugget.

Step 6: Summary organization. While impor-
tant nuggets often keep their original order in
single-document summaries, there is no obvious
predefined order for multi-document summaries.
Therefore, we provide a user interface for orga-
nizing the sentences (step 5) in a meaningful way
to formulate a coherent summary. A user receives
a list of her or his sentences and may change the
order using drag and drop. Additionally, it is pos-
sible to insert subheadings (e.g., “conclusion”).

We consider this step important as previous ap-
proaches, for example, by Nakano et al. (2010,
p. 3127) “did not instruct summarizers about how
to connect parts” and thus do not control for coher-
ence. By explicitly defining the order, we get in a
position to learn from the human summarization
process and improve the coherence of automati-
cally generated extracts.

The user interface for step 6 is similar to the
steps 2 and 3. It shows a sentence list and allows
opening a context box with the original nugget.

Step 7: Summary composition. Our final step
aims at formulating a coherent summary based on
the structure defined in step 6. MDSWriter pro-
vides a text area that is initialized with the refor-
mulated (step 5) and ordered (step 6) best nuggets,
which can be arbitrarily changed. In our setup,
we ask the users to make only minimal changes,
such as introducing anaphors, discourse connec-

tives, and conjunctions. This will yield summaries
that are very close to the source documents, which
is especially useful for evaluating extractive sum-
marization methods. However, MDSWriter is not
limited to this procedure and future uses may
strive for abstractive summaries that require sub-
stantial revisions.

While writing the summary, the users have ac-
cess to all source documents, to their original
nuggets (step 1) and to their selection of best
nuggets (step 3). By means of a word counter, the
users can easily produce summaries with a cer-
tain word limit. Figure 2 (d) shows the correspond-
ing user interface. Having finished their summary,
users complete the entire annotation process for
the current topic and return to the dashboard.

Server application. Each user action, ranging
from the selection of a new nugget (step 1) to mod-
ifications of the final summary (step 7), is auto-
matically sent to our server application. We use
a WebSocket connection to ensure efficient bidi-
rectional communication. The user–system inter-
actions and all intermediate results are stored in an
SQL database. Conversely, the server loads previ-
ously stored inputs, such that the users can inter-
rupt their work at any time without losing data.

The client–server communication is based on a
simple text-based protocol. Each message consists
of a four character operation code (e.g., 7DNE in-
dicating that step 7 is now complete) and an ar-
bitrary number of tab-separated parameters. The
message 1NGN 1 25 100 2 indicates, for exam-
ple, that the current user added a new nugget of
length 100 characters to document 1 at offset 25,
which will be displayed in color 2 (yellow).

4 Extensibility

The annotation workflow discussed so far is one
example of dividing the complex setup of multi-
document summarization into clear-cut steps. We
argue that this division is important to ensure con-
sistent and reliable annotations and to record inter-
mediate results and process data. Despite this ex-
emplary setup, MDSWriter provides an ideal basis
for many other summarization workflows, such as
creating structured or aspect-oriented summaries.
This can be achieved by rearranging already ex-
isting steps and/or adding new steps. To this end,
we designed the bidirectional and easy-to-extend
message protocol described in the previous section
as well as a brief developer guide on GitHub.

101

Of particular interest is that MDSWriter fea-
tures cross-document annotations, the recording of
user–system interactions and intermediate results,
which is also highly relevant beyond the summa-
rization scenario. Therefore, we consider MDS-
Writer as an ideal starting point for a wide-range
of other complex multi-step annotation tasks, in-
cluding but not limited to information extraction
(combined entity, event, and relation identifica-
tion), terminology mining (selection of candidates,
filtering, describing, and organizing them), and
cross-document discourse structure annotation.

5 Conclusion and future work

We introduced MDSWriter, a tool for construct-
ing multi-document summaries. Our software fills
an important gap as high-quality summarization
corpora are urgently needed to train and evalu-
ate automatic summarization systems. Previously
available tools are not well-suited for this task, as
they do not support cross-document annotations,
the modeling of complex tasks with a number of
distinct steps, and reusing the tools under free li-
censes. As a key property of our tool, we store
all intermediate annotation results and record the
user–system interaction data. We argued that this
enables next-generation summarization methods
by learning from human summarization strategies
and evaluating individual components of a system.

In future work, we plan to create and evaluate
an actual corpus for multi-document summariza-
tion using our tool. We also plan to provide mon-
itoring components in MDSWriter, such as com-
puting inter-annotator agreement in real-time.

Acknowledgements. This work has been sup-
ported by the DFG-funded research training group
“Adaptive Preparation of Information form Het-
erogeneous Sources” (AIPHES, GRK 1994/1) and
by the Lichtenberg-Professorship Program of the
Volkswagen Foundation under grant№ I/82806.

References
Wei-Te Chen and Will Styler. 2013. Anafora: A Web-

based General Purpose Annotation Tool. In Pro-
ceedings of the 2013 NAACL/HLT Demonstration
Session, pages 14–19, Atlanta, GA, USA.

Richard Eckart de Castilho, Sabine Bartsch, and Iryna
Gurevych. 2012. CSniper – Annotation-by-query
for Non-canonical Constructions in Large Corpora.
In Proceedings of the 50th Annual Meeting of the
ACL: System Demonstrations, pages 85–90, Jeju Is-
land, Korea.

George Giannakopoulos, Jeff Kubina, John Conroy,
Josef Steinberger, Benoit Favre, Mijail Kabadjov,
Udo Kruschwitz, and Massimo Poesio. 2015.
MultiLing 2015: Multilingual Summarization of
Single and Multi-Documents, On-line Fora, and
Call-center Conversations. In Proceedings of the
16th Annual Meeting of the SIGDIAL, pages 270–
274, Prague, Czech Republic.

Christian Girardi, Manuela Speranza, Rachele Sprug-
noli, and Sara Tonelli. 2014. CROMER: a Tool
for Cross-Document Event and Entity Coreference.
In Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation, pages
3204–3208, Reykjavik, Iceland.

Bernard J. Jansen and Udo Pooch. 2001. A review of
Web searching studies and a framework for future
research. Journal of the American Society for Infor-
mation Science and Technology, 52(3):235–246.

Masahiro Nakano, Hideyuki Shibuki, Rintaro
Miyazaki, Madoka Ishioroshi, Koichi Kaneko,
and Tatsunori Mori. 2010. Construction of Text
Summarization Corpus for the Credibility of Infor-
mation on the Web. In Proceedings of the Seventh
International Conference on Language Resources
and Evaluation, pages 3125–3131, Valletta, Malta.

Ani Nenkova and Rebecca Passonneau. 2004. Evaluat-
ing Content Selection in Summarization: The Pyra-
mid Method. In Proceedings of the Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the ACL, pages 145–152, Boston,
MA, USA.

Mick O’Donnell. 2008. Demonstration of the UAM
CorpusTool for Text and Image Annotation. In Pro-
ceedings of the 46th Annual Meeting of the ACL:
Demo Session, pages 13–16, Columbus, OH, USA.

Constantin Orăsan, Ruslan Mitkov, and Laura Hasler.
2003. CAST: A computer-aided summarisation tool.
In Proceedings of the 10th Conference of the Euro-
pean Chapter of the ACL, pages 135–138, Budapest,
Hungary.

Martin Potthast, Matthias Hagen, Michael Völske, and
Benno Stein. 2013. Crowdsourcing Interaction
Logs to Understand Text Reuse from the Web. In
Proceedings of the 51st Annual Meeting of the ACL,
pages 1212–1221, Sofia, Bulgaria.

Jan Ulrich, Gabriel Murray, and Giuseppe Carenini.
2008. A Publicly Available Annotated Corpus for
Supervised Email Summarization. In Enhanced
Messaging: Papers from the 2008 AAAI Workshop,
Technical Report WS-08-04, pages 77–82. Menlo
Park, CA: AAAI Press.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A Flexible, Web-based and Visually
Supported System for Distributed Annotations. In
Proceedings of the 51st Annual Meeting of the ACL:
System Demonstrations, pages 1–6, Sofia, Bulgaria.

102

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 103–108,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Jigg: A Framework for an Easy Natural Language Processing Pipeline

Hiroshi Noji
Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, Japan
noji@is.naist.jp

Yusuke Miyao
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo, Japan
yusuke@nii.ac.jp

Abstract

We present Jigg, a Scala (or JVM-
based) NLP annotation pipeline frame-
work, which is easy to use and is exten-
sible. Jigg supports a very simple in-
terface similar to Stanford CoreNLP, the
most successful NLP pipeline toolkit, but
has more flexibility to adapt to new types
of annotation. On this framework, system
developers can easily integrate their down-
stream system into a NLP pipeline from a
raw text by just preparing a wrapper of it.

1 Introduction

A common natural language processing system
works as a component in a pipeline. For example,
a syntactic parser typically requires that an input
sentence is correctly tokenized or assigned part-
of-speech (POS) tags. The syntactic trees given by
the parser may be required in further downstream
tasks such as coreference resolution and semantic
role labelling. While this pipeline-based approach
has been quite successful due to its modularity, it
suffers from several drawbacks from a viewpoint
of software use and development:
• For a user, building a pipeline connecting ex-

isting tools and aggregating the outputs are
painful, since often each system outputs the
results in a different format;

• For researchers or tool developers of down-
stream tasks, supporting the full pipeline
from an input text in their software is boring
and time consuming.

For example, two famous dependency parsing sys-
tems, MaltParser (Nivre et al., 2006) and MST-
Parser (McDonald et al., 2005), both assume that
an input sentence is already tokenized and as-
signed POS tags, and encoded in a specific format,
such as the CoNLL format.

POS$Tagging

Berkeley$Parser Stanford$CoreNLP

Parsing

Berkeley$Parser Stanford$CoreNLP

New$Tagger

Tokeniza:on Stanford$CoreNLP

Sentence$Spli=ng Stanford$CoreNLP

Down$stream$tasks
Coreference$Resolu:on,$
$Seman:c$Role$Labelling,$etc

ScalaXML
Object

Input:Rawtext

Output:$Annotated$XML$file

Figure 1: In a pipeline, annotations are performed
on a Scala XML object. A pipeline is built by
choosing annotator tools at each step, e.g., the bold
or dotted lines in the figure. Each component is
implemented as a wrapper, which manipulates the
XML object. If we prepare a new wrapper of some
component, one can integrate it in a pipeline (e.g.,
the POS tagger in the dotted lines).

In this paper, we present Jigg, which aims to
make it easy to incorporate an existing or new
tool (component) in an NLP pipeline. Figure 1
describes the overview. Using Jigg, a user can
easily construct a pipeline by choosing a tool at
each step on a command-line interface. Jigg is
written in Scala, and can easily be extended with
JVM languages including Java. A new tool can
be incorporated into this framework by writing a
wrapper of that to follow the common API of Jigg
(Scala XML object), which requires typically sev-
eral dozes of lines of code.

The software design of Jigg is highly inspired
by the success of Stanford CoreNLP (Manning et
al., 2014), which is now the most widely used NLP
toolkit supporting pipeline processing from raw
texts. One characteristic of Stanford CoreNLP is

103

its simplicity of API, which allows wider users to
easily get linguistic annotations for a text. Follow-
ing this strategy, Jigg is also quite simple to use;
all the basic components are included into one jar
file, so a user need not install the external depen-
dencies. The basic usage of Jigg is command-line
interface, and the behavior can be customized with
a Java properties file. On the other hand, it fo-
cuses just on processing of a single document on
a single machine, and does not provide the solu-
tion to more complex scenarios such as distributed
processing or visualization, which UIMA and re-
lated projects (Ferrucci and Lally, 2004; Kano et
al., 2011) may provide.

The largest difference between Jigg and Stan-
ford CoreNLP is the focused NLP components.
Stanford CoreNLP is basically a collection of NLP
tools developed by the Stanford NLP group, e.g.,
Stanford POS tagger (Toutanova et al., 2003) and
Stanford parser (Socher et al., 2013). Jigg, on the
other hand, is an integration framework of vari-
ous NLP tools developed by various groups. This
means that adding a new component in Jigg is
easier than Stanford CoreNLP. Also as indicated
in Figure 1, Jigg provides a wrapper to Stanford
CoreNLP itself, so a user can enjoy combination
of Stanford CoreNLP and other tools, e.g., Berke-
ley parser (Petrov and Klein, 2007) (see Section
2). This difference essentially comes from the un-
derlying object annotated on each step, which is
CoreMap object in Stanford CoreNLP, and Scala
XML object in Jigg, which gives more flexibility
as we describe later (Section 5). Before that, in
the following, we first describes the concrete us-
age (Section 2), the core software design (Section
3), and a way to add a new component (Section 4).

The code is open-source under the Apache Li-
cense Version 2.0. Followings are the pointers to
the related websites:

• Github: https://github.com/mynlp/jigg

• Maven: http://mvnrepository.com/

artifact/com.github.mynlp/jigg

Jigg is also available from Maven, so it can eas-
ily be incorporated into another JVM project. See
REAME on the project Github for this usage.

2 Basic Usages

As an example, let us consider the scenario to run
the Berkeley parser on a raw text. This parser is
state-of-the-art but it requires that the input is cor-

$ cat sample.txt
This is a cat. That is a dog.
$ echo sample.txt | java -cp "*" \
jigg.pipeline.Pipeline\
-annotators "corenlp[tokenize,ssplit],berkeleyparser"\
-berkeleyparser.grFileName ./eng_sm6.gr > sample.xml

Figure 2: A command-line usage to run the Berke-
ley parser on sentences tokenized and splitted by
Stanford CoreNLP.

Figure 3: The output of the command in Figure 2
(sample.xml).

rectly tokenized and splitted on sentences. Fig-
ure 2 shows a concrete command-line to build a
pipeline, on which tokenization and sentence split-
ting are performed using the components in Stan-
ford CoreNLP. This pipeline corresponds to the
bold lines in Figure 1. jigg.pipeline.Pipeline is
the path to the main class. −annotators argu-
ment is essential, and specifies which components
(tools) one wishes to apply. In the command-line,
corenlp[tokenize, ssplit] is an abbreviation of two
components, corenlp[tokenize] (tokenization) and
corenlp[ssplit] (sentence splitting by CoreNLP).1

The last argument −berkeleyparser.grFileName
is necessary and specifies the path to the parser
model (learned grammar).

XML output In the current implementation, the
output format of annotations is always XML. Fig-
ure 3 shows the output for this example. In
this output, parse element specifies a (constituent)
parse tree with a collection of spans, each of
which consists of a root symbol (e.g., S) and child
nodes (ids). This format is intended to be eas-
ily processed with a computer, and differs in sev-
eral points from the outputs of Stanford CoreNLP,
which we describe more in Section 5.

1Precisely, the two commands have different meanings
and the former abbreviated form is recommended. In the lat-
ter separated form, transformation between CoreMap object
and Scala XML is performed at each step (twice), while it
occurs once in the former one after ssplit.

104

import jigg.pipeline.Pipeline
import scala.xml.Node
import java.util.Properties

object ScalaExample {
def main(args: Array[String]): Unit = {
val props = new Properties()
props.setProperty("annotators",

"corenlp[tokenize,ssplit],berkeleyparser")
props.setProperty("berkeleyparser.grFileName",

"eng_sm6.gr")
val pipeline = new Pipeline(props)
val annotation: Node = pipeline.annotate(

"This is a cat. That is a dog")

// Find all sentence elements recursively,
// and get the first one.
val firstSentence = (annotation \\ "sentence")(0)

// All tokens on the sentence
val tokens = firstSentence \\ "token"

println("POS tags on the first sentence: " +
(tokens map (_ \@ "pos") mkString " "))

// Output "DT VBZ DT NN ."
}

}

Figure 4: A programmatic usage from Scala.

Properties As in Stanford CoreNLP, these argu-
ments can be customized through a Java properties
file. For example, the following properties file cus-
tomizes the behavior of corenlp besides the parser:
$ cat sample.properties
annotators: corenlp[tokenize,ssplit],berkeleyparser
berkeleyparser.grFileName: ./eng_sm6.gr
corenlp.tokenize.whitespace: true
corenlp.ssplit.eolonly: true

This file can be used as follows:
jigg.pipeline.Pipeline -props sample.properties

Each annotator-specific argument has the form
annotator name.key. In the case of corenlp, all
keys of the arguments prefixed with that are di-
rectly transferred to the CoreNLP object, so the
all arguments defined in Stanford CoreNLP can be
used to customize the behavior. The setting above
yields tokenization on white spaces, and sentence
splitting on new lines only (i.e., the input text is
assumed to be properly preprocessed beforehand).

Programmatic usage Jigg can also be used as
a Scala library, which can be called on JVM lan-
guages. Figure 4 shows an example on a Scala
code. The annotate method of Pipeline object
performs annotations on the given input, and re-
turns the annotated XML object (Node class). The
example also shows how we can manipulate the
Scala XML object, which can be searched with
methods similar to XPath, e.g., \\. \@ key returns
the attribute value for the key if exists. Figure 5
shows that Jigg can also be used via a Java code.

Another example Jigg is a growing project, and
the supported tools are now increasing. Histori-

Properties props = new Properties();
props.setProperty("annotators",

"corenlp[tokenize,ssplit],berkeleyparser");
props.setProperty("berkeleyparser.grFileName",

"eng_sm6.gr");
Pipeline pipeline = new Pipeline(props);
Node annotation = pipeline.annotate(

"This is a cat. That is a dog");

// Though the search methods such as \\ cannot be
// used on Java, we provide utilities to support
// Java programming.
List<Node> sentences = jigg.util.XMLUtil.findAllSub(

annotation, "sentence");
Node firstSentence = sentences.get(0);
List<Node> tokens = jigg.util.XMLUtil.findAllSub(

firstSentence, "token");
System.out.print("POS tags on the first sentence: ");
for (Node token: tokens) {

String pos = XMLUtil.find(token, "@pos").toString();
System.out.print(pos + " ");

}

Figure 5: Jigg also supports Java programming.

cally, Jigg has been started as a pipeline frame-
work focusing on Japanese language processing.
Jigg thus supports many Japanese processing tools
such as MeCab (Kudo et al., 2004), a famous mor-
phological analyzer, as well as a Japanese CCG
parser based on the Japanese CCGBank (Uematsu
et al., 2013). For English, currently the core tool
is Stanford CoreNLP. Here we present an inter-
esting application to integrate Berkeley parser into
the full pipeline of Stanford CoreNLP:
-annotators "corenlp[tokenize,ssplit],berkeleyparser,
corenlp[lemma,ner,dcoref]"

where dcoref is a coreference resolution system
relying on constituent parse trees (Recasens et
al., 2013). This performs annotation of corefer-
ence resolution based on the parse trees given by
the Berkeley parser instead of the Stanford parser.
Using Jigg, a user can enjoy these combinations
of existing tools quite intuitively. Also if a user
has her own (higher-performance) system on the
pipeline, one can replace the existing component
with that in a minimal effort, by writing a wrapper
of that tool in JVM languages (see Section 4).

3 Design

We now describe the internal mechanisms of Jigg,
which comprise of two steps: the first is a check
for correctness of the given pipeline, and the sec-
ond is annotations on a raw text with the con-
structed pipeline. We describe the second anno-
tation step first (Section 3.1), and then discuss the
first pipeline check phase (Section 3.2).

3.1 Annotation on Scala XML
As shown in Figure 1, each annotator (e.g., the to-
kenizer in Stanford CoreNLP) communicates with

105

the Scala XML object. Basically, each annotator
only adds new elements or attributes into the re-
ceived XML.2 For example, the Berkeley parser
receives an XML, on which each sentence element
is annotated with tokens elements lacking pos at-
tribute on each token. Then, the parser (i.e., the
wrapper of the parser) adds the predicted syntactic
tree and POS tags on each sentence XML (see Fig-
ure 3). Scala XML (Node object) is an immutable
data structure, but it is implemented as an im-
mutable tree, so a modification can be performed
efficiently (in terms of memory and speed).

3.2 Requirement-based Pipeline Check

On this process, the essential point for the pipeline
to correctly work is to guarantee that all the re-
quired annotations for an annotator are provided at
each step. For example, the berkeleyparser anno-
tator assumes each sentence element in the XML
has the following structure:
<sentence id="...">

sentence text
<tokens>
<token form="..." id="..."/>
<token form="..." id="..."/>
...

</tokens>
</sentence>

where form means the surface form of a token.
How do we guarantee that the XML given to
berkeleyparser satisfies this form?

Currently, Jigg manages these dependen-
cies between annotators using the concept of
Requirement, which we also borrowed from Stan-
ford CoreNLP. Each annotator has a field called
requires, which specifies the type of necessary an-
notations that must be given before running it. In
berkeleyparser it is defined as follows:
override def requires:Set[Requirement] =

Set(Tokenize, Ssplit)

where Ssplit is an object (of Requirement type),
which guarantees that sentences element (a col-
lection of sentence elements) exists on the current
annotation, while Tokenize guarantees that each
sentence element has tokens element (a collec-
tion of token elements), and each token has four
attributes: id, form, characterOffsetBegin, and
characterOffsetEnd.

Each annotator also has requirementsSatisfied
field, which declares which Requirements will be
satisfied (annotated). In the above requirements,

2One exception in the current implementation is ssplit in
corenlp, which breaks the result of tokenize (one very long
tokenized sentence) into several sentences.

Ssplit is given by corenlp[ssplit] while Tokenize is
given by corenlp[tokenize]. In berkeleyparser, it is
POS and Parse; POS guarantees that each token
element has pos attribute. Before running annota-
tion, Jigg checks whether the constructed pipeline
correctly works by checking that all elements in
requires for each annotator are satisfied by (in-
cluded in) the requirementsSatisfied elements of
the previous annotators. For example, if we run
the pipeline with −annotators berkeleyparser ar-
gument, the program fails with an error message
suggesting missing Requirements.

Note that currently Requirement is something
just like a contract on the structure of annotated
XML, and it is the author’s responsibility to im-
plement each annotator to output the correct XML
structure. Currently the correspondence between
each Requirement and the satisfied XML structure
is managed with a documentation on the wiki of
the project Github. We are seeking a more sophis-
ticated (safe) mechanism to guarantee these corre-
spondences in a code; one possible solution might
be to define the skeletal XML structure for each
Requirement, and test in each annotator whether
the annotated object follows the defined structure.

4 Adding New Annotator

Here we describe how to implement a new annota-
tor and integrate it into the Jigg pipeline. We also
discuss a way to distribute a new system in Jigg.

Implementing new annotator We focus on im-
plementation of Berkeley parser as an example to
get intuition into what we should do. Annotator is
the base trait3 of all annotator classes, which de-
fines the following basic methods:

• def annotate(annotation : Node) : Node

• def requires : Set[Requirement]

• def requirementsSatisfied : Set[Requirement]

We have already seen the roles of requires and
requirementsSatisfied in Section 3.2. Note that
in many cases including the Berkeley parser, an-
notation is performed on each sentence indepen-
dently. For this type of annotation, we provide
a useful trait SentenceAnnotator, which replaces
the method to be implemented from annotate to
newSentenceAnnotation, which has the same sig-
nature as annotate.4

3Trait is similar to interface in Java.
4This trait implements annotate to traverse all sentences

and replace them using newSentenceAnnotation method.

106

package jigg.pipeline
import ...

// By supporting a constructor with signature
// (String, Properties), the annotator can be
// instantiated dynamically using reflection.
class BerkeleyParserAnnotator(
override val name: String,
override val props: Properties) extends SentenceAnnotator {

// Instantiate a parser by reading the gramar file.
val parser: CoarseToFineMaxRuleParser = ...

override def newSentenceAnnotation(sentence: Node): Node = {

val tokens: Node = (sentence \ "tokens").head
val tokenSeq: Seq[Node] = tokens \ "token"

// (1) Get a list of surface forms.
val formSeq: Seq[String] = tokenSeq.map(_ \@ "form")

// (2) Parse the sentence by calling the API.
val binaryTree: Tree[String] = parser.
getBestConstrainedParse(formSeq.asJava, null, null)

val tree =
TreeAnnotations.unAnnotateTree(binaryTree, true)

// (3) Convert the output tree into annotation.
val taggedTokens = addPOSToTokens(tree, tokens)
val parse = treeToNode(tree, tokenSeq)

// (4) Return a new sentence node with updated
// child elements.
XMLUtil.addOrOverrideChild(
sentence, Seq(newTokens, parseNode))

}
// Return the new tokens element on which each element has
// pos attributes.
def addPOSToTokens(tree: Tree[String], tokens: Node): Node
= { ... }

// Convert the Tree object in Berkeley parser into XML.
def treeToNode(
tree: Tree[String], tokenSeq: Seq[Node]): Node = { ... }

override def requires = Set(Tokenize)
override def requirementsSatisfied = Set(POS, Parse)

}

Figure 6: Core parts in BekeleyParserAnnotator.

Figure 6 shows an excerpt of essential parts
in BerkeleyParserAnnotator. It creates a parser
object in the constructor, and then in each
newSentenceAnnotation, it first extracts a se-
quence of (yet annotated) tokens (1), gets a tree
object from the parser (2), converts the tree into
Scala XML object (3), and returns the updated
sentence XML object (4). This workflow to en-
code to and decode from the API-specific objects
is typical when implementing new annotators.

Calling with reflection The class in Fig-
ure 6 has a constructor with the signature
(String, Properties), which allows us to instanti-
ate the class dynamically using reflection. To do
this, a user has to add a new property prefixed
with customAnnotatorClass (the same as Stanford
CoreNLP). In the case above, the property

customAnnotatorClass.berkeleyparser : jigg.pipeline.BerkeleyParser

Another advantage of this trait is that annotations are auto-
matically performed in parallel if the code is thread-safe. One
can also prohibit this behavior by overriding nThreads vari-
able by 1 in the annotator class.

makes it possible to load the implemented annota-
tor with the name berkeleyparser.

Distributing new annotators An ultimate goal
of Jigg is that the developers of a new tool in
a pipeline distribute their system along with the
wrapper (Jigg annotator) when releasing the soft-
ware. If the system is JVM-based, the most stable
way to integrate it is releasing the annotator (along
with the software) into Maven repositories. Then,
a user can build an extended Jigg by adding the
dependency to it. For example, now the annotator
for the MST parser is implemented, but is not in-
cluded in Jigg, as it is a relatively old system. One
way to extend Jigg with this tool is to prepare an-
other project, on which its build.sbt may contain
the following lines:5

libraryDependencies ++= Seq(
"com.github.mynlp" % "jigg" % "VVV",
"com.github.mynlp" % "jigg-mstparser" % "0.1-SNAPSHOT")

Jigg itself focuses more on the central NLP tools
for wider users, but one can obtain the customized
Jigg in this way.

Tools beyond JVM So far we have only dealt
with JVM softwares such as Stanford CoreNLP,
but Jigg can also wraps the softwares written in
other languages such as C++ and python. In fact,
many existing tools for Japanese are implemented
in C or C++, and Jigg provides wrappers for those
softwares. One problem of these languages is that
installation is sometimes hard due to complex de-
pendencies to other libraries. We thus put a pri-
ority on supporting the tool written in JVM lan-
guages in particular on Maven first, which can be
safely incorporated in general.

5 Comparison to Stanford CoreNLP

As we have seen so far, Jigg follows the software
design of Stanford CoreNLP in many respects. Fi-
nally, in this section, we highlight the important
differences between two approaches.

Annotated objects Conceptually this is the
most crucial difference as we mentioned in Sec-
tion 1. In Stanford CoreNLP, each annotator ma-
nipulates an object called CoreMap. A clear ad-
vantage of this data structure is that one can take
out a typed data structure, such as a well imple-
mented Sentence or Graph object, which is easy

5To call a new annotator, a user have to give a class path
to the annotator with the property. Note that the mappings for
the built-in annotators such as berkeleyparser are preserved
in the Jigg package, so they can be used without any settings.

107

to use. In Jigg’s XML, on the other hand, one ac-
cesses the fields through literals (e.g., \@ ′′pos′′ to
get the POS attribute of a token). This may sug-
gests Jigg needs more careful implementation for
each annotator. However, we note that the prob-
lem can be alleviated by adding a simple unit test,
which we argue is important as well in other plat-
forms.

The main advantage of using Scala XML as a
primary object is its flexibility for adapting to new
types of annotations. It is just an XML object,
so there is no restriction on the allowed structure.
This is not the case in Stanford CoreNLP, where
each element in CoreMap must be a proper data
structure defined in the library, which means that
the annotation that goes beyond the assumption of
Stanford CoreNLP is difficult to support. Even if
we define a new data structure in CoreMap, an-
other problem occurs when outputting the annota-
tion into other formats such as XML. In Stanford
CoreNLP, this output component is hard-coded in
the outputter class, which is difficult to extend.
This is the problem that we encountered when we
explored an extension to Stanford CoreNLP for
Japanese processing pipeline as our initial attempt.
Historically in Japanese NLP, the basic analyzing
unit is called bunsetsu, which is a kind of chunk; a
syntactic tree is often represented as a dependency
tree on bunsetsu. Jigg is preferable to handle these
new data structures, which go beyond the assump-
tion on typical NLP focusing primarily on English,
and we believe this flexibility make Jigg suitable
for an integration framework, which has no restric-
tions on the applicable softwares and languages.

Output format Another small improvement is
that our XML output format (Figure 3) is (we be-
lieve) more machine-friendly. For example, in
Stanford CoreNLP, the parse element is just a
Lisp-style tree like (S (NP (DT This)) ((VBZ is)
(NP (DT a) (NN cat))) (. .)), which is parsable el-
ements in Jigg. For some attribute names we em-
ploy different names, e.g., surface form is called
form in Jigg instead of word in Stanford CoreNLP.
We decide these names basically following the
naming convention found in Universal Dependen-
cies6, which we expect becomes the standard in fu-
ture NLP. Finally, now we implement each wrap-
per so that each id attribute is unique across the
XML, which is not the case in Stanford CoreNLP.
This makes search of elements more easier.

6http://universaldependencies.org/docs/

6 Conclusion

We presented Jigg, an open source framework for
an easy natural language processing pipeline both
for system developers and users. We hope that this
platform facilitates distribution of a new high qual-
ity system on the pipeline to wider users.

Acknowledgments

This work was supported by CREST, JST.

References
David A. Ferrucci and Adam Lally. 2004. Uima: an archi-

tectural approach to unstructured information processing
in the corporate research environment. Natural Language
Engineering, 10(3-4):327–348.

Y. Kano, M. Miwa, K. B. Cohen, L. E. Hunter, S. Ananiadou,
and J. Tsujii. 2011. U-compare: A modular nlp work-
flow construction and evaluation system. IBM Journal of
Research and Development, 55(3):11:1–11:10, May.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. 2004.
Applying conditional random fields to japanese morpho-
logical analysis. In Dekang Lin and Dekai Wu, editors,
EMNLP, pages 230–237, Barcelona, Spain, July.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny
Finkel, Steven Bethard, and David McClosky. 2014. The
stanford corenlp natural language processing toolkit. In
ACL: System Demonstrations, pages 55–60, Baltimore,
Maryland, June.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan
Hajic. 2005. Non-projective dependency parsing using
spanning tree algorithms. In HLT-EMNLP, October.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: a data-driven parser-generator for dependency
parsing. In LREC.

Slav Petrov and Dan Klein. 2007. Improved inference for
unlexicalized parsing. In HLT-NAACL, pages 404–411,
Rochester, New York, April.

Marta Recasens, Marie-Catherine de Marneffe, and Christo-
pher Potts. 2013. The life and death of discourse entities:
Identifying singleton mentions. In NAACL: HLT, pages
627–633, Atlanta, Georgia, June.

Richard Socher, John Bauer, Christopher D. Manning, and
Ng Andrew Y. 2013. Parsing with compositional vector
grammars. In ACL, pages 455–465, Sofia, Bulgaria, Au-
gust.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and
Yoram Singer. 2003. Feature-rich part-of-speech tag-
ging with a cyclic dependency network. In NAACL: HLT,
pages 173–180, Morristown, NJ, USA.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,
Yusuke Miyao, and Hideki Mima. 2013. Integrating
multiple dependency corpora for inducing wide-coverage
japanese ccg resources. In ACL, pages 1042–1051, Sofia,
Bulgaria, August.

108

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 109–114,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

An Advanced Press Review System Combining Deep News Analysis and
Machine Learning Algorithms

Danuta Ploch, Andreas Lommatzsch, and Florian Schultze
DAI-Labor, Technische Universität Berlin

Ernst-Reuter-Platz 7, 10587 Berlin, Germany
{danuta.ploch, andreas.lommatzsch}@dai-labor.de,

florian.schultze@campus.tu-berlin.de

Abstract

In our media-driven world the perception
of companies and institutions in the me-
dia is of major importance. The cre-
ation of press reviews analyzing the me-
dia response to company-related events is
a complex and time-consuming task. In
this demo we present a system that com-
bines advanced text mining and machine
learning approaches in an extensible press
review system. The system collects doc-
uments from heterogeneous sources and
enriches the documents applying different
mining, filtering, classification, and ag-
gregation algorithms. We present a sys-
tem tailored to the needs of the press de-
partment of a major German University.
We explain how the different components
have been trained and evaluated. The sys-
tem enables us demonstrating the live an-
alyzes of news and social media streams
as well as the strengths of advanced text
mining algorithms for creating a compre-
hensive media analysis.

1 Introduction

The analysis of news related to companies and in-
stitution is a complex task often performed by hu-
man experts. Due to the growing amount of news
and articles published in social media, large col-
lections of data must be analyzed. In order to sup-
port the efficient creation of press reviews pow-
erful tools are needed for the automatic aggrega-
tion and deep analysis of news. This motivates
us to develop an extensible framework allowing us
to combine advanced machine learning algorithms
for filtering, extracting, and visualizing relevant
information.

1.1 The analyzed Scenario

In this work we present a system developed for the
press department of the Berlin Institute of Tech-
nology (TUB). The system should be able to col-
lect news as well as social media articles related
to the TUB or to any other of the Berlin’s univer-
sities. The system is subject to a collection of re-
quirements: The system should detect duplicates
or texts with minor variations. Persons and facul-
ties mentioned in news articles are of special inter-
est for a fine-grained analysis. The system should
detect known entities and create detailed statistics.
Events drive the news. The system should detect
and follow news related to the Berlin’s universi-
ties. Readers of news often drain in information.
The system should aggregate and visualize rele-
vant documents in a concise way by computing
key figures (e.g. describing the sentiment score
for news) and calculating statistics giving a quick
overview on the characteristics of the news stream.
The results of the news analysis should be acces-
sible in a web application.

1.2 Challenges

The automatic creation of press reviews leads to
several challenges. The system has to integrate
all important sources and to filter irrelevant doc-
uments. A specific challenge is that abbrevia-
tions are often used for institutions having a long
name. In our scenario the “Technische Univer-
sität Berlin” is frequently called “TUB” or “TU”.
The press review system must infer from the con-
text whether an article is relevant or not. The au-
tomatic analysis and enrichment requires a vari-
ety of algorithms, including duplicates detection,
identification and disambiguation of named enti-
ties, and sentiment analysis. The sentiment analy-
sis for news articles is a hard challenge since most
journalists seek to write objectively. Nevertheless,
news induces emotions relevant in the automatic
analysis of news documents. Since the system has

109

been developed for a major German university, the
language analysis focuses on German texts.

1.3 Structure of the Work

The remaining work is structured as follows. In
Section 2 we explain the basics of text mining al-
gorithms and discuss existing press review sys-
tems. The architecture and the implemented al-
gorithms are presented in Section 3. In Section 4
the visualization of the elicited data is described in
further detail. Section 5 explains the most impor-
tant use cases and presents the evaluation results
with respect to the functionality of the press re-
view portal. A conclusion and an outlook to future
work is given in Section 6.

2 Related Work

We review advanced text mining algorithms
and existing press review systems. There
are a lot of commercial press review sys-
tems such as http://www.bluereport.net/de/,
http://www.pressemonitor.de/ or https://

www.ausschnitt.de/. The systems focus on
printed newspapers but also provide press reviews
for online published articles. Traditionally, the
systems provide excerpts related to predefined
search terms. In general, the companies offer a
wide variety of analysis services but the applied
algorithms are neither open nor explained. With
the pricing models in mind a lot of work is still
performed by human experts. Based on the com-
panies’ information policy and the marketing lan-
guage on the websites it is unclear to what ex-
tent machine learning or text mining algorithms
are used.

Several research-oriented systems complement
commercial press review systems. An exemplary
application for large scale news analysis is LY-
DIA. LYDIA focuses on named entity detection.
Its key feature is answering questions such as
“who is being talked about, by whom, when, and
where?” (Lloyd et al., 2005). The SEMANTIC

PRESS system (Picchi et al., 2008) uses an al-
ternative approach. It presents the most discussed
themes in the Italian-spoken web.
An example for German media resonance analysis
is the system explained by (Scholz, 2011). It fo-
cuses on entity extraction and sentiment analysis.
Similar researches were done by (Hanjalic et al.,
1998) and (Zhang et al., 2009).

3 Approach

We develop an open framework enabling us in-
tegrating different information sources and ma-
chine learning algorithms. The system allows
us considering news portals, search engines, RSS
feeds, and messages published on TWITTER. We
deploy a flexible processing pipeline enriching
freshly crawled documents as well as a batch en-
gine used for clustering and generating newslet-
ters. Our framework is open for the integration of
new sources and algorithms allowing us incremen-
tally extending and improving our system.

3.1 System Architecture

The structure of the developed system is shown in
Fig. 1. The system consists of four major build-
ing blocks. The crawler component collects po-
tentially relevant documents and tweets. The doc-
uments are persisted in a database. The process-
ing components enrich the crawled documents and
run several different machine learning algorithms.
Based on the meta-data and the computed annota-
tions the relevance of documents is computed and
near duplicates are identified. The batch process-
ing pipeline is a second pipeline used for process-
ing documents from the database in predefined in-
tervals. Both processing pipelines can be easily
extended. The use of a database decouples the
crawling from the processing allowing an efficient
and concurrent computation of annotations.

The enriched documents are presented to the
user in a web application and summarized in a pe-
riodically created newsletter.

3.2 Text Mining Components

In this Section we present the algorithms imple-
mented for the different components in detail and
discuss specific adaptations.

Validation
Several crawlers collect potentially relevant doc-
uments subsequently analyzed by the validation
component. The crawlers use APIs of major
search engines and the TWITTER streaming API.
We define for each source a component optimiz-
ing the queries in order to ensure that all relevant
documents are crawled (taking into account the
limits of the sources). Due to the fact that sev-
eral sources only support simple term queries (in-
stead of phrase queries), an additional filtering is
required. For this purpose we manually labeled

110

NewsDB

Email-Newsletter

Source

News Crawler

Twitter Crawler

Processing Pipeline

News Reader

Validation

Duplicate Detection

Named Entity Detection

Assignment to Faculties

<Online Analysis n>

News WriterBatch Processing

Event Clustering

<Batch Analysis n>

News Portal

Newsletter Newsarchive

Sentiment Analysis

Figure 1: The figure visualizes the system ar-
chitecture. Potentially relevant news documents
and twitter messages collected by the crawlers
are stored in the news database. The Processing
Pipeline applies different text mining algorithms
to each new document. The Batch Processing
is executed on all documents periodically. The
elicited data and documents are represented by a
second application, the News-Portal which is built
with GROOVY and GRAILS.

the documents crawled in a time frame of 2 weeks
as relevant or irrelevant. Based on this dataset we
trained a rule-based classifier considering phrases
and context data for filtering out irrelevant doc-
uments. The filtering is especially important for
handling abbreviations frequently used for refer-
ring to Berlin’s universities.

Deduplication
Due to the applied architecture for collecting doc-
uments, similar documents might be crawled mul-
tiple times from different sources. Hence, we need
to integrate a deduplication component identifying
(near) duplicates. For ensuring an efficient pro-
cessing of large text collections we implemented
the Rabin fingerprint algorithm (Rabin and others,
1981). The algorithm randomly selects a prede-

fined number of text shingles and computes the
hash codes. Duplicates are identified by count-
ing the fraction of identical shingles in two doc-
uments. We adjust the optimal parameter settings
(shingle size, number of considered shingles) on a
validation dataset.

Named Entity Detection
The named entity detection component recognizes
and disambiguates persons mentioned in news ar-
ticles. For the recognition part it uses several
components from “Stanford CoreNLP” which are
explained in (Manning et al., 2014). In par-
ticular, the component applies the parser, POS-
tagger, and Named Entity Recognizer (NER) to
detect mentions of professors, researchers and
other university-related experts mentioned in the
news articles. Based on the output of the “Stanford
CoreNLP” tools the module enriches each identi-
fied person with their titles and associated organi-
zation, provided the news article contains the nec-
essary information within a window of n words.
In addition, the person’s name is decomposed into
a given name and a surname. In order to iden-
tify person mentions unambiguously the module
applies local and global disambiguation strategy.
The local disambiguation resolves co-referent per-
son mentions within one news article. It assem-
bles a representation of each person as complete
as possible. The global disambiguation performs
a cross-document co-reference resolution. It con-
siders all person attributes and words calculated
from the text surrounding a person mention. Each
person from a news article is compared to entries
already stored in the database. In the course of
similarity calculation all types of information (per-
son attributes and bag-of-word) are weighted dif-
ferently. If the similarity between a newly detected
person and a person from the database exceeds a
predefined threshold, the persons are merged in
the database. Otherwise, a new person entry is cre-
ated.

Assignment of Faculties
Usually, universities are structured in several fac-
ulties. The presence of single faculties in the me-
dia may be an important quality indicator for the
universities. Our approach to assigning news ar-
ticles to a faculty is person-based. Therefore, we
first gather the names of all employees from the
faculty websites. In this way we create a register
of person names aligned with faculty affiliation.

111

In order to measure the media response of a spe-
cific faculty, the implemented component analyzes
news articles according to mentions of persons re-
lated to the faculty. The implementation of our ap-
proach bases on an inverted index containing each
document’s full text. We search the documents
for person names from our register. If our algo-
rithm identifies a faculty-related person, it assigns
the news article to the corresponding faculty.

Event Detection
The event detection component clusters news ar-
ticles dealing with one concrete news event such
as the Queen’s Lecture or the Long Night of the
Sciences in Berlin. Our approach uses a combi-
nation of the Canopy and the k-means algorithm
for clustering which is described by (McCallum
et al., 2000). In order to improve the accuracy
of the clustering we enable a part-of-speech tag-
ger. We exclude all words that do not contribute to
the content like articles, conjunctions, and prepo-
sitions; we proceed with the resulting subset of
the text. Since the k-means algorithm needs to be
initialized with a fixed number of clusters k our
component performs two stages. First, the compo-
nent estimates the number of clusters by applying
Canopy. We adjust Canopy’s hyper-parameters on
a manually annotated validation dataset. Then, the
calculated canopies serve as input centroids for the
second step, the k-means clustering. Finally, each
cluster corresponds to a real-life event.

Sentiment Analysis
Despite of the objective nature of news articles,
they are still a valuable source of sentiment in-
formation. They may express opinions of cited
entities or may contain content influencing the
reader’s perception regarding a university. Our
system incorporates two sentiment analysis com-
ponents.

The first component implements a lexicon-
based approach. It uses the SentiWS sentiment
dictionary (Remus et al., 2010) containing posi-
tively and negatively connoted words with posi-
tive and negative scores respectively. In order to
calculate the sentiment score of an entire news ar-
ticle it counts the values of positive and negative
words occurring in the news article. The com-
ponent takes into account negation by exploiting
a list of inverting words. If an inverting word
precedes a positive or negative connoted word, it
changes its polarity.

The second approach uses machine learning
techniques. We build a training dataset with about
2,400 randomly selected sentences from crawled
documents. We annotate the sentences to have
a positive, negative, or neutral sentiment. For
the annotation we use the rules from (Clematide
et al., 2012). Based on the created dataset we
train a Multi-nominal Naive Bayes classifier able
to classify each sentence of a news article into
one of the three sentiment classes. We represent
each sentence in the vector space model apply-
ing common text preprocessing steps. Beside uni-
grams we also include bigrams into the vectors to
cover sentiment-related expressions such as “very
good”. The overall sentiment of a news article
is computed based on all single sentence classi-
fications. The classifier achieves promising results
providing deep insights into the sentiment distri-
bution within a news article. A more detailed ex-
planation can be found in (Bütow et al., 2016).

4 Visualization

We implemented a web-based user interface visu-
alizing the collected and annotated documents and
tweets. The web portal provides two major views.
(1) The Newsletter or live view shows the most re-
cently collected news. (2) The Newsarchive view
aggregates documents collected in the past and al-
lows the creation of statistics as well as the visual-
ization of events identified by clustering news re-
lated to one topic.

Figure 2: The Figure shows the front page of the
system. It visualizes the Twitter messages on the
left sidebar, the news articles in the middle and the
corresponding sentiments on the right-hand side.
The information for each displayed document are
the title, a snippet, the date, the keywords used by
the crawler and the source. A filter box is placed
above the tweets allowing users filtering tweets by
date and universities.

The live view shown in Figure 2 helps to ex-

112

plore the news on a daily basis. It gives users a
fast overview of the most recently published news
articles, shows which sources publish news re-
lated to the Berlins universities and visualizes the
most important key figures. The view presents
the documents as a list, each document provided
with the extracted meta-data, such as the corre-
sponding universities. If a document deals with
the Berlin Institute of Technology, the faculty con-
nected with the news item is also listed. In addi-
tion, the computed sentiment score and a short ex-
planation for the sentiment score are displayed. A
statistic showing the aggregated sentiment scores
for one day for the major Berlins universities is
presented in Figure 4.

Figure 3: The Figure shows the time-line as one
part of the news archive. At the bottom the time-
line arranges different clusters of messages. Each
cluster has an icon assigned to the related univer-
sity and a title derived a document of the cluster. A
selected cluster appears above the time-line with
its corresponding news articles, the date and the
ten most frequent terms in that cluster.

The archive view allows users analyzing the
documents collected in the past. Users can search
for documents or analyze the stream of news in de-
tail. A powerful tool helping users to identify the
most important events is the view that groups news
documents by events on a timeline (Figure 3). The
view lists all articles related to the selected events
and shows the related institutions. The archive
view also provides statistics. Figure 6 visualizes
the number of documents related to the faculties
of the TUB in a predefined time frame. These dia-
gram supports a quick comparison of different fac-
ulties.

In addition to the statistics aggregating informa-
tion collected over a timeframe, the systems pro-
vides views giving insights into single news arti-
cles. As discussed, we implemented a sentiment
classifier working based on sentences. The senti-

ments scores computed for each sentence are visu-
alized in Figure 5.

Figure 4: The Figure visualizes a diagram summa-
rizing the results of the news aggregation and sen-
timent analysis for the current day. The diagram
shows the distribution of the positive, negative,
and neutral documents assigned to the correspond-
ing university. In addition, the number of collected
documents and the average sentiment scores are
shown in this panel.

Figure 5: The Figure visualizes the sentiments
computed for each sentence in a document. Sen-
tences classified as negative are shaded in red; sen-
tences classified as positive are shaded in green.
The checkbox above the full text allows users to
hide positive, negative, and neutral sentences.

Figure 6: The Figure visualizes the number of
news articles related to the “Technische Universiät
Berlin” depending on the different faculties.

113

5 The Demonstration

The demo is accessible at http://presse.
dai-labor.de/pressreview/ with the
following credentials: username demo and
password pressespiegel.

The system follows the live news stream and al-
lows users discovering the most recent news as
well analyzing documents collected in the past.
The web applications provides views for “regular”
users but also detailed information and statistics
for experts giving more fine-grained insights in the
applied methods.

6 Conclusion and Future Work

We developed a powerful system that fulfills the
requirements of a press review in the context of
Berlin’s universities. The system combines several
different text mining algorithms and incorporates
various visualizations helping users understanding
the news and social media contributions. The sys-
tem is open (upon request). It allows accessing the
documents and their annotations by querying the
database. The system can be extended by adding
new modules to the processing pipelines. Hence,
the system can be easily adapted for the specific
requirements of other companies and for comput-
ing additional metrics. As future work we plan to
conduct comprehensive user studies in order to op-
timize the algorithms to the needs of our users. We
continuously work on adding blogs and RSS feeds
providing information potentially relevant for our
use case. We also plan an improved support for
documents in other languages. Considering the
identification of relevant persons, we aim to create
an extended entity dataset and train a deep neural
network. Furthermore, we plan the integration of
additional machine learning algorithms for sum-
marizing multiple documents related to events as
well as algorithms for tracking the evolution of
topics and sentiments over longer time frames.

Acknowledgments

The research leading to these results was per-
formed in the CrowdRec project, which has re-
ceived funding from the European Union Sev-
enth Framework Programme FP7/2007-2013 un-
der grant agreement No. 610594.

References
Florian Bütow, Florian Schultze, and Leopold Strauch.

2016. Sentiment Analysis with Machine Learn-
ing Algorithms on German News Articles. Tech-
nical report, Berlin Institute of Technology, AOT.
http://www.dai-labor.de/publikationen/1052.

Simon Clematide, Stefan Gindl, Manfred Klenner, Ste-
fanos Petrakis, Robert Remus, Josef Ruppenhofer,
Ulli Waltinger, and Michael Wiegand. 2012. MLSA
– A Multi-layered Reference Corpus for German
Sentiment Analysis. In Procs. of the 8th Intl. Conf.
on Lang. Res. and Evaluation, pages 3551–3556.

Alan Hanjalic, Reginald L. Lagendijk, and Jan
Biemond. 1998. Semiautomatic news analysis, in-
dexing, and classification system based on topic pre-
selection. Proc. SPIE, 3656:86–97.

Levon Lloyd, Dimitrios Kechagias, and Steven Skiena.
2005. Lydia: A system for large-scale news analy-
sis. In String Processing and Information Retrieval,
pages 161–166. Springer.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL (System Demon-
strations), pages 55–60.

Andrew McCallum, Kamal Nigam, and Lyle H. Un-
gar. 2000. Efficient clustering of high-dimensional
data sets with application to reference matching.
In Procs. of the 6th ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, KDD ’00,
pages 169–178, NY, USA. ACM.

Eugenio Picchi, S Cucurullo, E Sassolini, and
Francesca Bertagna. 2008. Mining the news with
semantic press. Procs. of the 8th Intl. Conf. on Lan-
guage Resources and Evaluation, pages 141–144.

Michael O Rabin et al. 1981. Fingerprinting by ran-
dom polynomials. Center for Research in Comput-
ing Techn., Aiken Computation Laboratory, Univ.

Robert Remus, Uwe Quasthoff, and Gerhard Heyer.
2010. SentiWS - A Publicly Available German-
language Resource for Sentiment Analysis. In Proc.
of the Intl. Conf. on Language Resources and Evalu-
ation, LREC 2010, 17-23 May 2010, Valletta, Malta.
European Language Resources Association.

Thomas Scholz. 2011. Ein Ansatz zu Opinion Min-
ing und Themenverfolgung für eine Medienresonan-
zanalyse. In Procs. of the 23rd GI-WS Grundlagen
von Datenbanken, pages 7–12. issn: 1613-0073.

Yulei Zhang, Yan Dang, Hsinchun Chen, Mark Thur-
mond, and Cathy Larson. 2009. Automatic online
news monitoring and classification for syndromic
surveillance. Decision Support Systems, 47(4):508 –
517. Smart Business Networks: Concepts and Em-
pirical Evidence.

114

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 115–120,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Personalized Exercises for Preposition Learning

John Lee, Mengqi Luo
The Halliday Centre for Intelligent Applications of Language Studies

Department of Linguistics and Translation
City University of Hong Kong

{jsylee, mengqluo}@cityu.edu.hk

Abstract

We present a computer-assisted language
learning (CALL) system that generates
fill-in-the-blank items for preposition us-
age. The system takes a set of carrier sen-
tences as input, chooses a preposition in
each sentence as the key, and then auto-
matically generates distractors. It person-
alizes item selection for the user in two
ways. First, it logs items to which the user
previously gave incorrect answers, and of-
fers similar items in a future session as re-
view. Second, it progresses from easier
to harder sentences, to minimize any hin-
drance on preposition learning that might
be posed by difficult vocabulary.

1 Introduction

Many learners of English find it challenging to
master the use of prepositions. Preposition usage
is a frequent error category in various learner cor-
pora (Izumi et al., 2003; Dahlmeier et al., 2013;
Lee et al., 2015); indeed, entire exercise books
have been devoted to training learners on preposi-
tion usage (Watcyn-Jones and Allsop, 2000; Yates,
2010). To address this area of difficulty, we
present a system that automatically generates fill-
in-the-blank (FIB) preposition items with multiple
choices.

Also known as gap-fill or cloze items, FIB
items are a common form of exercise in computer-
assisted language learning (CALL) applications.
Table 1 shows an example item designed for teach-
ing English preposition usage. It contains a sen-
tence, “The objective is to kick the ball into
the opponent’s goal”, with the preposition “into”
blanked out; this sentence serves as the stem (or
carrier sentence). It is followed by four choices
for the blank, one of which is the key (i.e., the

correct answer), and the other three are distrac-
tors. These choices enable the CALL application
to provide immediate and objective feedback to
the learner.

Traditional exercise books no longer meet all
the needs of today’s learners. The pedagogical
benefits of using authentic textual material have
been well documented (Larimer and Schleicher,
1999; Erbaggio et al., 2012). One recent approach
turns text on web pages into slot-fill items (Meur-
ers et al., 2010). By offering the learner the free-
dom to choose his or her own preferred text, this
approach motivates the learner to complete the ex-
ercises.

Our system automatically constructs FIB prepo-
sition items from sentences in Wikipedia, a cor-
pus that contains authentic language. As more
users own mobile devices, mobile applications are
now among the most efficient ways to provide
on-demand language learning services. Although
user attention on mobile devices can be brief and
sporadic, each FIB item can be completed within
a short time, and therefore our system offers an
educational option for users to spend their idle
moments. Focusing on prepositions, the system
generates distractors based on error statistics com-
piled from learner corpora. Further, it maintains
an estimate of the user’s vocabulary level, and tai-

The objective is to kick the ball the
opponent’s goal.
(A) in
(B) into
(C) to
(D) with

Table 1: An automatically generated fill-in-the-
blank item, where “into” is the key, and the other
three choices are distractors.

115

lors item selection to address his or her areas of
weakness. To the best of our knowledge, this is
the first system that offers these personalization
features for preposition items.

The rest of the paper is organized as follows.
Section 2 reviews previous work. Section 3 out-
lines the algorithms for generating the fill-in-the-
blank items. Section 4 gives details about the per-
sonalization features in the item selection process.
Section 5 reports implementation details and eval-
uation results.

2 Previous work

The Internet presents the language learner with
an embarassment of riches. A plethora of CALL
websites—Duolingo, LearnEnglish Grammar by
the British Council, or Rosetta Stone, to name
just a few—provide a variety of speaking, listen-
ing, translation, matching and multiple choice ex-
ercises. In these exercises, the carrier sentences
and other language materials are typically hand-
crafted. As a result, the number of items are lim-
ited, the language use can sometimes lack authen-
ticity, and the content may not match the users’
individual interests.

Promoting use of authentic material, the WERTi
system provides input enhancement to web pages
for the purpose of language learning (Meurers et
al., 2010). It highlights grammatical constructions
on which the user needs practice, and turns them
into slot-fill exercises. It handles a wide range
of constructions, including prepositions, determin-
ers, gerunds, to-infinitives, wh-questions, tenses
and phrasal verbs. On the one hand, the system
offers much flexibility since it is up to the user to
select the page. On the other, the selected text does
not necessarily suit the user in terms of its lan-
guage quality, level of difficulty and the desired
grammatical constructions.

A number of other systems use text corpora to
create grammar exercises. The KillerFiller tool in
the VISL project, for example, generates slot-fill
items from texts drawn from corpora (Bick, 2005).
Similar to the WERTi system, an item takes the
original word as its only key, and does not account
for the possibility of multiple correct answers.

Other systems attempt to generate distractors
for the key. Chen et al. (2006) manually designed
patterns for this purpose. Smith et al. (2010)
utilized a theusaurus, while Zesch and Mela-
mud (2014) developed context-sensitive rules.

The meeting on Monday went well ...

NP head prep obj

prep pobj

... kick the ball into the opponents’ goal

VP head prep obj

prep pobj

Figure 1: Parse tree for example carrier sentences.
Distractors are generated on the basis of the prepo-
sitional object (“obj”), and the NP head or VP
head to which the prepositional phrase is attached
(Section 3). See Table 1 for the item produced
from the bottom sentence.

Unlike our approach, they did not adapt to the
learner’s behavior. While some of these systems
serve to provide draft FIB items for teachers to
post-edit (Skory and Eskenazi, 2010), most remain
research prototypes.

A closely related research topic for this paper is
automatic correction of grammatical errors (Ng et
al., 2014). While the goal of distractor generation
is to identify words that yield incorrect sentences,
it is not merely the inverse of the error correction
task. An important element of the distractor gener-
ation task is to ensure that distractor appears plau-
sible to the user. In contrast to the considerable ef-
fort in developing tools for detecting and correct-
ing preposition errors (Tetreault and Chodorow,
2008; Felice and Pulman, 2009), there is only one
previous study on preposition distractor genera-
tion (Lee and Seneff, 2007). Our system builds on
this study by incorporating novel algorithms for
distractor generation and personalization features.

3 Item creation

The system considers all English sentences in the
Wikicorpus (Reese et al., 2010) that have fewer
than 20 words as carrier sentence candidates. In
each candidate sentence, the system scans for
prepositions, and extracts two features from the
linguistic context of each preposition:

• The prepositional object. In Figure 1, for
example, the words “Monday” and “goal” are
respectively the prepositional objects of the
keys, “on” and “into”.

116

Co-occurrence method
... kicked the chair with ...
... kicked the can with ...
... with the goal of ...
Learner Error method
... kicked it <error>in</error> the goal.
... kick the ball <error>in</error> the
other team’s goal.
Learner Revision method

... kick the ball to his own goal.

... kick the ball into the goal.

... kick the ball to the goal.

... kick it towards the goal.

Table 2: The Co-occurrence method (Section 3.1)
generates “with” as the distractor for the carrier
sentence in Figure 1; the Learner Error method
(Section 3.2) generates “in”; the Learner Revision
method (Section 3.3) generates “to”.

• The head of the noun phrase or verb phrase
(NP/VP head) to which the prepositional
phrase (PP) is attached. In Figure 1, the PP
“into the opponents’ goal” is attached to the
VP head “kick”; the PP “on Monday” is at-
tached to the NP head “meeting”.

In order to retrieve the preposition, the preposi-
tional object, and the NP/VP head (cf. Section 3),
we parsed the Wikicorpus, as well as the corpora
mentioned below, with the Stanford parser (Man-
ning et al., 2014). The system passes the two fea-
tures above to the following methods to attempt to
generate distractors. If more than one key is possi-
ble, it prefers the one for which all three methods
can generate a distractor.

3.1 Co-occurrence method
This method requires co-occurrence statistics from
a large corpus of well-formed English sentences.
It selects as distractor the preposition that co-
occurs most frequently with either the preposi-
tional object or the NP/VP head, but not both. As
shown in Table 2, this method generates the dis-
tractor “with” for the carrier sentence in Figure 1,
since many instances of “kick ... with” and “with
... goal” are attested. The reader is referred to Lee
and Seneff (2007) for details.

Our system used the English portion of Wiki-
corpus (Reese et al., 2010) to derive statistics for
this method.

3.2 Learner error method

This method requires examples of English sen-
tences from an error-annotated learner corpus.
The corpus must indicate the preposition errors,
but does not need to provide corrections for these
errors. The method retrieves all sentences that
have a PP with the given prepositional object and
attached to the given NP/VP head, and selects
the preposition that is most frequently marked as
wrong.

To derive statistics for this method, our sys-
tem used the NUS Corpus of Learner En-
glish (Dahlmeier et al., 2013), the EF-Cambridge
Open Language Database (Geertzen et al., 2013)
and a corpus of essay drafts written by Chinese
learners of English (Lee et al., 2015).

3.3 Learner revision method

Finally, our system exploits the revision behavior
of learners in their English writing. This method
requires draft versions of the same text written by
a learner. It retrieves all learner sentences in a draft
that contains a PP with the given prepositional ob-
ject, and attached to the given NP/VP head. It then
selects as distractor the preposition that is most of-
ten edited in a later draft. As shown in Table 2, this
method generates the distractor “to” for the carrier
sentence in Figure 1, since it is most often edited
in the given linguistic context. The reader is re-
ferred to Lee et al. (2016) for details.

To derive statistics for this method, our sys-
tem also used the aforementioned corpus of essay
drafts.

4 Item selection

Learners benefit most from items that are neither
too easy nor too difficult. Following principles
from adaptive testing (Bejar et al., 2003), the sys-
tem tracks the user’s performance in order to select
the most suitable items. It does so by considering
the vocabulary level of the carrier sentence (Sec-
tion 4.1) and the user’s previous mistakes (Sec-
tion 4.2).

4.1 Sentence difficulty

A potential pitfall with the use of authentic sen-
tences, such as those from Wikipedia, is that dif-

117

ficult vocabulary can hinder the learning of prepo-
sition usage. To minimize this barrier, the system
starts with simpler carrier sentences for each new
user, and then progresses to harder ones.

For simplicity, we chose to estimate the diffi-
culty of a sentence with respect to its vocabulary.1

Specifically, we categorized each word into one of
ten levels, using graded vocabulary lists compiled
by the Hong Kong Education Bureau (2012) and
the Google Web Trillion Word Corpus.2 The lists
consist of about 4,000 words categorized into four
sets, namely, those suitable for students in junior
primary school, senior primary, junior secondary,
or senior secondary. Levels 1 to 4 correspond to
these four sets. If the word does not belong to
these sets, it is classified at a level between 5 and
10, according to decreasing word frequency in the
Google corpus. The difficulty level of a sentence is
then defined as the level of its most difficult word.

For each new user, the system starts with sen-
tences at Level 4 or lower. It keeps track of his
or her performance for the last ten items. If the
user gave correct answers for more than 60% of
the items from the current level, the system incre-
ments the difficulty level by one. Otherwise, it de-
creases the difficulty level by one.

4.2 Preposition difficulty

In Figure 2, the system presents an item to the user.
If the user selects a distractor rather than the key,
he or she is informed by a pop-up box (Figure 3),
and may then make another attempt. At this point,
the user may also request to see a “similar” item
to reinforce the learning of the preposition usage
(Figure 4). Two items are defined as “similar”
if they have the same preposition as key, and the
same prepositional object and NP/VP head.

The system records all items to which the user
gave incorrect answers; we will refer to this set
of items as the “wrong list”. When the user logs
in next time, the system begins with a review ses-
sion. For each item in the “wrong list”, it retrieves
a “similar” item from the database (Figure 4), thus
facilitating the user in reviewing prepositional us-
age with which he had difficulty in a previous ses-
sion. If the user now successfully chooses the key,

1The difficulty level of a sentence depends also on syntac-
tic and semantic features. Most metrics for measuring read-
ability, however, have focused on the document rather than
the sentence level (Miltsakaki and Troutt, 2008; Pitler and
Nenkova, 2008).

2http://norvig.com/ngrams/

Figure 2: The system displays a carrier sentence
with the key “in” and the distractors “on” and “of”.

Figure 3: After the user selected the distractor
“on” for the item in Figure 2, a pop-up box alerts
the user.

the item is taken off the “wrong list”. After the
review session, the system resumes random selec-
tion of items within the estimated level of sentence
difficulty, as described in the last section.

5 Implementation and evaluation

5.1 Architecture

We used the MySQL database, and JSP for the
website backend. There are three main tables. The
Question table stores all carrier sentences selected
from the English portion of the Wikicorpus (Reese
et al., 2010). To expedite item retrieval and iden-
tification of “similar” items, the table stores the
key, prepositional object and NP/VP head of each
item, as well as the difficulty level of the carrier
sentence.

The Answer table stores the distractors for each
item. Currently, the distractors do not change ac-
cording to user identity, but we anticipate a future
version that personalizes the distractors with re-
spect to the user’s mother tongue.

The User table stores the user profile. Informa-
tion includes the user’s personal “wrong list”, his
or her estimated vocabulary level, as well as login
time stamps.

118

Figure 4: As review for the user, the system offers
an item that is similar to the one in Figure 2, which
also has “in” as the key, “eat” as the VP head and
“restaurant” as the prepositional object.

5.2 Interface

For a better user experience on mobile devices, we
used JQuery Mobile for interface development. At
the start page, the user can register for a new ac-
count, or log in with an existing user name and
password. Alternatively, the user can choose to
access the system as a guest. In this case, he or
she would be treated as a new user, but no user
history would be recorded.

The user can attempt an arbitrary number of
preposition items before logging out. Each item
is presented on its own page, with the distractor
and key displayed in random order (Figure 2). The
user chooses the best preposition by tapping on its
button. If the answer is correct, the system ad-
vances to the next item; otherwise, it informs the
user via a pop-up box (Figure 3), and then flags
the distractor in red. The user may try again until
he or she successfully chooses the key.

5.3 Evaluation

To assess system quality, we asked two profes-
sional English teachers to annotate a set of 400
items, which included both automatically gener-
ated and human-crafted items. For each choice in
an item, the teachers judged whether it is correct or
incorrect. They did not know whether each choice
was the key or a distractor. They may judge one,
multiple, or none of the choices as correct.

A distractor is called “reliable” if it yields
an incorrect sentence. As reported in Lee et
al. (2016), the proportion of distractors judged
reliable reached 97.4% for the Learner Revision

method, 96.1% for the Co-occurrence method, and
95.6% for the Learner Error method.

For each incorrect choice, the two annotators
further assessed its plausibility as a distractor
from their experience in teaching English to na-
tive speakers of Chinese. They may label it as ei-
ther “obviously wrong”, “somewhat plausible”, or
“plausible”. The Learner Error method produced
the best distractors, with 51.2% rated “plausible”,
followed by the Learner Revision method (45.4%)
and the Co-occurrence method (34.6%). The num-
ber of plausible distractors per item among the au-
tomatically generated items compares favourably
to the human-crafted ones (Lee et al., 2016).

6 Conclusion

We have presented a CALL system that turns sen-
tences from Wikipedia into fill-in-the-blank items
for preposition usage. Using statistics from both
standard and learner corpora, it generates plausi-
ble distractors to provide multiple choices.

The system tailors item selection for individual
learners in two ways. First, it chooses carrier sen-
tences that matches the learner’s estimated vocab-
ulary level. Second, to facilitate learning, it of-
fers review sessions with items that are similar to
those with which the learner previously demon-
strated difficulty.

In future work, we plan to extend the system
coverage beyond preposition to other common
learner error types.

Acknowledgments

We thank the reviewers for their very helpful com-
ments. This work was supported in part by an Ap-
plied Research Grant (Project no. 9667115) from
City University of Hong Kong.

References
Isaac I. Bejar, René R. Lawless, Mary E. Morley,

Michael E. Wagner, Randy E. Bennett, and Javier
Revuelta. 2003. A Feasibility Study of On-the-Fly
Item Generation in Adaptive Testing. The Journal
of Technology, Learning, and Assessment, 2(3).

Eckhard Bick. 2005. Grammar for Fun: IT-based
Grammar Learning with VISL. In P. Juel, edi-
tor, CALL for the Nordic Languages, pages 49–64.
Copenhagen: Samfundslitteratur, Copenhagen Stud-
ies in Language.

Hong Kong Education Bureau. 2012.
Enhancing English Vocabulary Learn-

119

ing and Teaching at Secondary Level.
http://www.edb.gov.hk/vocab learning sec.

Chia-Yin Chen, Hsien-Chin Liou, and Jason S. Chang.
2006. FAST: An Automatic Generation System for
Grammar Tests. In Proc. COLING/ACL Interactive
Presentation Sessions.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a Large Annotated Corpus of
Learner English: The NUS Corpus of Learner En-
glish. In Proc. 8th Workshop on Innovative Use of
NLP for Building Educational Applications.

Pierluigi Erbaggio, Sangeetha Gopalakrishnan, Sandra
Hobbs, and Haiyong Liu. 2012. Enhancing Stu-
dent Engagement through Online Authentic Mate-
rials. The International Association for Language
Learning Technology Journal, 42(2):27–51.

Rachele De Felice and Stephen Pulman. 2009. Au-
tomatic Detection of Preposition Errors in Learner
Writing. CALICO Journal, 26(3):512–528.

Jeroen Geertzen, Theodora Alexopoulou, and Anna
Korhonen. 2013. Automatic Linguistic Annotation
of Large Scale L2 Databases: The EF-Cambridge
Open Language Database (EFCAMDAT). In Proc.
31st Second Language Research Forum (SLRF).

Emi Izumi, Kiyotaka Uchimoto, Toyomi Saiga, Thep-
chai Supnithi, and Hitoshi Isahara. 2003. Auto-
matic Error Detection in the Japanese Learners’ En-
glish Spoken Data. In Proc. ACL.

Ruth E. Larimer and Leigh Schleicher. 1999. New
Ways in Using Authentic Materials in the Class-
room. Teachers of English to Speakers of Other
Languages, Inc., Alexandria, VA.

John Lee and Stephanie Seneff. 2007. Automatic Gen-
eration of Cloze Items for Prepositions. In Proc. In-
terspeech.

John Lee, Chak Yan Yeung, Amir Zeldes, Marc
Reznicek, Anke Lüdeling, and Jonathan Webster.
2015. CityU Corpus of Essay Drafts of English
Language Learners: a Corpus of Textual Revision
in Second Language Writing. Language Resources
and Evaluation, 49(3):659–683.

John Lee, Donald Sturgeon, and Mengqi Luo. 2016. A
CALL System for Learning Preposition Usage. In
Proc. ACL.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In Proc. ACL System
Demonstrations, pages 55–60.

Detmar Meurers, Ramon Ziai, Luiz Amaral, Adriane
Boyd, Aleksandar Dimitrov, Vanessa Metcalf, and
Niels Ott. 2010. Enhancing Authentic Web Pages
for Language Learners. In Proc. Fifth Workshop on
Innovative Use of Nlp for Building Educational Ap-
plications.

Eleni Miltsakaki and Audrey Troutt. 2008. Real Time
Web Text Classification and Analysis of Reading
Difficulty. In Proc. Third Workshop on Innovative
Use of NLP for Building Educational Applications.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 Shared Task
on Grammatical Error Correction. In Proc. 8th Con-
ference on Computational Natural Language Learn-
ing: Shared Task, pages 1–14.

Emily Pitler and Ani Nenkova. 2008. Revisiting Read-
ability: a Unified Framework for Predicting Text
Quality. In Proc. EMNLP.

Samuel Reese, Gemma Boleda, Montse Cuadros, Lluı́s
Padró, and German Rigau. 2010. Wikicorpus: A
Word-Sense Disambiguated Multilingual Wikipedia
Corpus. In Proc. LREC.

Adam Skory and Maxine Eskenazi. 2010. Predict-
ing Cloze Task Quality for Vocabulary Training. In
Proc. NAACL HLT 2010 Fifth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions.

Simon Smith, P. V. S. Avinesh, and Adam Kilgar-
riff. 2010. Gap-fill Tests for Language Learners:
Corpus-Driven Item Generation. In Proc. 8th Inter-
national Conference on Natural Language Process-
ing (ICON).

Joel Tetreault and Martin Chodorow. 2008. The Ups
and Downs of Preposition Error Detection in ESL
Writing. In Proc. COLING.

Peter Watcyn-Jones and Jake Allsop. 2000. Test Your
Prepositions. Penguin Books Ltd.

Jean Yates. 2010. The Ins and Outs of Prepositions.
Hauppauge, New York : Barron’s.

Torsten Zesch and Oren Melamud. 2014. Auto-
matic Generation of Challenging Distractors Using
Context-Sensitive Inference Rules. In Proc. Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications (BEA).

120

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 121–126,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

My Science Tutor: Learning Science with a Conversational Virtual Tutor

Sameer Pradhan Ron Cole Wayne Ward
Boulder Learning, Inc.

Boulder, CO
{pradhan,rcole,wward}@boulderlearning.com

Abstract

This paper presents a conversational, mul-
timedia, virtual science tutor for elemen-
tary school students. It is built using
state of the art speech recognition and spo-
ken language understanding technology.
This virtual science tutor is unique in that
it elicits self-explanations from students
for various science phenomena by engag-
ing them in spoken dialogs and guided
by illustrations, animations and interactive
simulations. There is a lot of evidence that
self-explanation works well as a tutorial
paradigm, Summative evaluations indicate
that students are highly engaged in the tu-
toring sessions, and achieve learning out-
comes equivalent to expert human tutors.
Tutorials are developed through a process
of recording and annotating data from ses-
sions with students, and then updating tu-
tor models. It enthusiastically supported
by students and teachers. Teachers report
that it is feasible to integrate into their cur-
riculum.

1 Introduction

According to the 2009 National Assessment of Ed-
ucational Progress (NAEP, 2009), only 34 percent
of fourth-graders, 30 percent of eighth-graders,
and 21 percent of twelfth-graders tested as profi-
cient in science. Thus, over two thirds of U.S. stu-
dents are not proficient in science. The vast major-
ity of these students are in low-performing schools
that include a high percentage of disadvantaged
students from families with low socioeconomic
status, which often include English learners with
low English language proficiency. Analysis of the
NAEP scores in reading, math and science over
the past twenty years indicate that this situation

is getting worse. For example, the gap between
English learners and English-only students, which
is over one standard deviation lower for English
learners, has increased rather than decreased over
the past 20 years. Moreover, science instruction is
often underemphasized in U.S. schools, with read-
ing and math being stressed.

The Program for International Student As-
sessment (PISA), coordinated by the Organiza-
tion for Economic Cooperation and Development
(OECD), is administered every three years in 65
countries across the world. According to their
findings in 2012, the U.S. average science score
was not measurably different from the OECD av-
erage.

Our approach to address this problem is a con-
versational multimedia virtual tutor for elemen-
tary school science. The operating principles for
the tutor are grounded on research from education
and cognitive science where it has been shown that
eliciting self-explanations plays an important role
(Chi et al., 1989; Chi et al., 1994; Chi et al., 2001;
Hausmann and VanLehn, 2007a; Hausmann and
VanLehn, 2007b). Speech, language and charac-
ter animation technologies play a central role be-
cause the focus of the system is on engagement
and spoken explanations by students during spo-
ken dialogs with the virtual tutor. Summative eval-
uations indicate that students are highly engaged
in the tutoring sessions, and achieve learning out-
comes equivalent to expert human tutors (Ward et
al., 2011; Ward et al., 2013). Surveys of partici-
pating teachers indicate that it is feasible to incor-
porate the intervention into their curriculum. Also,
importantly, most student surveys indicate enthu-
siastic support for the system.

Tutorials are developed through an iterative pro-
cess of recording, annotating and analyzing logs
from sessions with students, and then updating tu-
tor models. This approach has been used to de-

121

velop over 100 tutorial dialog sessions, of about
15 minutes each, in 8 areas of elementary school
science.

My Science Tutor (MyST) provides a supple-
ment to normal classroom science instruction that
immerses students in a multimedia environment
with a virtual science tutor that models an en-
gaging and effective human tutor. The focus of
the program is to improve each student’s engage-
ment, motivation and learning by helping them
learn to visualize, reason about and explain sci-
ence during conversations with the virtual tutor.
The learning principles embedded in MyST are
consistent with conclusions and recommendations
of the National Research Council Report, “Taking
Science to School: Learning and Teaching Science
in Grades K-8” (NRC, 2007), which emphasizes
the critical importance of scientific discourse in K-
12 science education. The report identifies the fol-
lowing crucial principles of scientific proficiency:

Students who are proficient in science:

1. Know, use, and interpret scientific explana-
tions of the natural world;

2. Generate and evaluate scientific evidence
and explanations;

3. Understand the nature and development of
scientific knowledge; and

4. Participate productively in scientific prac-
tices and discourse.

The report also emphasizes that scientific in-
quiry and discourse is a learned skill, so students
need to be involved in activities in which they
learn appropriate norms and language for produc-
tive participation in scientific discourse and argu-
mentation.

2 The MyST Application

MyST provides students with the scaffolding,
modeling and practice they need to learn to rea-
son and talk about science. Students learn science
through natural spoken dialogs with the virtual tu-
tor Marni, a 3-D computer character. Marni asks
students open-ended questions related to illustra-
tions, silent animations or interactive simulations
displayed on the computer screen.

Figure 1 shows the student’s screen with Marni
asking questions about media displayed in a tuto-
rial. The student’s computer shows a full screen

window that contains Marni, a display area for
presenting media and a display button that indi-
cates the listening status of the system. Marni pro-
duces accurate visual speech, with head and face
movements that are synchronized with her speech.
The media facilitate dialogs with Marni by help-
ing students visualize the science they are dis-
cussing. The primary focus of dialogs is to elicit
explanations from students. MyST compares the
student’s spoken explanations to reference expla-
nations for the lesson by matching the extracted
semantic roles using the Phoenix parser (Ward,
1991), then presents follow-on questions and me-
dia, to help the student construct a correct explana-
tion of the phenomena being studied. The virtual
tutor Marni, who speaks with a recorded human
voice, is designed to model an effective human tu-
tor that the student can relate to and work with to
learn science. MyST provides a non-threatening
and supportive environment for students to express
their ideas. The dialogs scaffold learning by pro-
viding students with support when needed until
they can apply new skills and knowledge indepen-
dently.

MyST is intended to be used as an intervention
for struggling students, with intended users being
K-12 science students. While it should prove a
benefit to all students, struggling students should
benefit most. Depending on the recording condi-
tions and ambient noise, as well as the character-
istics of the student and session, the recognition
word error rate ranges from low 20s to mid-40s.
MyST will contain tutorials for 3 topics per grade,
with content aligned with NGSS. For each topic,
students engage in an average of 10 spoken dia-
log sessions with the tutor, lasting approximately
20 minutes each. oThe MyST tutorial sessions are
in addition to the normal classroom instruction for
the module. Tutoring sessions can be assigned as
homework or during regular school hours, at the
teacher’s discretion. In the initial studies, tutor-
ing was always done during regular school hours.
Teachers specify the space in the school to be used,
generally any relatively quiet room. Students are
sent to use the system a few at a time, depending
on how many computers are available (5 comput-
ers per classroom were used in the efficacy study).
All students are given a demo at the beginning of
the school year and given a chance to ask ques-
tions. Teachers schedule time for students, but stu-
dents log on and use the system without supervi-

122

Figure 1: A snapshot of the screen as seen by a student.

sion, so it has minimal impact on teacher time or
other human resources. In studies thus far, surveys
report that teachers did not have problems using
the system and it did not interfere with their other
activities.

The application will eventually be deployed us-
ing a Software as a Service (SaaS) model. It will
run on a server and students will access it through
their browser. If internet service is not available or
reliable, it can be run stand-alone and the data up-
loaded when service is available. Both content and
user populations will evolve and system models
need to incorporate dynamic adaptation in an effi-
cient way. Data from all user sessions is logged in
a database and is available for continuous evalua-
tion and re-training of system models. The system
is designed to work well even if it doesn’t under-
stand the user, but becomes more engaging and ef-
ficient as it understands the user better. As training
data grows model parameters become more accu-
rate and more explicit models are trained, such as
acoustic models for ELL students. Unsupervised
training is combined with active learning to op-

timize use of the data for tuning system models.
Teachers in the initial studies did not feel that they
would have a problem implementing the system.

3 Theoretical Framework

The theory of change, and theoretical and empir-
ical support Science curricula are structured with
new concepts building on those already encoun-
tered. Struggling students fall further and fur-
ther behind if they don’t understand the content
of each topic. Research has demonstrated that hu-
man tutors are effective (Bloom, 1984; Madden
and Slavin, 1989), media presentations are effec-
tive (Mayer, 2001) and QtA dialog strategies are
effective (Murphy and Edwards, 2005). A system
that emulates a human tutor using media presen-
tations to focus a student’s attention and conduct-
ing a QtA-style dialog with the student should also
be effective. This additional time spent thinking
and talking about the science concepts covered in
class will enable students who would have fallen
behind to understand the content of the current
investigation so they will be prepared to partic-

123

ipate in and understand subsequent topics. Stu-
dent learning will increase because they are ex-
cited about and engaged by interesting and infor-
mative presentations that help them visualize and
understand the science and because they will learn
to engage in conversations in which they construct,
reflect on and revise mental models and explana-
tions about the science they are seeing and trying
to explain. MyST dialogs are designed to provide
students with understandable multimedia scenar-
ios, explanations and challenges and a support-
ive social context for communication and learn-
ing. Science is introduced through scenarios that
students can relate to and make sense of, and pro-
vide a context for introducing and using science
vocabulary and making connections between vo-
cabulary, objects, concepts and their prior knowl-
edge. Multimedia learning tools show and explain
science, and then enable students to revisit the me-
dia and explain the science in their own words.

Research has demonstrated that having students
produce explanations improves learning (Chi et
al., 1989; Chi et al., 2001; King, 1994; King et
al., 1988; Palincsar and Brown, 1984). In a series
of studies, Chi et al. (1989; 2001) found that hav-
ing college students generate self-explanations of
their understanding of physics problems improved
learning. Self-explanation also improved learn-
ing about the circulatory system by eighth grade
students in a controlled experiment (Chi et al.,
1994). Hausmann and Van Lehn (2007a; 2007b)
note that: “self-explaining has consistently been
shown to be effective in producing robust learn-
ing gains in the laboratory and in the classroom.”
Experiments by Hausmann and Van Lehn (Haus-
mann and VanLehn, 2007a) indicate that it is the
process of actively producing explanations, rather
than the accuracy of the explanations, that makes
the biggest contribution to learning.

4 Semantic Underpinnings

The patterns used in MyST to extract frames from
student responses are trained from annotated data.
The specification of tutorial semantics begins with
creating a narrative. A tutorial narrative is a set of
natural language statements that express the con-
cepts to be discussed in as simple a form as possi-
ble. These do not represent the questions that the
system asks, but are the set of points that the stu-
dent should express.

The narrative represents what an ideal explana-

tion from a student would look like. The narra-
tive statements are manually annotated to reflect
the desired semantic parses. These parsed state-
ments define the domain of the tutorial. The initial
grammar patterns are extracted from the narratives
and have all of the roles and entities that will be
discussed, but only a few (or one) ways of express-
ing them. As the system is used, the grammar is
expanded to cover the various ways students artic-
ulate their understandings of the science concepts.
This is done by annotating recordings of student
responses generated in real use. So the life cy-
cle of the natural language processing model for a
module is:

1. Create and annotate a narrative to define the
domain of the tutorial

2. Field the system to collect data from real
users

3. Sample incoming data and annotate
4. Evaluate current model and re-train
5. Repeat step 3-4 as long as the module is used

As the system is used, it logs all transac-
tions and records student speech. When tutori-
als are deployed for live use, incoming data are
processed automatically to assess system confi-
dence in the interpretation of student responses.
High-confidence items are added to the training
database, and low confidence sessions are selected
for transcription and annotation. The system also
provides a text input mode that students can use to
interact with the Avatar. Once annotated, the data
are added to the training set and system models
(acoustic models, language models and extraction
patterns) are retrained. Periodically, data are sam-
pled for test sets and a learning curve is plotted
for each module. All elements of this process are
automatic except for transcription and annotation.

The semantics of each domain are constrained,
but student responses can vary greatly in the ways
they choose to express concepts and terms. It takes
time, effort and data to get good coverage of stu-
dent responses. Semantic annotation for the sys-
tem consists of annotating:

Entities—The basic concepts talked about in
the session and the phrases that would be consid-
ered synonyms. Electricity could be expressed as
electricity, energy, power, current or electrical en-
ergy. Coverage of term synonyms from annotated
data is generally achieved fairly quickly. Roles—
How the entities in an event or concept are related

124

to each other. The larger problem is to attain cov-
erage of the patterns discriminating between pos-
sible role assignments. Not only is there more dis-
fluency and variability here, annotating them is a
more difficult task for someone not trained to do
it. Currently, it takes about one hour for a highly-
trained annotator to mark up the data collected in
a single 20-minute tutorial session.

5 Extrinsic Evaluation

An assessment was conducted in schools to com-
pare learning gains from human tutoring and
MyST tutoring to business-as-usual classrooms.
Learning gain was measured using standardized
assessments given to students in each condition
before and after each science module. Both tu-
toring conditions had significantly higher learning
gains than the control group. While the effect size
for human tutors vs. control (d=0.68) was larger
than for MyST vs. control (d=0.53), statistical
tests supported the hypothesis of no significant dif-
ference between the two.

A simple two-group comparison using a Re-
peated Measures ANOVA shows a statistically sig-
nificant effect at F=46.4, df 1,759, p <.0001 favor-
ing the treatment group. The interaction between
group and module was also significant at F=9.5, p
< .001. We also used an Analysis of Covariance
(ANCOVA) to compare post-test scores. This pro-
cedure adjusts for pre-test differences while com-
paring the post-test average scores. The two-group
comparison was significant at F=7.4, df 1,768,
p=.018. We also saw a significant interaction be-
tween treatment group and module with F=12.4,
df 3,768. Testing the main effects with a hierarchi-
cal mixed model with students nested within class-
rooms we found a significant effect for the treat-
ment group at F=6.2, df 1,2l7,662, p=0.013. No
significant interaction effect was found for mod-
ule by group.

A written survey was given to the students who
participated in the gas. Measures were taken to
avoid bias wherein students give overly positive
answers to questionnaires. The survey included
questions that asked for ratings of student experi-
ence and impressions of the program and its us-
ability. Across schools, 47% of students said they
would like to talk with Marni after every science
investigation, 62% said they enjoyed working with
Marni “a lot,” and 53% selected “I am more ex-
cited about science” after using the program. Only

4% felt that the tutoring did not help. Teachers
were asked for anonymous feedback to help as-
sess the feasibility of an intervention using the sys-
tem and their perceptions of the impact of the sys-
tem. A teacher survey was given to all participat-
ing teachers directly after their students completed
tutoring. The survey asked teachers about the per-
ceived impact of using Marni for student learn-
ing and engagement, impacts on instruction and
scheduling, willingness to potentially adopt Marni
as part of classroom instruction, and overall favor-
ability toward participating in the research project.
Teachers answered items related to potential barri-
ers in implementing new technology in the class-
room. 100% of responding teachers said that they
felt it had a positive impact on their students, they
would be interested in the program if it were avail-
able and they would recommend it to other teach-
ers. 93% said that they would like to participate in
the project again. 74% indicated that they would
like to have all of their students use the system (not
just struggling students). Following these studies,
Boulder Learning combined the best elements of
the initial systems into the current MyST system,
and with continued funding from IES (Cognition
and Student Learning Goal 3), is conducting an
efficacy study. We are currently in the 3rd year of
a 4 year study. While data collection will continue
for another year, preliminary results support the
learning gain performance from the initial studies.

6 MyST Conversations Corpus of
Student Speech (MCCSC)

We are making a cleaned up version of the corpus
available to the research community1 for free and
for commercial use at a pre-determined cost. The
first release of the corpus v0.1.0 comprises 298
hours of speech out of which 198 hours are man-
ually transcribed. This covers roughly 1.4 million
words of text. We are in the process of cleaning up
about the same amount of collected data for future
distribution.

7 Future Work

In the near future we plan to evaluate applying a
statistical labeler trained on existing corpora to the
task of Role assignment. This approach should
provide increased robustness to novel input and
substantially reduce the human annotation effort
required to attain a given level of coverage. The

1http://corpora.boulderlearning.com/myst

125

Proposition Bank (PropBank) provides a corpus of
sentences annotated with domain-independent se-
mantic roles (Palmer et al., 2005). PropBank has
been widely used for the development of machine
learning based Semantic Role Labeling (SRL) sys-
tems. Pradhan et al. (2005) used a rich set of
syntactic and semantic features to obtain a perfor-
mance with F-score in the low-80s. It has been
an integral component of most question answer-
ing systems for the past decade. Since its first
application to the newswire text, PropBank has
been extended to cover many more predicates and
diverse genres in the DARPA OntoNotes project
(Weischedel et al., 2011; Pradhan et al., 2013) and
the DARPA BOLT program. We plan to map Prop-
Bank SRL output onto MyST frames. Domain
specific entity patterns will still need to be applied
to produce the canonical extracted form, but that is
a much simpler task than role assignment and one
more suited to non-linguists.

References
B. Bloom. 1984. The 2 sigma problem: The search for

methods of group instruction as effective as one-to-
one tutoring. Educational Researcher, 13(6):4–16.

M. Chi, M. Bassok, M. Lewis, P. Reimann, R. Glaser,
and Alexander. 1989. Self-explanations: How stu-
dents study and use examples in learning to solve
problems. Cognitive Science, 13(2).

M. Chi, N. De Leeuw, M. Chiu, and C. LaVancher.
1994. Eliciting self-explanations improves under-
standing. Cognitive Science, 18(3):439–477.

M. T. H. Chi, S. A. Siler, H. Jeong, T. Yamauchi, and
R. G. Hausmann. 2001. Learning from human tu-
toring. Cognitive Science, 25(4):471–533.

R. G. M. Hausmann and K. VanLehn. 2007a. Ex-
plaining self-explaining: A contrast between content
and generation. Artificial Intelligence in Education,
pages 417–424.

R. G. M. Hausmann and K. VanLehn. 2007b. Self-
explaining in the classroom: Learning curve evi-
dence. In 29th Annual Conference of the Cognitive
Science Society, Mahwah, NJ.

A. King, A. Staffieri, and A. Adelgais. 1988. Mu-
tual peer tutoring: Effects of structuring tutorial in-
teraction to scaffold peer learning. Journal of Edu-
cational Psychology, 90(1):134–152.

A. King. 1994. Guiding knowledge construction in
the classroom: Effects of teaching children how to
question and how to explain. American Educational
Research Journal, 31(2).

N. A. Madden and R. E. Slavin. 1989. Effective pro-
grams for students at risk. In R. E. Slavin, N. L.

Karweit, and N. A. Madden, editors, Effective pull-
out programs for students at risk. Allyn and Bacon.

R. Mayer. 2001. Multimedia Learning. Cambridge
University Press., Cambridge, U.K.

P. K. Murphy and M. N.b Edwards. 2005. What the
studies tell us: A meta-analysis of discussion ap-
proaches. In American Educational Research As-
sociation, Montreal, Canada.

National Research Council. NRC. 2007. Taking sci-
ence to school: Learning and teaching science in
grades k-8. In R. A. Duschl, H. A. Schweingru-
ber, and A. W. Shouse, editors, Committee on Sci-
ence Learning Kindergarten through Eighth Grade.
Washington D.C. The National Academies Press.

A. Palincsar and A. Brown. 1984. Reciprocal teach-
ing of comprehension-fostering and comprehension-
monitoring activities. Cognition and Instruction,
1(2).

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,
Wayne Ward, James Martin, and Dan Jurafsky.
2005. Support vector learning for semantic argu-
ment classification. Machine Learning, 60(1):11–
39.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 143–
152, Sofia, Bulgaria, August.

W. Ward, R. Cole, D. Bolanos, C. Buchenroth-Martin,
E. Svirsky, S. V. Vuuren, and L. Becker. 2011. My
science tutor: A conversational multimedia virtual
tutor for elementary school science. ACM Trans.
Speech Lang. Process., 7(4).

Wayne Ward, Ron Cole, Daniel Bolanos,
C. Buchenroth-Martin, E. Svirsky, and Tim
Weston. 2013. My science tutor: A conversational
multimedia virtual tutor. Journal of Educational
Psychology, 105(4):1115–1125.

W Ward. 1991. Understanding spontaneous speech:
the phoenix system. In Acoustics, Speech, and Sig-
nal Processing, 1991. ICASSP-91., 1991 Interna-
tional Conference on, pages 365–367 vol.1, April.

Ralph Weischedel, Eduard Hovy, Mitchell Marcus,
Martha Palmer, Robert Belvin, Sameer Pradhan,
Lance Ramshaw, and Nianwen Xue. 2011.
OntoNotes: A large training corpus for enhanced
processing. In Joseph Olive, Caitlin Christian-
son, and John McCary, editors, Handbook of Natu-
ral Language Processing and Machine Translation:
DARPA Global Autonomous Language Exploitation.
Springer.

126

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 127–132,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

pigeo: A Python Geotagging Tool

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin
Department of Computing and Information Systems

The University of Melbourne
arahimi@student.unimelb.edu.au

{t.cohn,tbaldwin}@unimelb.edu.au

Abstract

We present pigeo, a Python geolocation
prediction tool that predicts a location for
a given text input or Twitter user. We dis-
cuss the design, implementation and appli-
cation of pigeo, and empirically evaluate
it. pigeo is able to geolocate informal
text and is a very useful tool for users who
require a free and easy-to-use, yet accurate
geolocation service based on pre-trained
models. Additionally, users can train their
own models easily using pigeo’s API.

1 Introduction

Geolocation is the task of identifying a location for
a user or document, and has applications in local
search, recommender systems (Ho et al., 2012),
targeted advertising (Lim and Datta, 2013), health
monitoring (Paul et al., 2015), rapid disaster re-
sponse (Ashktorab et al., 2014), and research with
a regional restriction (Gutierrez et al., 2015), not-
ing the potential privacy concerns associated with
any such application (De Cristofaro et al., 2012).
While primary service providers such as Twitter
and Google are able to use metadata such as IP
addresses, WiFi traces and direct access to a GPS
signal to geolocate their users, this data is gen-
erally not available to third parties. This paper
introduces a resource that can be used to geolo-
cate users given textual messages generated by
them, and the interactions between users encoded
in those messages, focused particularly at Twitter
data.

Both language use and social ties are geograph-
ically biased, and thus can be used to recover
the location of a user or a document. Previ-
ous research has shown that the geographical bias
in language use can be used in supervised text-
based geolocation models, to learn associations

between textual features and different regions
based on large-scale collections of geotagged doc-
uments/tweets (Wing and Baldridge, 2011; Han
et al., 2012; Maier and Gómez-Rodrıguez, 2014).
Given an unseen piece of text or the text content
of a user’s timeline, the trained classifier can pre-
dict the most likely location(s) associated with the
input.

Although social media services such as Twitter
remove the geographical barrier for users to com-
municate, the majority of user interactions are still
local (Backstrom et al., 2010). This geograph-
ical bias can be utilised to geolocate a user by
analysing their social interactions. Based on the
assumption that social interactions are more likely
to be local, a user should be geographically close
to their connections. The simplest approach to ge-
olocation is to use the median location of a user’s
friends. Recent studies have shown that using both
network and text information can improve the cov-
erage and keep the predictions accurate simultane-
ously (Rahimi et al., 2015b).

Despite the widespread use of geolocation,
most services are proprietary, overly-simplistic,
or complicated to use. Supervised classification
models often require huge amounts of geotagged
data and large amounts of computing power to be
trained. The performance is also heavily depen-
dent on hyperparameter tuning, making the train-
ing procedure more challenging for end-users.

In this paper we introduce pigeo, a Python
geolocation tool that has the following charac-
teristics: (1) it comes with a pre-trained text-
based model; (2) it is easy to use; (3) it has been
tuned, benchmarked and proven to be accurate;
(4) it supports both informal and formal text in-
put; (5) it directly supports Twitter user geoloca-
tion; and (6) it has an easy-to-use RESTful API.
pigeo is available at http://github.com/
afshinrahimi/pigeo.

127

2 Background and Related Work

Prior work on geolocation falls broadly into two
main categories: text-based and network-based
methods. Both approaches use geotagged sam-
ples, and predict the location of an unseen docu-
ment or user based on the trained model. Those
approaches usually use GPS tags or user profile
location fields as the ground truth both for train-
ing and evaluating the model. Geographical bias
in language use is most evident for countries with
different languages (e.g. Germany versus China),
but also exists for countries which share the same
languages (e.g. in the spelling of centre vs. center
in British vs. American English). The linguistic
geographical bias is not limited to these obvious
cases, however, and includes the use of toponyms,
names of people, sport teams, and dialectal terms.
These differences in use of language can be cap-
tured in text-based geolocation models. Previous
work have used topic models (Eisenstein et al.,
2010) and supervised flat (Wing and Baldridge,
2011; Han et al., 2012; Han et al., 2013; Han et
al., 2014; Rahimi et al., 2015b) and hierarchical
(Wing and Baldridge, 2014) classification models.
The main idea is to learn the geographical distri-
bution of a given word across different locations
from training data, and use it to predict a location
for a new user.

Social ties have also been used for social media
user geolocation. Backstrom et al. (2010) showed
that Facebook users tend to interact more with
nearby people (“location homophily”), and used
this property to geolocate users based on the loca-
tion of their friends, hence popularising network-
based geolocation approaches. A graph is usually
built based on Facebook friendship (Backstrom
et al., 2010), Twitter follows (Rout et al., 2013),
Twitter reciprocal @-mentions (Jurgens, 2013), or
Twitter @-mentions (Rahimi et al., 2015b). The
problem can also be formulated as classification
(Rout et al., 2013) or regression over real-valued
coordinates (Jurgens, 2013; Rahimi et al., 2015b).
In classification models, the location label set can
be pre-existing regional boundaries (e.g. countries
or cities) or automatically generated through dis-
cretisation (e.g. a k-d tree). The label distribution
of friends is then averaged and used as the location
of a given user. In a regression model, the median
coordinates of the friends of a user are often used
for prediction.

Network-based models are generally more ac-

curate than text-based models but can’t geolocate
users who don’t interact with training users, which
is the case for more than 30% of users in the case
of reciprocal Twitter @-mentions (Jurgens et al.,
2015). Relaxing the requirement on reciprocity
increases the coverage of users, at the expense of
lower accuracy (Rahimi et al., 2015a).

There are several other geolocation services
and libraries which focus on Twitter, includ-
ing pigeoTextGrounder (Wing and Baldridge,
2014) with a focus on targeted advertising,
pigeoCarmen (Dredze et al., 2013) with a fo-
cus on help monitoring, pigeoMapAffil (Torvik,
2015) for affiliation mapping, and pigeoTweedr
(Ashktorab et al., 2014) for rapid disaster re-
sponse. Many companies have their own pro-
prietary geolocation service, which are either not
available for public use or not open source. In
pigeo, we provide trained a text-based classifi-
cation model and network-based regression model
for geolocation prediction, which has been bench-
marked against standard datasets.

3 Methodology

pigeo uses two pre-trained models for geoloca-
tion: (1) LR-WORLD and (2) LP-WORLD. Both
are trained on TWITTER-WORLD-EX, an ex-
tended version of the TWITTER-WORLD dataset
(Han et al., 2012).

3.1 Data

We use TWITTER-WORLD-EX to train both the
text-based classification and the network-based re-
gression model. TWITTER-WORLD-EX is a Twit-
ter dataset with global coverage (Han et al., 2012),
comprising 1.3M geotagged users (188M tweets),
of which 10K are held out for each of develop-
ment and testing. The dataset contains predomi-
nantly English text, but also includes a rich variety
of other languages. In TWITTER-WORLD, the lo-
cation representation was cities, based on GEON-
AMES. For our purposes, we modify this to 930
clusters based on a k-d tree, to derive a smaller
number of classes and remove class imbalance.
Given that the dataset is about 5 years old, we ex-
pect the off-the-shelf performance to be degraded
on newer tweets (Dredze et al., 2016), particularly
in the case of the network-based model (Jurgens et
al., 2015).
LR-WORLD is a text-based classification model

trained over TWITTER-WORLD-EX. The train-

128

ing users of TWITTER-WORLD-EX are clustered
into 930 regions with roughly the same number
of users per region (about 2400), using a k-d
tree. This results in many small regions/clusters
in highly populated areas such as NYC, and a few
large regions in sparsely-populated areas or areas
with few Twitter users, such as the Sahara desert
and China. The region IDs are then used as la-
bels for all the users in that region. We use a bag-
of-unigrams model of text with binary term fre-
quency, inverse document frequency and l2 nor-
malisation of samples to create user vectors. Log
loss is used with ElasticNet regularisation (90%
l1) as the cost function to train the model using
stochastic gradient descent. Given an unseen text
sample, one can vectorise the sample and use the
classifier to predict a region/label or a probability
distribution over regions. The predicted label(s)
can be mapped to coordinates or locations.

The LP-WORLD model is a network-based
regression model, also trained on TWITTER-
WORLD-EX. An @-mention network is built over
the dataset, and the real-valued coordinates of the
training users are iteratively propagated to all the
mentioned users. The location of each user is set
to the weighted median latitude and weighted me-
dian longitude of all its connections. The edge
weights are initially binary but are then normalised
by dividing them by the product of the degree of
the two corresponding nodes. The algorithm con-
verges after 5 iterations. The predicted coordi-
nates for all users are stored in a gzipped Python
pickled dictionary for later use by pigeo. The
Twitter user names are hashed by the MD5 algo-
rithm for privacy reasons. The collision probabil-
ity for MD5 hashing is very low and we didn’t ex-
perience any collisions for our 7M nodes. Given
an unseen Twitter user, the timeline of the user
is downloaded and the @-mentions are extracted.
The hashed content of each @-mention is looked
up in the saved user-coordinate mapping to see if
any predictions are available. The median latitude
and longitude of geolocated @-mention connec-
tions are then predicted as the Twitter user loca-
tion.

Although we experiment with the LP-WORLD
model in this paper, we are unable to distribute it,
due to Twitter’s terms of service. It is possible,
however, for a user to use pigeo to train their
own network model by providing data in the for-
mat described in Section 4.

Figure 1: pigeo’s web interface. Given a piece
of text or a single Twitter user, it geolocates it and
returns the description and coordinates of the pre-
dicted location and its most important textual fea-
tures in the model.

4 System Architecture

The main feature of pigeo is the ability to use
the trained text-based classification network-based
regression models that are distributed with the li-
brary, for geolocation of both text documents and
Twitter users. Additionally, however, the library
supports the training and storage of new text-based
classification models. The pigeo tool is writ-
ten in Python 2.7 and consists of: (1) the main
pigeo.py script; (2) params.py, which stores
the global parameters; (3) twitterapi.py,
which uses pigeo to connect to Twitter; and
(4) an index.html file, which is used by the
web service. The tool returns a JSON string with
fields such as latitude, longitude, city
and label distribution. pigeo.py pack-
ages all the main functions that are required by
pigeo. It can be used in 3 modes: (1) Shell mode;
(2) Web mode; and (3) Library mode.

Shell mode: Shell mode is activated as follows:
> python pigeo.py --mode shell

It takes an input text, geolocates it, and returns the
result in JSON format. Shell mode uses the trained
LR-WORLD model stored in ./models/world and
is best suited for testing pigeo.

Web mode: Web mode is activated by running:
> python pigeo.py --mode web

pigeo uses Flask, a lightweight Python web
framework, to provide web access to end-users.
The default host and port are 127.0.0.1 and
5000, respectively, which can be modified
using the --host and --port options on the

129

import pigeo

load the world model (default)
pigeo.load_model()

geolocate a sentence
pigeo.geo("gamble casino city")

geolocate a Twitter user
pigeo.geo(’@POTUS’)

geolocate a list of texts
pigeo.geo([’city centre’, ’city center’])

Figure 2: An illustration of Library mode

command line. When the service is running,
the user can use the web service by opening
http://127.0.0.1:5000 via a web browser
on their local machine shown, as illustrated in
Figure 1. Alternatively, the users are able to use
the curl command to geolocate a text or a Twitter
user:

> curl 127.0.0.1:5000/geo?text=’beach’

Library mode: pigeo can also be used as a
library. This is the suggested way of using it if
many documents are needed to be geolocated, be-
cause the batch functionality is only available in
this mode. Note that running the pigeo.geo func-
tion in a loop is not as efficient as running it with
a list argument (in Batch mode). The code snip-
pet in Figure 2 shows how pigeo can be used in
Library mode.

Twitter user geolocation: pigeo takes the
user name of a Twitter user, crawls their time-
line, and geolocates them on the basis of that data.
This can be done in any of Shell, Web or Library
modes, but requires an internet connection and
valid Twitter authentication information (Twitter
keys, tokens and secrets) which should be set in
twitterapi.py.

Training a new model: Training a new model is
possible in Library mode, using scikit-learn (Pe-
dregosa et al., 2011) both for feature extraction
and training the model. The training data consists
of a list of text samples and a list of corresponding
coordinates as a (latitude, longitude) tuple. Given
the number of desired classes, pigeo discretises
the training points and assigns a class to each train-
ing sample. The bag-of-unigram features are ex-
tracted using TfidfVectorizer and the model is

import pigeo

train a model and save it in ’example’
pigeo.train_model([’text1’, ’text2’],
[(lat1, lon1), (lat2, lon2)],
num_classes=2, model_dir=’example’)

load and use the new model
pigeo.load_model(model_dir=’example’)

Figure 3: An illustration of training a model

import pigeo

load lpworld
pigeo.load_lpworld()

geolocate a Twitter user
pigeo.geo_lp(’@potus’)

Figure 4: An illustration of Twitter user geoloca-
tion using the network model

trained by SGDClassifier with log loss and Elas-
ticNet regularisation. The end-user can manually
tune the regularisation parameters using a held-out
development set. The procedure for training is il-
lustrated in Figure 3.

Network-based model: geolocation with the
network-based model can be done similarly to
LR-WORLD, but since the data is not recent, the
results might not be as accurate as reported in Sec-
tion 5. Given a Twitter user, the timeline is down-
loaded and the @-mentions are matched with the
hashed user account names. The median location
of the matched users is returned as the prediction.
The procedure is illustrated in Figure 4.

4.1 Trained models

The trained LR-WORLD model distributed with
pigeo, and we additionally document the
LP-WORLD, in terms of the files, formats and
characteristics of the model.

LR-WORLD contains 4 gzipped pickle files:

• clf.pkl.gz is a scikit-learn
SGDClassifier instance trained on
TWITTER-WORLD-EX, whose projection
matrix is converted to a Scipy sparse matrix
for scalability.

• vectorizer.pkl.gz is a scikit-learn
TfidfVectorizer instance fitted to
TWITTER-WORLD-EX which, given a text,

130

extracts the bag-of-unigram features with
binary term frequency, inverse document
frequency and l2 normalisation of samples.
Terms which occur in less than 10 documents
are excluded.

• coordinate address.pkl.gz is a dic-
tionary that, given a (latitude, longitude) co-
ordinate tuple, returns an address. It only
covers the coordinates of the LR-WORLD
classes and is based on geopy’s Open-
StreetMap API.

• label coordinate.pkl.gz is a dictio-
nary containing the classes/regions of the
LR-WORLD model and their corresponding
latitude/longitude tuple, which is the median
of all the training points in that class.

LP-WORLD is made up of a single gzipped
pickle file userhash coordinate.pkl.gz,
which is a dictionary of users mapped to predicted
locations using label propagation over real-valued
coordinates of TWITTER-WORLD-EX dataset. As
we are unable to distribute this model, the user
needs to provide it themselves.

5 Evaluation

We evaluate the performance of LR-WORLD and
LP-WORLD model based on 3 evaluation mea-
sures used in previous research (Cheng et al.,
2010; Eisenstein et al., 2010): the mean error
(Mean), median error (Median), and the accuracy
of geolocation within 161km of the actual location
(Acc@161).

Note that lower values are better for Mean
and Median, and higher values are better for
Acc@161. The performance for the LR-WORLD
and LP-WORLD models is shown in Table 1.
Because there are no published results over
TWITTER-WORLD-EX, we compared the perfor-
mance of the models with previous work based on
TWITTER-US (Wing and Baldridge, 2011).

6 Conclusion

We introduced pigeo, an easy-to-use, accu-
rate Python geolocation tool which is able to
geolocate both text and Twitter users based on
two trained geolocation models: LR-WORLD and
LP-WORLD. We described the implementation de-
tails of pigeo, and evaluated it on a standard
Twitter geolocation dataset. It is our hope that

Acc@161 Mean Median
TWITTER-WORLD-EX dataset
LR-WORLD 0.62 818 31
LP-WORLD 0.67 829 4
TWITTER-US dataset
LR-NA 0.51 636 148
LP-NA 0.50 610 144
Wing and Baldridge (2014) 0.49 703 170

Table 1: The performance of the LR-WORLD text-
based classification model and the LP-WORLD
network-based regression model over the test set
of TWITTER-WORLD-EX. The model perfor-
mance over TWITTER-US is compared to previ-
ous work.

pigeo will provides researchers with an accurate
off-the-shelf baseline geolocation model for appli-
cations which require geolocation.

References
Zahra Ashktorab, Christopher Brown, Manojit Nandi,

and Aron Culotta. 2014. Tweedr: Mining Twit-
ter to inform disaster response. In Proceedings
of The 11th International Conference on Informa-
tion Systems for Crisis Response and Management
(ISCRAM 2014), pages 354–358, University Park,
USA.

Lars Backstrom, Eric Sun, and Cameron Marlow.
2010. Find me if you can: improving geographi-
cal prediction with social and spatial proximity. In
Proceedings of the 19th International Conference
on World Wide Web (WWW 2010), pages 61–70,
Raleigh, USA.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you tweet: a content-based ap-
proach to geo-locating Twitter users. In Proceedings
of the 19th ACM International Conference Infor-
mation and Knowledge Management (CIKM 2010),
pages 759–768, Toronto, Canada.

Emiliano De Cristofaro, Claudio Soriente, Gene
Tsudik, and Albert Williams. 2012. Hummingbird:
Privacy at the time of Twitter. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy
(SP), pages 285–299, San Francisco, USA.

Mark Dredze, Michael J Paul, Shane Bergsma, and
Hieu Tran. 2013. Carmen: A twitter geolocation
system with applications to public health. In Pro-
ceedings of the AAAI 2013 Workshop on Expand-
ing the Boundaries of Health Informatics Using AI
(HIAI), pages 20–24, Bellevue, USA.

Mark Dredze, Miles Osborne, and Prabhanjan Kam-
badur. 2016. Geolocation for Twitter: Timing mat-
ters. In Proceedings of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL 2016), San Diego, USA.

131

Jacob Eisenstein, Brendan O’Connor, Noah A Smith,
and Eric P Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2010), pages 1277–
1287, Boston, USA.

Carlos Gutierrez, Paulo Figuerias, Pedro Oliveira,
Ruben Costa, and Ricardo Jardim-Goncalves. 2015.
Twitter mining for traffic events detection. In Sci-
ence and Information Conference (SAI), 2015, pages
371–378.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Ge-
olocation prediction in social media data by find-
ing location indicative words. In Proceedings of
the 24th International Conference on Computa-
tional Linguistics (COLING 2012), pages 1045–
1062, Mumbai, India.

Bo Han, Paul Cook, and Timothy Baldwin. 2013. A
stacking-based approach to Twitter user geolocation
prediction. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2013): System Demonstrations, pages 7–12,
Sofia, Bulgaria.

Bo Han, Paul Cook, and Timothy Baldwin. 2014.
Text-based Twitter user geolocation prediction.
Journal of Artificial Intelligence Research, 49:451–
500.

Shen-Shyang Ho, Mike Lieberman, Pu Wang, and
Hanan Samet. 2012. Mining future spatiotempo-
ral events and their sentiment from online news arti-
cles for location-aware recommendation system. In
Proceedings of the First ACM SIGSPATIAL Interna-
tional Workshop on Mobile Geographic Information
Systems, pages 25–32, Redondo Beach, USA.

David Jurgens, Tyler Finethy, James McCorriston,
Yi Tian Xu, and Derek Ruths. 2015. Geolocation
prediction in twitter using social networks: A critical
analysis and review of current practice. In Proceed-
ings of the 9th International Conference on Weblogs
and Social Media (ICWSM 2015), pages 188–197,
Oxford, UK.

David Jurgens. 2013. That’s what friends are for:
Inferring location in online social media platforms
based on social relationships. In Proceedings of the
7th International Conference on Weblogs and So-
cial Media (ICWSM 2013), pages 273–282, Boston,
USA.

Kwan Hui Lim and Amitava Datta. 2013. A topo-
logical approach for detecting twitter communities
with common interests. In Ubiquitous Social Media
Analysis, pages 23–43. Springer.

Wolfgang Maier and Carlos Gómez-Rodrıguez. 2014.
Language variety identification in Spanish tweets.
In Proceedings of the EMNLP2014 Workshop on
Language Technology for Closely Related Lan-
guages and Language Variants, pages 25–35, Doha,
Qatar.

Michael J Paul, Mark Dredze, David A Broniatowski,
and Nicholas Generous. 2015. Worldwide influenza
surveillance through twitter. In AAAI Workshop on
the World Wide Web and Public Health Intelligence,
Austin, USA.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. The Journal of Ma-
chine Learning Research, 12:2825–2830.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2015a. Twitter user geolocation using a unified
text and network prediction model. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics — 7th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2015), pages 630–636, Beijing, China.

Afshin Rahimi, Duy Vu, Trevor Cohn, and Timothy
Baldwin. 2015b. Exploiting text and network
context for geolocation of social media users. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics — Human Language Technolo-
gies (NAACL HLT 2015), pages 1362–1367, Denver,
USA.

Dominic Rout, Kalina Bontcheva, Daniel Preoţiuc-
Pietro, and Trevor Cohn. 2013. Where’s @wally?:
A classification approach to geolocating users based
on their social ties. In Proceedings of the 24th ACM
Conference on Hypertext and Social Media (Hyper-
text 2013), pages 11–20, Paris, France.

Vetle I Torvik. 2015. Mapaffil: A bibliographic
tool for mapping author affiliation strings to cities
and their geocodes worldwide. D-Lib Magazine,
21(11):9.

Benjamin P Wing and Jason Baldridge. 2011. Sim-
ple supervised document geolocation with geodesic
grids. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1 (ACL-HLT
2011), pages 955–964, Portland, USA.

Benjamin P Wing and Jason Baldridge. 2014. Hier-
archical discriminative classification for text-based
geolocation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP 2014), pages 336–348, Doha,
Qatar.

132

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 133–138,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Creating Interactive Macaronic Interfaces for Language Learning

Adithya Renduchintala and Rebecca Knowles and Philipp Koehn and Jason Eisner
Department of Computer Science

Johns Hopkins University
{adi.r,rknowles,phi,eisner}@jhu.edu

Abstract

We present a prototype of a novel tech-
nology for second language instruction.
Our learn-by-reading approach lets a hu-
man learner acquire new words and con-
structions by encountering them in con-
text. To facilitate reading comprehen-
sion, our technology presents mixed na-
tive language (L1) and second language
(L2) sentences to a learner and allows
them to interact with the sentences to
make the sentences easier (more L1-like)
or harder (more L2-like) to read. Eventu-
ally, our system should continuously track
a learner’s knowledge and learning style
by modeling their interactions, including
performance on a pop quiz feature. This
will allow our system to generate person-
alized mixed-language texts for learners.

1 Introduction

Growing interest in self-directed language learn-
ing methods like Duolingo (von Ahn, 2013), along
with recent advances in machine translation and
the widespread ease of access to a variety of texts
in a large number of languages, has given rise to
a number of web-based tools related to language
learning (ranging from dictionary apps to more
interactive tools like Alpheios (Nelson, 2007) or
Lingua.ly (2013)). Most of these either focus on
vocabulary learning or require hand-curated les-
son plans. We present a prototype of a system
for learning to read in a foreign language, which
presents learners with text consisting of a mix of
their native language (L1) and the language they
are interested in learning (L2). We refer to sen-
tences containing a mix of L1 and L2 text as mac-
aronic1 sentences. Along the continuum from

1The term “macaronic” traditionally refers to a mash-
up of languages, often intended to be humorous. We use
this term, rather than “code-switching,” since code-switching

fully L1 to fully L2 text are sentences with any
combination of L1 and L2 vocabulary, syntax, and
(potentially) morphology.

Proponents of language acquisition through ex-
tensive reading, such as Krashen (1989), argue
that much of language acquisition takes place
through incidental learning—when a learner is ex-
posed to novel vocabulary or structures and must
find a way to understand them in order to compre-
hend the text. The trouble is that learning by read-
ing already requires considerable L2 fluency. To
bootstrap, we propose making L2 sentences more
accessible to early learners by shifting these sen-
tences along the macaronic spectrum towards L1,
stopping at the “zone of proximal development”
(Vygotskiı̆, 2012) where the learner is able to com-
prehend the text but only by stretching their L2
capacity. We aim in the future to customize maca-
ronic sentences to each individual learner.

A reasonable concern is whether exposure to
macaronic language might actually harm acquisi-
tion of correct L2 (even though our interface uses
color and font to mark the L1 “intrusions” into the
L2 sentence). As some reassurance, our approach
is analogous to the well-established paradigm of
inventive spelling (or “invented spelling”),2 in
which early writers are encouraged to write in
their native language without concern for cor-
rect spelling, in part so they can more fully
and happily engage with the writing challenge
of composing longer and more authentic texts
(Clarke, 1988). We also observe that simulta-
neous dual language acquisition—from multilin-
gual and code-switched language—is common for
young children in many countries, who employ
code-switching in a socially appropriate way and
as “a resource . . . to fill gaps in their developing

requires the speaker/writer to be fluent in both languages.
Code-switching is governed by syntactic and pragmatic con-
siderations, rather than by pedagogical or humorous ones.

2Spelling, like L2, is a type of linguistic knowledge that
is acquired after L1 fluency and largely through incidental
learning (Krashen, 1993).

133

languages” (Genesee, 2009). Still, it remains an
open question whether older students can success-
fully unlearn initial habits and move toward an in-
creasingly complete and correct L2 model.

We envision our technology being used along-
side traditional classroom L2 instruction—the
same instructional mix that leads parents to ac-
cept inventive spelling (Gentry, 2000). Traditional
grammar-based instruction and assessment, which
use “toy” sentences in pure L2, should provide fur-
ther scaffolding for our users to acquire language
by reading more advanced (but macaronic) text.

We provide details of the current user interface
and discuss how content for our system can be au-
tomatically generated using existing statistical ma-
chine translation (SMT) methods, enabling learn-
ers or teachers to choose their own texts to read.
Our prototype is currently running on http:
//www.clsp.jhu.edu:3030/ with sample
content. Our interface lets the user navigate
through the spectrum from L2 to L1, going beyond
the single-word or single-phrase translations of-
fered by other online tools such as Swych (2015),
or dictionary-like browser plugins.

Finally, we discuss plans to extend this proto-
type and to integrate it with a continuously adapt-
ing user model. To this end, our companion pa-
per (Renduchintala et al., 2016) develops an initial
model of macaronic sentence comprehension by
novice L2 learners, using data collected from hu-
man subjects via Amazon’s Mechanical Turk ser-
vice. In another paper (Knowles et al., 2016), we
carry out a controlled study of comprehension of
individual L2 words in isolation and in L1 context.

2 Macaronic Interface

For the purposes of this demo we assume a na-
tive English speaker (L1=English) who is learn-
ing German (L2=German). However, our exist-
ing interface can accommodate any pair of lan-
guages whose writing systems share directional-
ity.3 The primary goal of the interface is to em-
power a learner to translate and reorder parts of a
confusing foreign language sentence. These trans-
lations and reorderings serve to make the German
sentence more English-like. The interface also
permits reverse transformations, letting the curi-
ous learner “peek ahead” at how specific English
words and constructions would surface in German.

3We also assume that the text is segmented into words.

(a) Initial sentence state.

(b) Mouse hovered under Preis.

(c) Preis translated to prize.

(d) Mouse hovered above prize. Clicking above will revert
the sentence back to the initial state 1a.

(e) Sentence with 2 different words translated into English

Figure 1: Actions that translate words.

Using these fundamental interactions as build-
ing blocks, we create an interactive framework for
a language learner to explore this continuum of
“English-like” to “foreign-like” sentences. By re-
peated interaction with new content and exposure
to recurring vocabulary items and linguistic pat-
terns, we believe a learner can pick up vocabulary
and other linguistic rules of the foreign language.

2.1 Translation
The basic interface idea is that a line of macaronic
text is equipped with hidden interlinear annota-
tions. Notionally, English translations lurk below
the macaronic text, and German ones above.

The Translation interaction allows the learner
to change the text in the macaronic sentence from
one language to another. Consider a macaronic
sentence that is completely in the foreign state
(i.e.,, entirely in German), as shown in Fig. 1a.
Hovering on or under a German word shows a pre-
view of a translation (Fig. 1b). Clicking on the
preview will cause the translation to “rise up” and
replace the German word (Fig. 1c).

To translate in the reverse direction, the user can
hover and click above an English word (Fig. 1d).

Since the same mechanism applies to all the
words in the sentence, a learner can manipulate
translations for each word independently. For ex-
ample, Fig. 1e shows two words in English.

The version of our prototype displayed in Fig-
ure 1 blurs the preview tokens when a learner is
hovering above or below a word. This blurred
preview acts as a visual indication of a potential
change to the sentence state (if clicked) but it also

134

(a)

(b)

(c)

(d)

Figure 2: Actions that reorder phrases.

gives the learner a chance to think about what the
translation might be, based on visual clues such as
length and shape of the blurred text.

2.2 Reordering
When the learner hovers slightly below the words
nach Georg Büchner a Reordering arrow is
displayed (as shown in Figure 2). The arrow is an
indicator of reordering. In this example, the Ger-
man past participle benannt appears at the end
of the sentence (the conjugated form of the verb is
ist benannt, or is named); this is the gram-
matically correct location for the participle in Ger-
man, while the English form should appear earlier
in the equivalent English sentence.

Similar to the translation actions, reordering
actions also have a directional attribute. Figure
2b shows a German-to-English direction arrow.
When the learner clicks the arrow, the interface re-
arranges all the words involved in the reordering.
The new word positions are shown in 2c. Once
again, the user can undo: hovering just above
nach Georg Büchner now shows a gray ar-
row, which if clicked returns the phrase to its Ger-
man word order (shown in 2d).

German phrases that are not in original German
order are highlighted as a warning (Figure 2c).

2.3 “Pop Quiz” Feature
So far, we have described the system’s standard
responses to a learner’s actions. We now add oc-
casional “pop quizzes.” When a learner hovers be-
low a German word (s0 in Figure 3) and clicks the
blurry English text, the system can either reveal
the translation of the German word (state s2) as de-

s0

s1 s3

s4

s5

s2s6

b
c

c

e

e

a

c

Figure 3: State diagram of learner interaction (edges) and
system’s response(vertices). Edges can be traversed by click-
ing (c), hovering above (a), hovering below (b) or the enter
(e) key. Unmarked edges indicate an automatic transition.

scribed in section 2.1 or quiz the learner (state s3).
We implement the quiz by presenting a text input
box to the learner: here the learner is expected to
type what they believe the German word means.
Once a guess is typed, the system indicates if the
guess is correct (s4) or incorrect(s5) by flashing
green or red highlights in the text box. The box
then disappears (after 700ms) and the system au-
tomatically proceeds to the reveal state s2. As this
imposes a high cognitive load and increases the in-
teraction complexity (typing vs. clicking), we in-
tend to use the pop quiz infrequently.

The pop quiz serves two vital functions. First,
it further incentivizes the user to retain learned vo-
cabulary. Second, it allows the system to update its
model of the user’s current L2 lexicon, macaronic
comprehension, and learning style; this is work in
progress (see section 4.2).

2.4 Interaction Consistency

Again, we regard the macaronic sentence as a kind
of interlinear text, written between two mostly in-
visible sentences: German above and English be-
low. In general, hovering above the macaronic
sentence will reveal German words or word or-
ders, which fall down into the macaronic sentence
upon clicking. Hovering below will reveal English
translations, which rise up upon clicking.

The words in the macaronic sentence are col-
ored according to their language. We want the
user to become accustomed to reading German, so
the German words are in plain black text by de-

135

Action Direction Trigger Preview Preview Color Confirm Result

Translation E-to-G Hover above English
Blurry German
translation above

Gray Blur
Click on
Blurry Text

translation replaces
English word(s)

G-to-E
Hover under German
token

Blurry English
translation below

Blue Blur
Click on
Blurry Text

translation replaces
German word(s)

Reordering E-to-G Hover above token
Arrow above
reordering tokens

Gray Arrow Click on Arrow tokens reorder

G-to-E Hover under token
Arrow below
reordering tokens

Blue Arrow Click on Arrow tokens reorder

Table 1: Summary of learner triggered interactions in the Macaronic Interface.

fault, while the English words use a marked color
and font (italic blue). Reordering arrows also fol-
low the same color scheme: arrows that will make
the macaronic sentence more “German-like” are
gray, while arrows that make the sentence more
“English-like” are blue. The summary of interac-
tions is shown in Table 1.

3 Constructing Macaronic Translations

In this section, we describe the details of the un-
derlying data structures needed to allow all the in-
teractions mentioned in the previous section. A
key requirement in the design of the data struc-
ture was to support orthogonal actions in each sen-
tence. Making all translation and reordering ac-
tions independent of one another creates a large
space of macaronic states for a learner to explore.

At present, the input to our macaronic inter-
face is bitext with word-to-word alignments pro-
vided by a phrase-based SMT system (or, if de-
sired, by hand). We employ Moses (Koehn et al.,
2007) to translate German sentences and gener-
ate phrase alignments. News articles written in
simple German from nachrichtenleicht.
de (Deutschlandfunk, 2016) were translated after
training the SMT system on the WMT15 German-
English corpus (Bojar et al., 2015).

We convert the word alignments into “mini-
mal alignments” that are either one-to-one, one-
to-many or many-to-one.4 This step ensures con-
sistent reversibility of actions and prevents large
phrases from being translated with a single click.5

The resulting bipartite graph can be regarded as

4For each many-to-many alignment returned by the SMT
system, we remove alignment edges (lowest probability first)
until the alignment is no longer many-to-many. Then we
greedily add edges from unaligned tokens (highest probabil-
ity first), subject to not creating many-to-many alignments
and subject to minimizing the number of crossing edges, un-
til all tokens are aligned.

5Preliminary experiments showed that allowing large
phrases to translate with one click resulted in abrupt jumps
in the visualization, which users found hard to follow.

Figure 4: The dotted lines show word-to-word alignments
between the German sentence f0, f1, . . . , f7 and its English
translation e0, e1, . . . , e6. The figure highlights 3 of the 7
units: u2, u3, u4.

Figure 5: A possible state of the sentence, which renders a
subset of the tokens (shown in black). The rendering order
(section 3.2) is not shown but is also part of the state. The
string displayed in this case is ”Und danach they run
noch einen Marathon.” (assuming no reordering).

a collection of connected components, or units
(Fig. 4).6

3.1 Translation Mechanism
In a given state of the macaronic sentence, each
unit is displayed in either English or German. A
translation action toggles the display language of
the unit, leaving it in place. For example, in Fig-
ure 5, where the macaronic sentence is currently
displaying f4f5 = noch einen, a translation
action will replace this with e4 = a.

3.2 Reordering Mechanism
A reordering action changes the unit order
of the current macaronic sentence. The out-

6In the sections below, we gloss over cases where a unit is
discontiguous (in one language). Such units are handled spe-
cially (we omit details for reasons of space). If a unit would
fall outside the bounds of what our special handling can han-
dle, we fuse it with another unit.

136

put string “Und danach they run noch
einen Marathon.” is obtained from Figure
5 only if unit u2 (as labeled in Figure 4) is ren-
dered (in its current language) to the left of unit
u3, which we write as u2 < u3. In this case, it is
possible for the user to change the order of these
units, because u3 < u2 in German. Table 2 shows
the 8 possible combinations of ordering and trans-
lation choices for this pair of units.

String Rendered Unit Ordering
. . .they run. . .

{u2} < {u3}. . .they laufen. . .
. . .sie run. . .

. . .sie laufen. . .
. . .run they. . .

{u2} > {u3}. . .run sie. . .
. . .laufen they. . .
. . .laufen sie. . .

Table 2: Generating reordered strings using units.

The space of possible orderings for a sentence
pair is defined by a bracketing ITG tree (Wu,
1997), which transforms the German ordering of
the units into the English ordering by a collec-
tion of nested binary swaps of subsequences.7 The
ordering state of the macaronic sentence is given
by the subset of these swaps that have been per-
formed. A reordering action toggles one of the
swaps in this collection.

Since we have a parser for German (Rafferty
and Manning, 2008), we take care to select an
ITG tree that is “compatible” with the German
sentence’s dependency structure, in the following
sense: if the ITG tree combines two spans A and
B, then there are not dependencies from words in
A to words in B and vice-versa.

4 Discussion and Future Work

4.1 Machine Translation Challenges
When the English version of the sentence is pro-
duced by an MT system, it may suffer from MT
errors and/or poor alignments.

Even with correct MT, a given syntactic con-
struction may be handled inconsistently on differ-
ent occasions, depending on the particular words
involved (as these affect what phrasal alignment
is found and how we convert it to a minimal align-
ment). Syntax-based MT could be used to design a
more consistent interface that is also more closely
tied to classroom L2 lessons.

7Occasionally no such ITG tree exists, in which case we
fuse units as needed until one does.

Cross-linguistic divergences in the expression
of information (Dorr, 1994) could be confusing.
For example, when moving through macaronic
space from Kaffee gefällt Menschen
(coffee pleases humans) to its translation humans
like coffee, it may not be clear to the
learner that the reordering is triggered by the
fact that like is not a literal translation of
gefällt. One way to improve this might be to
have the system pass smoothly through a range
of intermediate translations from word-by-word
glosses to idiomatic phrasal translations, rather
than always directly translating idioms. We might
also see benefit in guiding our gradual translations
with cognates (for example, rather than translate
directly from the German Möhre to the English
carrot, we might offer the cognate Karotte
as an intermediate step).

We also plan to transition through words
that are macaronic at the sub-word level. For
example, hovering over the unfamiliar Ger-
man word gesprochen might decompose it
into ge-sprochen; then clicking on one of
those morphemes might yield ge-talk or
sprech-ed before reaching talked. This
could guide learners towards an understanding of
German tense marking and stem changes.

4.2 User Adaptation and Evaluation

We would prefer to show the learner a macaronic
sentence that provides just enough clues for the
learner to be able to comprehend it, while still
pushing them to figure out new vocabulary or new
structures. Thus, we plan to situate this interface
in a framework that continuously adapts as the
user progresses. As the user learns new vocabu-
lary, the system will automatically present them
with more challenging sentences (containing less
L1). In (Renduchintala et al., 2016) we show that
we can predict a novice learner’s guesses of L2
word meanings in macaronic sentences using a
few simple features. We will subsequently track
the user’s learning by observing their mouse ac-
tions and “pop quiz” responses (section 2).

While we have had users interact with our sys-
tem in order to collect data about novice learn-
ers’ guesses, we are working toward an evaluation
where our system is used to supplement classroom
instruction for real foreign-language students.

137

5 Conclusion

In this work we present a prototype of an inter-
active interface for learning to read in a foreign
language. We expose the learner to L2 vocabulary
and constructions in contexts that are comprehen-
sible because they have been partially translated
into the learner’s native language, using statistical
MT. Using MT affords flexibility: learners or in-
structors can choose which texts to read, and learn-
ers or the system can control which parts of a sen-
tence are translated.

We are working towards integrating models of
learner understanding (Renduchintala et al., 2016;
Knowles et al., 2016) to produce personalized
macaronic texts that give each learner just the right
amount of challenge and support. In the long term,
we would like to extend the approach to allow
users also to produce macaronic language, draw-
ing on techniques from grammatical error correc-
tion or computer-aided translation to help them
gradually remove L1 features from their writing
(or speech) and make it more L2-like.

Acknowledgments

This material is based upon work supported by a
seed grant from the Science of Learning Institute
at Johns Hopkins University, and also by a Na-
tional Science Foundation Graduate Research Fel-
lowship (Grant No. DGE-1232825) to the second
author. We would like to thank Chadia Abras for
useful discussions.

Supplemental Material

• A video demonstration can be found here:
https://youtu.be/d5lxyeHIDWI
• A live sample version is here: http://
www.clsp.jhu.edu:3030/signin

References
Ondřej Bojar, Rajen Chatterjee, Christian Federmann,

Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 Workshop on Statistical Machine Translation.
In Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1–46.

Linda K. Clarke. 1988. Invented versus traditional
spelling in first graders’ writings: Effects on learn-
ing to spell and read. Research in the Teaching of
English, pages 281–309, October.

Deutschlandfunk. 2016. nachrichtenleicht. http://
www.nachrichtenleicht.de/. Accessed:
2015-09-30.

Bonnie J. Dorr. 1994. Machine translation diver-
gences: A formal description and proposed solution.
Computational Linguistics, 20(4):597–633, Decem-
ber.

Fred H. Genesee. 2009. Early childhood bilingualism:
Perils and possibilities. Journal of Applied Research
on Learning, 2(Article 2):1–21, April.

J. Richard Gentry. 2000. A retrospective on invented
spelling and a look forward. The Reading Teacher,
54(3):318–332, November.

Rebecca Knowles, Adithya Renduchintala, Philipp
Koehn, and Jason Eisner. 2016. Analyzing learner
understanding of novel L2 vocabulary. To appear.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of ACL: Interactive Poster and Demonstra-
tion Sessions, pages 177–180.

Stephen Krashen. 1989. We acquire vocabulary and
spelling by reading: Additional evidence for the
input hypothesis. The Modern Language Journal,
73(4):440–464.

S. Krashen. 1993. How well do people spell? Reading
Improvement, 30(1).

Lingua.ly. 2013. Lingua.ly. https://lingua.
ly/. Accessed: 2016-04-04.

Mark Nelson. 2007. The Alpheios project. http:
//alpheios.net/. Accessed: 2016-04-05.

Anna N Rafferty and Christopher D Manning. 2008.
Parsing three German treebanks: Lexicalized and
unlexicalized baselines. In Proceedings of the Work-
shop on Parsing German, pages 40–46. Association
for Computational Linguistics.

Adithya Renduchintala, Rebecca Knowles, Philipp
Koehn, and Jason Eisner. 2016. User modeling in
language learning with macaronic texts. In Proceed-
ings of ACL.

Swych. 2015. Swych. http://swych.it/. Ac-
cessed: 2016-04-05.

Luis von Ahn. 2013. Duolingo: Learn a language for
free while helping to translate the web. In Proceed-
ings of the 2013 International Conference on Intel-
ligent User Interfaces, pages 1–2.

Lev Vygotskiı̆. 2012. Thought and Language (Revised
and Expanded Edition). MIT press.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–404.

138

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 139–144,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Roleo: visualising thematic fit spaces on the web

Asad Sayeed and Xudong Hong and Vera Demberg
Cluster of Excellence “Multimodal Computing and Interaction”

Saarland University
66123 Saarbrücken, Germany

{asayeed,xhong,vera}@coli.uni-saarland.de

Abstract

In this paper, we present Roleo, a web
tool for visualizing the vector spaces gen-
erated by the evaluation of distributional
memory (DM) models over thematic fit
judgements. A thematic fit judgement is
a rating of the selectional preference of
a verb for an argument that fills a given
thematic role. The DM approach to the-
matic fit judgements involves the construc-
tion of a sub-space in which a prototyp-
ical role-filler can be built for compari-
son to the noun being judged. We de-
scribe a publicly-accessible web tool that
allows for querying and exploring these
spaces as well as a technique for visualiz-
ing thematic fit sub-spaces efficiently for
web use.

1 Introduction

We developed Roleo as a web platform in order
to visualize and explore the vector spaces gener-
ated by the process of thematic fit evaluation in
distributional models. We define thematic fit to be
a measure of the extent to which the selectional
preference of a verb given a thematic role is ful-
filled by a particular noun. For example, we expect
“knife” to strongly fit the instrument role of “cut”,
but “sword” much less so, and “hammer” hardly
at all. Modeling thematic fit has applications in ar-
eas like cognitive modeling and incremental pars-
ing. Various efforts have produced human judge-
ments of thematic fit for different combinations of
verbs, roles, and nouns (Padó, 2007; Greenberg
et al., 2015), and there have been a number of re-
cent efforts to build models that correlate closely
with those judgement datasets.

The most successful of these have been the
Distributional Memory (DM) models (Baroni and

Lenci, 2010), which are unsupervised models
that produce sparse, very high-dimensional vector
spaces. Recently, word embedding models with
smaller numbers of dimensions have been tested,
although they have yet to reach the degree of cor-
relation with human judgements that DM models
have (Baroni et al., 2014). Nevertheless, in both
cases, some notion of geometric distance or simi-
larity is used to substitute for the concept of fit.

If a geometric measure is used as the opera-
tional conceptualization of thematic fit, then we
should be able to subjectively assess the quality of
the space through visualization in order to gain a
grasp, for example, of how easily the space is par-
titionable or clusterable. This capability is useful
in the iterative engineering of features or for as-
sessing the quality of training data.

A number of existing packages across many
different development environments support low-
dimensional projection and visualization of high-
dimensional vector spaces. There are also a small
number of web sites that allow word embed-
dings to be visualized in a low-dimensional space
(Faruqui and Dyer, 2014). However, the best-
performing work in vector-space thematic fit eval-
uation projects sub-spaces from a full tensor space
given a verb and a role. Roleo is designed to query
and visualize these sub-spaces in a manner that re-
flects the evaluation process.

Roleo is live and available for use at
http://roleo.coli.uni-saarland.de/
with two example models and an efficient vi-
sualization technique. We have furthermore
made the code for it open source and available at
https://github.com/tony-hong/roleo.

1.1 Design goals

Our goals for the Roleo software are to:
• Provide a web-based platform for the explo-

ration of thematic fit sub-spaces based on dif-

139

Figure 1: Initial screen on loading Roleo in a browser.

ferent vector-space modeling techniques. We
begin with DM models.
• Make this type of semantic modeling acces-

sible to other researchers via the web. This
means that the interface must be reasonably
user-friendly and allow visitors to test simple
queries without knowing how to set all possi-
ble parameters.
• Facilitate presentations and demonstrations

about thematic fit evaluation.
• Serve queries reasonably quickly, ideally at

“web speed”, so that it is reasonable to “play
around” with the models. This puts a con-
straint on the kinds of projections and dimen-
sionality reduction we can use.

2 Vector-space thematic fit modeling

2.1 Distributional Memory
The currently best-performing models on the the-
matic fit task, in terms of correlation with human
judgements, are the Distributional Memory (DM)
models, based on a technique first proposed by Ba-
roni and Lenci (2010). A DM model is an order-3
tensor with two axes that represent words in the
model’s vocabulary and one axis that represents
links between the words, so that the cell of the ten-
sor is a positive real value for the occurrence of a
triple<word0,link,word1>. That occurrence is an
adjusted count of frequency such as Local Mutual
Information (LMI). The link between the words is
a connection acquired from processing a corpus,

such as with a dependency parser.
This structure was extensively tested by Baroni

and Lenci on a number of semantic tasks, includ-
ing on thematic fit modeling. Their procedure for
thematic fit modeling was the following: given a
verb v and a role r, they look up all the nouns
n such that each < v, r, n > LMI is within the
highest 20 for v and r. Then for each n, they get
a word vector wn from the model by looking up
all the word0 and link contexts that n appeared in
as word1; the vector is assembled from the LMI
values in those cells of the tensor. Given a candi-
date noun m against which to evaluate the fit with
v and r, a wm vector is similarly found. All the
<word0,link> contexts are the dimensions of a
subspace of the space represented by the DM ten-
sor as a whole; they can number potentially in the
millions. All the wn vectors are summed to form a
centroid that represents a “prototype” noun for that
verb and role. The thematic fit of m is evaluated
via the cosine similarity of wm and the centroid.

2.2 Provided models

In our demonstration version of Roleo, we pro-
vide two models, the TypeDM model from Ba-
roni and Lenci and the “Malt-only SDDM” model
from Sayeed et al. (2015). TypeDM is trained on
multiple corpora (BNC, ukWaC, and Wikipedia)
that have been downloaded and parsed by Malt-
Parser. The links between words that are used to
form TypeDM’s link axis are derived from short

140

MaltParser dependency paths via a partly hand-
crafted rule set. As TypeDM’s links are derived
from a syntactic parser, we must simulate seman-
tic roles by interpreting these links. Roleo allows
for the query of agent roles (via subject links), pa-
tient roles (via object links), instrument roles (via
the preposition “with”), and location roles (via the
prepositions “in”, “at”, and “on”).

Malt-only SDDM (just SDDM from now on)
is derived from a set of corpora similar to that
of TypeDM: BNC and ukWaC. The main differ-
ence between TypeDM and SDDM are the link
types, which in SDDM are PropBank roles, de-
rived from applying the SENNA semantic role
labeller to the corpora. The links are therefore
the PropBank roles that connect verbs to nouns.
SENNA (Collobert and Weston, 2007), however,
labels entire noun chunks with roles, often includ-
ing adjectives and whole relative clauses. Sayeed
et al. experiment with a number of algorithms
for extracting the noun head or bare noun phrase;
the best performing SENNA-based technique is to
use the MaltParser dependencies produced by Ba-
roni and Lenci, but simply as a guide for head-
identification. Sayeed et al. show that PropBank-
based roles and TypeDM roles help cover different
aspects of the thematic fit problem.

This process can be trivially reversed to repre-
sent the plausible verbs given a noun-role combi-
nation and to produce a visualization thereof. We
provide this functionality inside Roleo, although it
has never so far been evaluated on any task.

3 Efficient projection

One of our design goals was to build a query tool
that delivered results in times reasonable for the
web with limited resources, i.e., a single-PC web
server with a modern CPU. Because we are visual-
izing thematic fit sub-spaces constructed around a
centroid, we also looked for a projection that puts
the centroid at the center of the display consist-
ing of the prototype nouns that were used to con-
struct that centroid. We experimented with princi-
pal component analysis (PCA) and t-SNE (Van der
Maaten and Hinton, 2008) and found that at DM-
scale dimensionality, these took too long and were
too computationally intensive to resolve a query in
web-appropriate time.

For this reason, we came up with a two-
dimensional projection specialized to our prob-
lem: Fraction-Cosine Vector Mapping (FCVM).

This projection is easy to calculate directly from
the support sw of each word vector w in the DM
model (LMI) given the role and the verb, the sup-
port of the centroid sc (which is just the sum of the
supports of all the vectors in the top n words for
that verb-role combination), and the cosine cw of
the angle between the centroid and the vector.

Let V be the set of n highest supported word
vectors for the given verb-role combination. Then
for each vector, we can calculate its x and y co-
ordinates in FCVM with the following procedure.
The x coordinate for a projected word vector w is
the sum of proportions of contributions to sc of all
words w′ with a support sw′ > sw, meaning that
the more LMI-associated w is with the verb-role
combination, the closer it is to the centroid along
the x-axis. That is,

xw =
∑

w′∈V

sw′

sc
(1)

The yw-coordinate is simply 1−cw. This means
that xw and yw are both in the interval [0, 1] and sit
in the upper right quadrant of the Cartesian plane,
with the origin (corner) as the centroid. We con-
vert these to polar coordinates (rw, θw) and then
optionally apply an adjustment to spread the points
out. This adjustment is to multiply θw by a mul-
tiple of 4, sweeping them across Cartesian quad-
rants, in order to bring the centroid closer to a cir-
cular cloud of points representing word vectors.
The factors in Roleo are 1, 4, and 32, with 4 as the
default. The higher the factor, the more circular
the cloud. We finally convert the polar coordinates
back to rectangular. We also include an option to
display the polar coordinates by directly interpret-
ing them as rectangular coordinates. The points
are also given a colour that is dependent on their θ
after the multiplication factor is applied.

4 System implementation

Roleo was developed in Python using the Django
web development package. The DMs are imple-
mented as Pandas dataframes stored in indexed
HDF5 tables for efficient lookup. Vector algebra
is implemented in NumPy. The two-dimensional
coordinates for the points that appear in the visual-
ization are calculated server-side, currently imple-
mented on our own host, which is a single recent
PC. The image is drawn client-side and requires a
recent browser (we test with Firefox and Chrome).

Queries to Roleo take 2-10 seconds, depending

141

Figure 2: Zoomed-in query result for knife as instrument of cut under TypeDM with a 32-quadrant sweep
and a space constructed from 50 prototype noun vectors.

Figure 3: Zoomed-in query result for knife as ARGM-MNR of cut under SDDM with a 32-quadrant
sweep and a space constructed from 50 prototype noun vectors. A touch gesture has highlighted the
“razor” vector and put its cosine score on the bottom right corner.

on the number of vectors chosen by the user to
form the centroid, within a tolerable range for a
specialized web application.

4.1 Using Roleo

Roleo’s initial screen on loading it for the first time
in a browser is in figure 1. The screen is already
populated with a query: how well “apple” fits as

the patient of “eat”under SDDM, using 30 proto-
type nouns to calculate the centroid and populate
the space. The 4-quadrant sweep is used to draw
the canvas. Roleo is intended for use on a desktop
PC or laptop or on a tablet.

Left pane Roleo’s main options are shown on
the left pane of the web page. There, the user can
set the parameters and start the query. Fields are

142

Figure 4: Query result (without zooming) for “city” as location of “arrive” under TypeDM with a 1-
quadrant sweep and a space constructed from 20 prototype noun vectors.

available to enter a noun, a verb, and a role. The
roles available are dependent on the model cho-
sen. A slider allows the choice of between 10 and
50 top prototype vectors in increments of 10, and
the choice of quadrant sweep size is available, in-
cluding a “4-span by cosine” option, which is the
direct interpretation of the polar coordinates.

The radio buttons “Verb selects noun” and
“Noun selects verb” allows the user to set the
direction in which the thematic fit query is exe-
cuted. “Verb selects noun” is the default algorithm
that chooses prototype nouns based on a verb-role
combination. “Noun selects verb” allows the user
to explore the choice of verbs based on a noun-role
combination.

Main canvas The central pane of the Roleo page
is the canvas on which the vectors are visual-
ized. This pane can be scrolled and zoomed via
mouse or touch gestures, depending on the user’s
browser, operating system, and hardware. The
vectors are shown as small labeled circles on the
canvas, with the gray dot as the centroid, usually
located in the center for the 4- and 32-quadrant
sweep displays. The queried vector is highlighted
in red; the labels for the other vectors appear when
the canvas decides there is space for them or when
they are moused over. The bottom left corner con-
tains the cosine similarity score (with the centroid)
for the queried vector, and the bottom right corner
displays the cosine similarity of a moused-over or

touched vector.

Right pane Roleo’s right pane contains the de-
tails of the query currently represented on the can-
vas, in case the user needs a reminder of the previ-
ous field contents as they change the fields to ex-
plore the space. In addition, it contains a button to
shift Roleo into a full-screen presentation mode, a
button to download the depicted space as an im-
age file, and a button (“Re-centralize”) to return
the current query to its default view and cancel the
effect of scrolling or zooming.

4.2 Example lookups

Figures 2 and 3 contain queries about “cut” and
“knife” for TypeDM and SDDM respectively.
For TypeDM, we chose the instrument role; for
SDDM, we chose manner (PropBank “ARGM-
MNR”). With TypeDM, we see items that are
knife-like. Most of what appears there that is
not knife-like can be used with the preposition
“with”, as we have defined the instrument role for
querying TypeDM (section 2.2). Other parts of
the space not depicted here contain less knife-like
items, such as a region where “chainsaw”, “clip-
per”, “mower”, and “grinder” are close to one an-
other.

For SDDM, we also see knife-like instruments,
but we see “half” and “manner”, as in “cut in half”
and “cut in a manner”, also a result of PropBank.
There is also probable noise in both cases (e.g.

143

“have”, “hole”), as these spaces are ultimately de-
rived from large corpora.

Figure 4 is a 1-quadrant, 20-prototype view of
the “arrive”-location combination given a queried
noun of “city” under TypeDM. This is therefore
a rectangular view. Given the FCVM projection,
“city” is in the middle of the group along the y-
axis, meaning that it is the middle of the group
for cosines. However, it is far along the x-axis,
meaning that it had comparatively low LMI score
with respect to “arrive” and the location role.

5 Demonstration

The centrepiece of our demonstration at the con-
ference is a laptop or other computer display that
allows conference visitors to interact with Roleo,
as we explain its capabilities and advantages and
explore different vector spaces with the help of an
associated poster.

6 Future work

Roleo is under active development, and we intend
to include significant additional features. Among
these:

Adding models We plan to add more models,
including newer, dense word-embedding spaces
for comparison, in order to help us diagnose why
these spaces seem to perform less well than DMs
on the thematic fit task (Baroni et al., 2014).

More visualizations FCVM provides a way to
project high-dimensional vector spaces down to
two dimensions in a reasonable time for web use
on a single thread on a single server. It principally
represents the location of a vector with respect to
the centroid, which is ideal for thematic fit model-
ing, and it leads to a tendency for vectors related
via the verb to be close to one another. However,
it loses a direct geometric or probabilistic inter-
pretation of the proximity of vectors. Therefore,
we are investigating the possibility of adapting
FCVM and more processor-intensive procedures
like t-SNE and PCA to one another. Currently, we
are testing a lightweight SVD-based visualization
algorithm that still centers points around the cen-
troid; although it is more computationally inten-
sive than FCVM, our preliminary observations are
that it produces more well-defined clusters in ac-
ceptable time.

References

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Pro-
ceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics. vol-
ume 1, pages 238–247.

Marco Baroni and Alessandro Lenci. 2010. Dis-
tributional memory: A general framework for
corpus-based semantics. Computational Lin-
guistics 36(4):673–721.

Ronan Collobert and Jason Weston. 2007. Fast se-
mantic extraction using a novel neural network
architecture. In Proceedings of the 45th Annual
Meeting of the Association of Computational
Linguistics. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 560–
567.

Manaal Faruqui and Chris Dyer. 2014. Com-
munity evaluation and exchange of word vec-
tors at wordvectors.org. In Proceedings of the
52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstra-
tions. Association for Computational Linguis-
tics, Baltimore, USA.

Clayton Greenberg, Vera Demberg, and Asad Say-
eed. 2015. Verb polysemy and frequency effects
in thematic fit modeling. In Proceedings of the
6th Workshop on Cognitive Modeling and Com-
putational Linguistics. Association for Compu-
tational Linguistics, Denver, Colorado, pages
48–57.

Ulrike Padó. 2007. The integration of syntax and
semantic plausibility in a wide-coverage model
of human sentence processing. Ph.D. thesis,
Saarland University.

Asad Sayeed, Vera Demberg, and Pavel Shkadzko.
2015. An exploration of semantic features in
an unsupervised thematic fit evaluation frame-
work. In IJCoL vol. 1, n. 1 december 2015:
Emerging Topics at the First Italian Conference
on Computational Linguistics. Accademia Uni-
versity Press, pages 25–40.

Laurens Van der Maaten and Geoffrey Hinton.
2008. Visualizing data using t-sne. Journal of
Machine Learning Research 9(2579-2605):85.

144

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 145–150,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

MediaGist: A cross-lingual analyser of aggregated news and
commentaries

Josef Steinberger
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering, NTIS Center
Univerzitni 8, 30614 Pilsen, Czech Republic

jstein@kiv.zcu.cz

Abstract

We introduce MediaGist, an online sys-
tem for crosslingual analysis of aggregated
news and commentaries based on summa-
rization and sentiment analysis technolo-
gies. It is designed to assist journalists
to detect and explore news topics, which
are controversially reported or discussed
in different countries. News articles from
current week are clustered separately in
currently 5 languages and the clusters are
then linked across languages. Sentiment
analysis provides a basis to compute con-
troversy scores and summaries help to ex-
plore the differences. Recognized entities
play an important role in most of the sys-
tem’s modules and provide another way
to explore the data. We demonstrate the
capabilities of MediaGist by listing high-
lights from the last week and present a
rough evaluation of the system.

1 Introduction

News portals publish thousands of articles every
day in various languages. Making sense out of
such data without automated tools is impossible.

There are many news aggregators/analysers and
each of them has its strengths. Google News ag-
gregates headlines and displays the stories accord-
ing to each reader’s interests. IBM Watson News
Explorer gives a more analytical way to read news
through linked data visualizations. Europe Media
Monitor (EMM) produces a summary of news sto-
ries clustered near realtime in various languages
and compares how the same events have been re-
ported in the media written in different languages.

However, there is another source of information
at the news sites – commentaries – which contain
very valuable public opinion about the news top-

ics and has not been explored enough yet. Includ-
ing commentaries opens many new use cases for
journalists, agencies, which study public opinion,
and partially also for readers. Controversial top-
ics, such as the refugee crisis in Europe, or the
Volkswagen’s emission scandal, and their percep-
tion in different countries might be itself a source
for reporting. Focusing on such topics should
bring more traffic and rich discussions to the news
portals. International agencies or political institu-
tions will find useful the comparisons when study-
ing particular public opinions. Crosslingually-
organized news and commentaries will be useful
for readers living in a multicultural environment,
as they can quickly find and understand different
views on the controversial topics.

MediaGist1 builds on the ideas of news aggre-
gators, but adds the comments’ dimension. It con-
tinuously gathers metadata about news articles and
their commentaries, currently in 5 languages. Ar-
ticles from current week are clustered monolin-
gually several times a day. It extracts entities, la-
bels news and commentaries with sentiment scores
and generates summaries on both sides. It also
links the clusters across languages, similarly to
EMM. Having aggregated news on one side and
commentaries on the other side, it compares the
information by sentiment analysis and summariza-
tion. A different sentiment of news and commen-
taries indicate a controversial topic and summaries
help to identify the difference qualitatively. The
crosslingual links allow to discover and explore
topics, which are controversially reported or dis-
cussed in different countries.

The next section (2) relates MediaGist to the
current news aggregation or analytics solutions.
Section 3 describes MediGist from inside. The

1MediaGist is running at: http://mediagist.eu.
A screencast video can be found at: https://www.
youtube.com/watch?v=ONtKw_l6_X4.

145

overall architecture is followed by a description
of the NLP pipeline. Section 4 gives an overview
of the system’s functionality and shows highlights
from the last week, followed by a rough evaluation
of the system, conclusions and future plans.

2 Related sites

Google News2 is an automatic service that aggre-
gates headlines from more than 50K news sources
worldwide, groups similar stories together, and
displays them according to each reader’s interests.
The content is selected and ranked using many fac-
tors, e.g. coverage, freshness, location, relevance
and diversity of the story. There are more than 70
regional editions in many different languages.

IBM Watson News Explorer3 gives a more an-
alytical way to read news. It gathers 250k articles
a day from 70k sources and converts the unstruc-
tured text into entities and concepts, and connects
the dots through linked data visualizations.

EMM NewsBrief4 is a summary of news stories
(news clusters) from around the world, automati-
cally classified according to thousands of criteria.
It is updated every 10 minutes, and over 100k ar-
ticles in 50+ languages run through it a day. It au-
tomatically detects the stories that are the most re-
ported in each language at the moment. The Alert
system presents the stories in many different clas-
sifications (Atkinson and van der Goot, 2009).

The second EMM’s technology, NewsEx-
plorer5, allows to see the major news stories in
various languages for any specific day and to com-
pare how the same events have been reported in
different languages (Steinberger et al., 2009). It
shows the most mentioned names and other auto-
matically derived information, eg. variant name
spellings or a list of related entities (Pouliquen and
Steinberger, 2009).

To summarize, the current systems gather
masses of news articles and cluster them into sto-
ries. Some systems do it in many languages,
and few link the stories across languages. Ana-
lytical solutions add information extraction (loca-
tions, entities, relations or categories). However,
they do not integrate commentaries, which com-
plement well the stories with public opinion. Me-

2https://news.google.com/
3http://news-explorer.mybluemix.net/
4EMM (Europe Media Monitor) is developed

at Joint Research Centre, European Commission:
http://emm.newsbrief.eu

5http://emm.newsexplorer.eu

diaGist adds the commentaries and uses them for
various monolingual or crosslingual comparisons
resulting in discovering and exploring controver-
sies in the whole data.

3 System overview

MediaGist processing starts with a crawler (see
figure 1). It gathers articles and their comments
from predefined news sites6. It creates an RSS
file for each article, which goes down the NLP
pipeline. The pipeline first recognizes entities, in
both the article and its comments, and assigns a
crosslingual id to each mention. The next step
is performed by the sentiment analyser, which
assigns to each article and comment a tonality
score7. The coreference resolver then enriches the
list of entity mentions by name part references and
definite descriptions. Each entity mention is then
assigned a sentiment score and article comments
are summarized8. These fully annotated article
RSS files enter the clustering phase. Every four
hours, for each language, the clusterer takes the ar-
ticles published during the current week and cre-
ates monolingual clusters. Since this step, RSS
files contain information about all articles in the
cluster. The crosslingual linker then adds to each
cluster links to the most similar cluster in other
languages. The last step is creating a summary of
clustered articles and a summary of cluster’s com-
ments (already summarized per article before).
The RSS now contains all information needed by
the presentation layer, the MediaGist website.

3.1 NER and coreference

The named entity recognizer is based on JRC-
Names9, which is a highly multilingual named en-
tity resource for person and organisation names
(Steinberger et al., 2011c). It consists of large
lists of names and their many spelling variants (up
to hundreds for a single person), including across
scripts (Steinberger and Pouliquen, 2009).

Because the resource does not contain many
morphological variants for Czech, it was extended

6Currently, it gathers data from 7 sources in 5 languages:
English (theguardian.com), Czech (idnes.cz, ihned.cz,
novinky.cz), Italian (corriere.it), French (lemonde.fr) and
German (spiegel.de).

7We call a document-level sentiment ‘tonality’.
8There can be even thousands of comments attached to a

single article. This summarization step largely reduces the
size of the data sent further down the pipeline.

9https://ec.europa.eu/jrc/en/language-technologies/jrc-
names

146

crawler

NER

article
tonality

comment
tonality

sentiment analyser

coreference
resolver

article
comments'
summarizer

cluster
comments'
summarizer

cluster
articles'

summarizer

monolingual
clusterer

crosslingual
linker

entity
sentiment

summarizer

plain RSS

article RSS
with all information

cluster RSS
cluster RSS

with all
information

Figure 1: The architecture of MediaGist.

by an in-house rule-based morphological analyser.
Coreference resolution was inspired by (Stein-

berger et al., 2011a). In the cases of titles, it uses a
list of person-title associations semi-automatically
compiled over the past few years (Pouliquen and
Steinberger, 2009).

3.2 Sentiment analysis
The sentiment analyser is used for 2 purposes.
Assigning first a document-level tonality score
〈−100; +100〉 to each article and comment, and
second, a sentiment score 〈−100; +100〉 to each
entity mention. It uses highly multilingual and
comparable sentiment dictionaries having similar
sizes and based on a common specification, cre-
ated by triangulation from English and Spanish
(Steinberger et al., 2012). In the case of the tonal-
ity score, it counts subjective terms in an article,
resp. a comment, and in the case of the entity
score, it counts terms around entity mentions. It
includes rules for using negation, intensifiers and
diminishers (Steinberger et al., 2011b). Although
machine learning approaches would produce bet-
ter sentiment predictions, they require training
data per language, and ideally per industry as well.
And such data are currently expensive to create.
With the rule-based approach, the system can eas-
ily process multiple languages.

3.3 Clustering and crosslingual linking
The monolingual clustering algorithm is based
on agglomerative hierarchical clustering with the
group average strategy (Hastie et al., 2009). The
articles are represented by log-likelihood vectors
of its terms and the similarity function is Cosine.

Crosslingual linking uses two kinds of features:
entities and descriptors from EuroVoc10. EuroVoc

10http://eurovoc.europa.eu

is a multilingual, multidisciplinary thesaurus cov-
ering the activities of the EU, the European Parlia-
ment in particular. It contains terms organized in
a hierarchy in 23 EU languages. Using Eurovoc
features ensures that the linked clusters share the
same topic. If at the same time the clusters share
the same entities11, it is very likely that the clus-
ters are about the same story. A similar approach
as in (Steinberger, 2013).

3.4 Summarization
The summarizer is used for three steps of the
pipeline. First, it summarizes article comments,
then articles in the cluster and finally comments of
the cluster. We use an extractive approach based
on latent semantic analysis, which uses both lex-
ical and entity features (Kabadjov et al., 2013).
This approach performed well in the Multiling
evaluation campaigns12.

4 Functionality

The systems has two main views to explore the
media data: cluster view and entity view. We can
select a language, a period (=week) and sort the
data by different criteria13. Each view contains
highlights of the selected period in the left panel.

4.1 The cluster view
It displays title and description, taken from the
central article of the cluster (see figure 2). The left
part shows information about articles and the right
part about commentaries. On both sides, it dis-
plays generated summaries and aggregated tonal-

11The entity ids are unified across languages.
12There were already 3 editions of MultiLing’s multilin-

gual multi-document summarization shared task: 2011 (Gi-
annakopoulos et al., 2011), 2013, and 2015 (Giannakopoulos
et al., 2015).

13The system currently holds data from the last 24 weeks.

147

Figure 2: The top English cluster from the first week of 2016 (Jan 4th-10th). The screenshot does not
include the page header, the left bar with highlights and the footer. More at http://mediagist.eu

ity figures. The central part shows entities and
their sentiment in articles and comments.14 At the
bottom, you can see links to the related clusters in
other languages.

MediaGist computes several controversy scores
for each cluster. Articles’ vs. comments’ contro-
versy compares tonality of articles and comments.
The value correspond to the standard deviation of
the two values. Entities’ controversy compares
sentiment of entity mentions in articles and com-
ments. The value is a macro-average of standard
deviations of each entity sentiment. Crosslingual
rank controversy compares ranks of the cluster in
different languages. Clusters are ranked for each
language based on the number of articles. The
value is a standard deviation of logarithms of the
ranks. Logarithms give larger weights to the top
ranks. This controversy is large if the topic is
ranked at the top for some languages based on
the coverage, while in other languages it is men-
tioned only marginally. Large Crosslingual article
controversy indicates a large difference in articles’
tonality among languages. The value is a stan-
dard deviation of average article tonalities across
languages. This score says whether the topic is
reported with the same tonality in different lan-
guages or not. And finally, a large Crosslingual
comment controversy indicates topics which are
discussed with different tonality across languages.
The score compares average comment tonalities
across languages by the standard deviation.

14Tonality/sentiment range is: 〈−100;+100〉, green col-
umn = positive, orange = neutral, red = negative.

4.2 The entity view

The entity view displays variants of the entity
found in the data (e.g. for David Bowie in week
Jan 11-17, 2016: Bowie (3816 mentions), David
Bowie (914), David (74), singer (60), star (46),
musician (33), popstar (5), etc.). It shows the
aggregated entity sentiment in articles and com-
ments, which is compared by Articles’ vs. com-
ments’ controversy. The sentiment is summa-
rized by the most frequent subjective terms on
both sides. Because we have also the entities
linked across languages, we can compute their
crosslingual controversy in articles and in com-
ments. We can then easily find, which entities
are reported or discussed with different sentiment
across languages. As an example, Volkswagen
is discussed negatively in Czech but positively in
German (when all periods are selected).

4.3 Highlights from the last week

The most international topic during week (Mar 21-
27, 2016) was Fayal Cheffou charged over core
role in Brussels bomb attacks – covered well in all
5 languages. The English summary:

At least 31 dead and more than 200 injured in bombings
claimed by Islamic State. The attackers Brothers Khalid and
Ibrahim el-Bakraoui have been identified as suicide bombers
at the metro station and airport respectively. Before the Brus-
sels attacks, Belgian prosecutors said DNA evidence had
identified Moroccan-born Laachraoui as an accomplice of
Paris attacker Salah Abdeslam. He was one of several men
detained in police raids on Thursday. “What we feared has
happened,” said the Belgian prime minister, Charles Michel,
at a press conference.

The following story was controversial in cov-
erage: Ukrainian pilot given 22-year jail sen-
tence by Russian court – one of the top clus-

148

ters in Czech but only few articles in English and
French. The same topic was seen as controver-
sially reported as well – the tonality of Czech ar-
ticles was much more negative than English and
French ones. A controversially discussed topic:
Sanders: ’We have a path towards victory’ after
win Washington caucuses – while positive in En-
glish, negative in Czech. Reasons of the contro-
versy can be found in the summaries.

Controversial entity in articles: Donald Trump
– negative in English, close to neutral in Italian
and French and positive in German and Czech.
Difference between sentiment in articles and com-
ments: John Key – positive in articles but neg-
ative in comments (English). Controversial en-
tity in comments: George W. Bush – while the
sentiment is balanced in English, it is negative
in Czech and positive in German. The most fre-
quent sentiment terms indicate the reasons: En-
glish: good, helped, better, evil, violence; German:
liebesmüh (love effort), deutlich besser (clearly
better), Czech: zločiny (crimes), odsuzovat (ac-
cusing), špatný (bad).

5 Evaluation

We present a rough evaluation of the key modules
of the system. We discus results of NER, coref-
erence, sentiment analysis and summarization ob-
tained in the previous research. In the case of clus-
tering, crosslingual linking and controversy pre-
dictions we validated the system output to get the
first insight of their accuracy.

5.1 NER and coreference

The precision of the applied NER and coreference
was measured in Steinberger et al. (2011a). From
the current MediaGist’s languages, person recog-
nition performs best for French (98.4%) and worst
for Italian (92.1%). The coreference module re-
solves name parts at precision of 98% and person
title references at 70%. As the title references have
not been continuously updated yet, several wrong
references are caused by the missing temporal di-
mension.

5.2 Sentiment analysis

The accuracy of the sentiment analyser in all Me-
diaGist’s languages was measured in Steinberger
et al. (2011b). For news sentences and entity tar-
gets, we got the best accuracy for English (74%)
and the worst for Italian (66%). However, in

the case of aggregating the polarities per entity
and considering only entities with a larger differ-
ence between positive and negative mentions (ex-
tremely polar entities), 78% of entity classifica-
tions across all languages were correct.

5.3 Summarization

The LSA-based summarizer was evaluated during
the last edition of the Multiling’s multi-document
summarization shared task (Giannakopoulos et al.,
2015) as the top performing system overall (it re-
ceived the lowest sum of ranks over all 10 lan-
guages). From the MediaGist’s languages, it per-
formed best in Czech, English and French. Ger-
man and Italian was not included.

5.4 Clustering and crosslingual linking

In the case of clustering and crosslingual linking,
we asked two annotators to validate the output of
the system. The annotators were not fluent speak-
ers in all 5 languages, but they had enough knowl-
edge to judge the task. We selected the top 5 En-
glish clusters from the first 4 full weeks of 2016.
The clusters were ranked based on the number of
crosslingual links. The task of the clustering val-
idation was to check whether the components of
the cluster are relevant to the cluster’s topic identi-
fied by the title of its central article. In the case of
the crosslingual linking, the task was to check the
similarity of the linked clusters based on their arti-
cle titles. Clustering validation was found not to be
that subjective, the inter-annotator kappa was .89.
The validation of crosslingual links was more dif-
ficult, the annotators did not always agree (kappa
was .63), mainly because of a different view on
the right granularity of the topic (e.g. the clusters
were both discussing the regugee crisis, but in one
language it was about closing the borders and in
the other about a disorder in Germany). From the
total of 235 cluster components, 96% were judged
as correct and from the 59 crosslingual links, 76%
were pointing to the right cluster of the other lan-
guage.

5.5 Controversy scores

We selected the most interesting controversy
score, crosslingual comment controversy, to be
judged by two annotators. For each crosslingual
link evaluated in 5.4, we took the corresponding
comment summaries (each in a different language)
and showed them to an annotator. Her task was to

149

assess whether the view of the topic/entities is dif-
ferent (controversial) in the two languages or not.
The task definition was rather shallow, but still
there was a fair agreement (kappa was .48). We
then produced a gold controversy scores: for in-
stance if we had a topic linked across 5 languages,
there were 10 combinations judged twice. The
Boolean judgements were aggregated and normal-
ized, resulting in a score between 0 and 1. These
golden scores were then compared against the sys-
tem’s crosslingual comment controversy scores by
Pearson correlation: .51. Although the correlation
is not perfect, the measure can already be useful to
indicate controversy.

6 Conclusion

MediaGist uses language technology to detect
controversy in world news. Sentiment analysis
helps to identify controversial topics and entities
across languages, and via summarization it is pos-
sible to explore them in detail. The controversy
scores are much dependent on the quality of sen-
timent analysis. Improving the sentiment mod-
ule will directly lead to better predictions. Fu-
ture plans include increasing the data volume on
on both vertical (sources) and horizontal (histori-
cal data) axes. This will allow to study the evolu-
tion of a news thread or of a person name. The sys-
tem currently consumes raw commentaries. Rep-
resenting a precise opinion of real Internet users
will require to fight trolls and filter the conversa-
tions (Mihaylov et al., 2015).

Acknowledgments

This work was supported by project MediaGist,
EUs FP7 People Programme (Marie Curie Ac-
tions), no. 630786. MediaGist.

References
M. Atkinson and E. van der Goot. 2009. Near real

time information mining in multilingual news. In
Proceedings of the 18th International World Wide
Web Conference (WWW 2009), pages 1153–1154,
Madrid, Spain.

G. Giannakopoulos, M. El-Haj, B. Favre, M. Litvak,
J. Steinberger, and V. Varma. 2011. TAC2011 Mul-
tiLing Pilot Overview. In TAC 2011 Workshop.

G. Giannakopoulos, J. Kubina, J. Conroy, J. Stein-
berger, B. Favre, M. Kabadjov, U. Kruschwitz, and
M. Poesio. 2015. Multiling 2015: Multilingual

summarization of single and multi-documents, on-
line fora, and call-center conversations. In Proceed-
ings of the 16th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 270–
274. ACL.

T. Hastie, R. Tibshirani, and J. Friedman. 2009. The
Elements of Statistical Learning. Springer-Verlag.

M. Kabadjov, J. Steinberger, and R. Steinberger. 2013.
Multilingual statistical news summarization. In
Multilingual Information Extraction and Summa-
rization, volume 2013 of Theory and Applications
of Natural Language Processing, pages 229–252.
Springer.

T. Mihaylov, G. Georgiev, and P. Nakov. 2015. Find-
ing opinion manipulation trolls in news community
forums. In Proceedings of the 19th CoNLL, pages
310–314. ACL.

B. Pouliquen and R. Steinberger. 2009. Automatic
construction of multilingual name dictionaries. In
Learning Machine Translation. MIT Press.

R. Steinberger and B. Pouliquen. 2009. Cross-
lingual named entity recognition. In Named Entities
- Recognition, Classification and Use, volume 19
of Benjamins Current Topics, pages 137–164. John
Benjamins Publishing Company.

R. Steinberger, B. Pouliquen, and C. Ignat. 2009. Us-
ing language-independent rules to achieve high mul-
tilinguality in text mining. In Mining Massive Data
Sets for Security. IOS-Press, Amsterdam, Holland.

J. Steinberger, J. Belyaeva, J. Crawley, L. Della-Rocca,
M. Ebrahim, M. Ehrmann, M. Kabadjov, R. Stein-
berger, and E. Van der Goot. 2011a. Highly mul-
tilingual coreference resolution exploiting a mature
entity repository. In Proceedings of the 8th RANLP
Conference, pages 254–260. Incoma Ltd.

J. Steinberger, P. Lenkova, M. Kabadjov, R. Stein-
berger, and E. van der Goot. 2011b. Multilingual
entity-centered sentiment analysis evaluated by par-
allel corpora. In Proceedings of the 8th RANLP
Conference, pages 770–775.

R. Steinberger, B. Pouliquen, M. Kabadjov,
J. Belyaeva, and E. van der Goot. 2011c. Jrc-
names: A freely available, highly multilingual
named entity resource. In Proceedings of the
International RANLP Conference. Incoma Ltd.

J. Steinberger, M. Ebrahim, M. Ehrmann, A. Hur-
riyetoglu, M. Kabadjov, P. Lenkova, R. Steinberger,
H. Tanev, S. Vzquez, and V. Zavarella. 2012. Cre-
ating sentiment dictionaries via triangulation. Deci-
sion Support Systems, 53(4):689 – 694.

R. Steinberger. 2013. Multilingual and cross-lingual
news analysis in the europe media monitor (emm).
In Multidisciplinary Information Retrieval, volume
8201 of LNCS, pages 1–4. Springer.

150

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 151–156,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

GoWvis: a web application for Graph-of-Words-based text visualization
and summarization

Antoine J.-P. Tixier, Konstantinos Skianis, and Michalis Vazirgiannis
Computer Science Laboratory
École Polytechnique, France

Abstract

We introduce GoWvis1, an interactive web
application that represents any piece of
text inputted by the user as a graph-of-
words and leverages graph degeneracy and
community detection to generate an ex-
tractive summary (keyphrases and sen-
tences) of the inputted text in an un-
supervised fashion. The entire analysis
can be fully customized via the tuning of
many text preprocessing, graph building,
and graph mining parameters. Our sys-
tem is thus well suited to educational pur-
poses, exploration and early research ex-
periments. The new summarization strat-
egy we propose also shows promise.

1 Introduction

The term independence assumption made by the
traditional Bag-of-Words (BoW) representation of
text comes with many limitations. One approach
that challenges this assumption is the Graph-of-
Words model (GoW). As shown in Figure 1, it rep-
resents a textual document as a graph whose ver-
tices are unique terms in the document and whose
edges capture term co-occurrence within a win-
dow of predetermined, fixed size, that is slided
over the entire document from start to finish.

This approach is statistical, as terms are linked
based on local context of co-occurrence only, re-
gardless of any semantic or syntactic information
(Distributional Hypothesis). Unlike BoW, GoW
encodes term dependency and term order (via di-
rected edges). The strength of the dependence be-
tween two words can also be captured by assigning
a weight to the edge that links them. While other
definitions can be used, we consider here edge

1https://safetyapp.shinyapps.io/
GoWvis/

2

2

2
1

2

22

2

2

22 2

2 2
2

1
1

1

1
1

1

1

1

1

2

1
1

1
1

●

●

●
●

●

●

●

●
●

●

●

●

●

method

solut

system
linear

algebra

equat

m−dimension

lambda

matric

propos

numer

special

kindA method for solution of systems of linear
algebraic equations with m-dimensional lambda
matrices. A system of linear algebraic equations
with m-dimensional lambda matrices is
considered. The proposed method of searching
for the solution of this system lies in reducing it
to a numerical system of a special kind.

Figure 1: Graph-of-Words representation with POS-based screening, and
directed, weighted edges. Non-(nouns and adjectives) in italic.

weights to be integers matching co-occurrence
counts.

GoW can be tracked back to the works of (Mi-
halcea and Tarau, 2004) and (Erkan and Radev,
2004) who applied it to the tasks of unsupervised
keyword extraction and extractive single docu-
ment summarization. Notably, the former effort
ranked nodes based on a modified version of the
PageRank algorithm.

Recently, (Rousseau and Vazirgiannis, 2015)
showed that degeneracy-based approaches (i.e.,
extracting dense, cohesive subgraphs) could out-
perform PageRank for unsupervised keyword ex-
traction. We will show in subsection 3.4 how com-
bining this strategy with graph clustering may im-
prove summarization performance for multitopic
documents. Other NLP tasks on which GoW-
based approaches have reached new state-of-the-
art include ad-hoc information retrieval (Rousseau
and Vazirgiannis, 2013) and document classifica-
tion (Rousseau et al., 2015; Malliaros and Skianis,
2015). The high success, promising potential and
visual nature of the GoW representation was the
impetus for the development of GoWvis.

151

The remainder of this paper is organized as fol-
lows: Section 2 provides some background on
graph degeneracy and community detection, Sec-
tion 3 presents our system, and finally, Section 4
concludes and discusses future work.

2 Graph mining

2.1 Graph degeneracy

k-core. A core of order k (or k-core) of a graph G
is a maximal connected subgraph of G in which
every vertex v has at least degree k (Seidman,
1983). It is a relaxation of a clique: a k-core
with k + 1 members is a subgraph where every
two nodes are adjacent, that is, a clique (Luce and
Perry, 1949). In the classical unweighted case,
edge weights are not taken into account and thus
the degree of a node v is simply equal to the num-
ber of its neighbors. In the weighted (or general-
ized) case, the degree of a vertex v is the sum of
the weights of its incident edges.

k-core decomposition. The k-core decomposi-
tion of a graph G is the list of all its cores from 0
(G itself) to kmax (its main core). It forms a hi-
erarchy of subgraphs that are recursively included
in one another and whose cohesiveness and size
respectively increases and decreases with k (Seid-
man, 1983). A linear (resp. linearithmic) time al-
gorithm for k-core decomposition can be found in
(Batagelj and Zaveršnik, 2002) for the unweighted
(resp. weighted) case. Both algorithms implement
a pruning process that removes the lowest degree
node at each step.

The core number of a node is the highest or-
der of a core that contains this node. Nodes with
high core numbers have the desirable property of
not only being central (like nodes with high de-
gree centrality) but also part of cohesive subgraphs
with other central nodes (i.e., the other members
of the upper cores). For this reason, they make,
among other things, influential spreaders (Kitsak
et al., 2010) and good keywords (Rousseau and
Vazirgiannis, 2015).

The main core of a graph yields a fast (but
rough) approximation of its densest subgraph. In-
deed, it may contain in some cases a very large
portion of the nodes of the graph. As (Seid-
man, 1983) puts it, k-cores should be regarded as
seedbeds within which it is possible to find more
cohesive subgraphs.

k-truss. A triangle-based extension of k-core
that yields densest subgraphs is k-truss (Cohen,

2008). More precisely, the k-truss of a graph G
is the largest subgraph of G in which every edge
belongs to at least k− 2 cycle subgraphs of length
3 (i.e., triangles). Put differently, every edge in the
k-truss joins two vertices that have at least k − 2
common neighbors.

k-truss decomposition. The k-truss decompo-
sition of a graph G is the set of all its k-trusses
from k − 2 to kmax. The k-trusses correspond to
densely connected subsets of the k-cores that can
be viewed as their essential parts (Malliaros et al.,
2016). The maximal k-truss thus yields a smaller
and denser subgraph of G that better approximates
its densest subgraph. Nevertheless, the finer reso-
lution of the k-truss decomposition comes at the
cost of a greater complexity, polynomial in the
number of edges (Wang and Cheng, 2012).

By analogy with k-core, the truss number of
an edge is the highest order of a truss the edge be-
longs to. By extension, we define the truss number
of a node as the maximum truss number of its in-
cident edges, like in (Malliaros et al., 2016).

We wrote our own implementation of weighted
k-core in R (R Core Team, 2015). For unweighted
k-core, we used the igraph package (Csardi and
Nepusz, 2006), and for k-truss, the C++ imple-
mentation offered by (Wang and Cheng, 2012).

2.2 Community detection

While the k-core and k-truss decomposition algo-
rithms converge towards the unique most cohesive
subgraph of a graph, the task of community de-
tection consists in clustering a graph into multi-
ple groups within which connections are dense and
between which they are sparse (Fortunato, 2010).

Many community detection algorithms have
been proposed, of which some of the most pop-
ular are listed below. The fundamental Modularity
function used by the first three algorithms mea-
sures the strength of the partition of a graph by
comparing the number of within-group edges to
the expected such number in a null model (New-
man and Girvan, 2004).

The fast greedy algorithm (Clauset et al., 2004)
merges at each step the pair of nodes that yields
the largest gain in modularity until a single com-
munity remains. The best partition is the one as-
sociated with the greatest modularity value.

The multi-level (or Louvain) algorithm (Blon-
del et al., 2008) first aggregates each node with
one of its neighbors such that the gain in modu-

152

larity is maximized. Then, the groupings obtained
at the first step are turned into nodes, yielding a
new graph. This two-step process iterates until a
peak in modularity is attained and no more change
occurs.

The walktrap algorithm (Pons and Latapy,
2005) uses agglomerative hierarchical clustering
with a random walk-based distance between ver-
tices to obtain a set of subdivisions of the graph.
The optimal clustering is given by the level of the
hierarchy that maximizes modularity.

Finally, the infomap algorithm (Rosvall and
Bergstrom, 2008) optimizes the map equation to
find an optimal compression of a description of
information flow in the graph. Unlike other afore-
mentioned algorithms, infomap works for directed
networks.

We used the R wrappers of the igraph C im-
plementations of the algorithms presented above.
Note that all igraph implementations can (option-
ally) take edge weights into account. Unless men-
tioned, all other parameters remained at their de-
fault values.

3 GoWvis

Our system was developed in R Shiny (Chang et
al., 2015), and can be broken down into the four
modules shown in Figure 2. The steps are sequen-
tial except the last two which are performed in
parallel. In what follows, we present the tuning
parameters involved at each step and discuss their
individual impact (all other parameters being held
constant).

1) Text

Preprocessing

2) GoW building

3) GoW mining
4a) GoW plotting

4b) Text

Summarization

Figure 2: System architecture

3.1 Text preprocessing
The first module cleans the inputted text by (1)
removing special characters, punctuation marks
except the ones indicative of sentence boundary
(used by the second module, see subsection 3.2)
and intra-word dashes, (2) removing numbers ex-
cept dates (like “2016”), and (3) tokenizing. In
addition to R built-in functions, the stringr pack-
age (Wickham, 2015) is used here. Also, text is

split into sentences using the implementation of
the Apache OpenNLP Maxent sentence detector
offered by the openNLP R package (Hornik, 2015).
The list of sentences is eventually passed to the
fourth module (see subsection 3.4). Additionally,
the user is provided with the following tuning pa-
rameters:

Keep only nouns and adjectives? Boolean, de-
faults to TRUE. Uses openNLP’s implementation
of the Apache OpenNLP Maxent POS tagger to
perform part-of-speech (POS) tagging. Then, fol-
lowing (Mihalcea and Tarau, 2004), only nouns
and adjectives are kept.

Stopwords removal. Boolean, defaults to
TRUE. Only actionable if no POS-based screen-
ing is performed. Removes common English stop-
words2 from the SMART information retrieval
system.

Stemming. Boolean, defaults to TRUE. Re-
tains only the stem of each term by implement-
ing Porter’s stemmer with the R SnowballC pack-
age (Bouchet-Valat, 2014). For instance, when
stemming is performed, win and winning are both
collapsed to win. Stemming thus tends to yield
smaller and denser graphs.

The unique words that passed the aforelisted
preprocessing steps are then used as the nodes of
the graph-of-words.

3.2 Graph-of-Words building

The graph-of-words is constructed by adding
edges between the n nodes previously obtained.
Complexity is O(nW) where W is window size.
The module offers the following tuning parame-
ters:

Window size. Integer between 2 and 12, de-
faults to 3. Specifies the size of the window slided
over the document. Values around 3 and 4 have
been reported to work well (Mihalcea and Tarau,
2004; Malliaros and Skianis, 2015). Note that
the larger the window, the denser the graph, since
more edges are created while the number of nodes
remains constant.

Build on processed text? Boolean, defaults to
TRUE. Whether the window should be slided over
the (1) processed or the (2) unprocessed text. May
yield very different results, depending on the pre-
processing steps that have been applied. Indeed,

2http://jmlr.org/papers/volume5/
lewis04a/a11-smart-stop-list/english.
stop

153

two words that are initially very distant in the orig-
inal, unprocessed text and whose co-occurence
would therefore not be captured may end up close
to each other in the processed text if many words
between them (e.g., stopwords) were removed as
a result of preprocessing. Consequently, build-
ing the graph from the processed text tends to
link more distant words and produce denser graphs
than when using the unprocessed text.

Overspan sentences? Boolean, defaults to
TRUE. If FALSE, an edge between two co-
occurring words is only created (or if the edge al-
ready exists, its weight is only incremented) if the
two words belong to the same sentence. The punc-
tuation marks “.”, “;”, “!”, “?”, and “...” are used
here as sentence boundaries.

Color. List, defaults to heat. A set of five
built-in R palettes to color the nodes of the graph,
including the color-blind-friendly gray.colors.
Node colors match their core (or truss) number
(also indicated in a legend) and go darker as k in-
creases.

3.3 Graph-of-Words mining

This module analyzes the graph-of-words returned
at the previous step using graph degeneracy and
community detection. The user can tweak the fol-
lowing parameters to customize the analysis:

Degeneracy. List, defaults to “weighted k-
core”. Choice of the graph decomposition method,
among “k-core”, “weighted k-core”, and “k-
truss”. If “weighted k-core” is selected, the edge
weights appear as edge labels in the plot.

Directed? Boolean, defaults to TRUE. Whether
edge direction should be taken into account in
computing node degree. Only actionable if a
degree-based degeneracy algorithm has been se-
lected (i.e., any but “k-truss”). When TRUE,
edges in the plot feature arrows indicating their di-
rection.

Mode. List, defaults to “all”. Which of the in-
cident edges of a node should be taken into ac-
count in computing its degree, between “all” (all
edges), “in” (incoming edges only), or “out” (out-
going edges only). Only actionable if edge direc-
tion is taken into account, and only impacts the
output of the k-core algorithms. Note that the de-
fault value “all” gives the same results as when
edge direction is ignored, but generates a plot with
arrow edges.

Community detection? List, defaults to “none”.

Choice of the graph clustering algorithm, among
“fast greedy”, “louvain”, “walktrap”, “infomap”,
and “none”. If not “none”, each main community
(see size threshold parameter below) is separately
degenerated. If “walktrap”, the user can select
the length of the random walks between 2 and 8
(defaults to 4). If “infomap”, the user can spec-
ify whether edge direction should be taken into
account. Clustering increases coverage for mul-
titopic documents.

Weighted? Boolean, defaults to FALSE.
Whether edge weights should be used by the com-
munity detection algorithm. Only actionable if the
community detection parameter is not “none”. If
TRUE, the edge weights appear as edge labels in
the plot.

Size threshold. Numeric (from 0.4 to 1.0, by
0.1), defaults to 0.8. Only actionable if the com-
munity detection parameter is not “none”. Per-
centile size threshold used to determine which
communities should be considered to be main
ones. For instance, the default value of 0.8 retains
as main communities the ones whose sizes (i.e.,
number of nodes) exceed that of 80% of all de-
tected communities. As will be further illustrated
in subsection 3.4, this parameter enables the user
to chose whether the summary should cover only
the major or also the subtle topics of the docu-
ment. Nonetheless, diminishing size threshold in-
creases the risk of including irrelevant (or noise)
topics in the summary.

3.4 Text summarization

The fourth module uses the results from the previ-
ous step (graph mining) to (1) extract keyphrases
from and (2) select a subset of the original sen-
tences in the document inputted by the user in an
unsupervised manner. It is performed in paral-
lel with the graph plotting module (see subsection
3.5).

1. Keyphrase extraction. The terms whose
core (or truss) number is exactly equal to kmax −
p are used as seeds from which keyphrases (n-
grams) are reconstructed. p is an integer parame-
ter between 0 and 10 that lets the user navigate the
core (or truss) hierarchy up and down. If p = 0
(the default), the main core is used. Whenever
kmax ≤ p, the user is informed that their selec-
tion is empty. In practice, one would want to re-
tain all the words whose core (or truss) number is
at least equal to kmax − p, that is, the members

154

of the (kmax − p)-core (or truss), and this is in-
deed what we do for sentence selection (see “Sen-
tence selection” paragraph below). Here though,
we only use a single slice of the hierarchy (called
a shell) to make it clear for the user how the pro-
cess of keyword extraction and keyphrase recon-
struction works.

Reconciliation is then performed by pasting to-
gether the seeds that are found adjacent in the orig-
inal, unprocessed text. For example, if “algebra”
and “linear” both belong to the selected shell and
“linear algebra” is present in the text, the two seeds
are collapsed and added to the set of candidate
keyphrases. Duplicates and keyphrases included
in higher order keyphrases are then discarded.

When community detection is used, as already
explained, each main community is separately de-
generated. The entire process of keyterm extrac-
tion and keyphrase reconstruction is then run for
each main community, ensuring that keyphrases
cover the main topics in the document.

Example. We created a two-topic 925-word
document3 by drawing and intertwining an equal
number of sentences from two Wikipedia articles,
one about the website Stack Overflow (SO) and
one about pizza. With all default parameters, the
keyphrases extracted are all about SO: stack over-
flow, user, answer question... However, still with
all default parameters, by simply enabling com-
munity detection (e.g., with “fast greedy”), the
two topics are detected (answer question, pizza
margherita, queen margherita).

Related work. Similarly, (Bougouin et al.,
2013) have used clustering and graph mining for
keyphrase extraction, but the other way around.
They first group candidate keyphrases into topics
via hierarchical clustering (with a word overlap
distance), and then apply PageRank on a complete
graph with topic nodes and edge weights based on
keyphrase offset positions. Closer to our approach
is that of (Grineva et al., 2009). Like us, they also
observe that terms tend to cluster based on topic
and that the largest communities correspond to the
main themes in the document. However, they use
a complete graph where edges are weighted based
on Wikipedia-based semantic relatedness. Addi-
tionally, they select all the terms in the top-ranked
communities whereas we extract only a highly co-
hesive subgraph from each main group.

3https://github.com/Tixierae/examples/
blob/master/sopz.txt

2. Sentence selection. Unlike for keyphrase
extraction, the entire kmax − p core (or truss) is
used here as seedbed. Representative members
are drawn from the list of sentences extracted from
the original document (in subsection 3.1) follow-
ing a three-step process: (1) sentences that do not
contain any term belonging to the selected core
(or truss) are pruned out, (2) the remaining sen-
tences are ranked in decreasing order according
to how many different central terms they feature,
and finally, (3) sentences are selected one at a time
from the top until a certain summary length has
been reached. If two or more sentences have the
same rank, the longest and least redundant is se-
lected, where length is the number of words in
the sentence and redundancy is computed in terms
of word overlap with the current summary (stem-
ming and stopword removal are performed based
on user selection). The summary length tuning pa-
rameter is a decimal number (between 0.01 and
0.51, by 0.05, defaults to 0.01) indicating the per-
centage of total candidate sentences (from step 2
above) to include in the summary. Again, if com-
munity detection is performed, the process is run
separately for each community, enabling coverage
of the main topics in the document. In the pre-
vious example, using community detection gener-
ates a 11:1 compression ratio summary covering
both themes (not shown here due to space limita-
tions).

3.5 Graph plotting

Done in parallel with text summarization. Plots
an interactive, dynamic browser-based represen-
tation of the graph-of-words using igraph and
the visNetwork R package (Almende B.V. and
Thieurmel, 2016).

4 Conclusion and next steps

We have presented GoWvis, a freely accessible
web application providing an engaging illustra-
tion of the GoW concept and how it can be ap-
plied to unsupervised extractive single document
summarization. Through trial and error, users can
navigate the parameter space and develop an in-
tuition as for which parameter values may be op-
timal for a given task and the particular type of
text at hand. Future work should add support for
directed degeneracy algorithms (Giatsidis et al.,
2011). While showing promise, our summariza-
tion approach needs refinement and formal exper-

155

iments to quantify how it compares to the state-
of-the-art. When p > 0, taking into account the
core (or truss) numbers of terms could yield better
sentence ranking.

References
Almende B.V. and Benoit Thieurmel, 2016. visNet-

work: Network Visualization using ’vis.js’ Library.
R package version 0.2.1.

Vladimir Batagelj and Matjaž Zaveršnik. 2002. Gen-
eralized cores. arXiv preprint cs/0202039.

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-
nal of statistical mechanics: theory and experiment,
2008(10):P10008.

Milan Bouchet-Valat, 2014. SnowballC: Snowball
stemmers based on the C libstemmer UTF-8 library.
R package version 0.5.1.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. Topicrank: Graph-based topic ranking for
keyphrase extraction. In International Joint Con-
ference on Natural Language Processing (IJCNLP),
pages 543–551.

Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and
Jonathan McPherson, 2015. shiny: Web Application
Framework for R. R package version 0.12.2.

Aaron Clauset, Mark EJ Newman, and Cristopher
Moore. 2004. Finding community structure in very
large networks. Physical review E, 70(6):066111.

Jonathan Cohen. 2008. Trusses: Cohesive sub-
graphs for social network analysis. National Secu-
rity Agency Technical Report, page 16.

Gabor Csardi and Tamas Nepusz. 2006. The igraph
software package for complex network research. In-
terJournal, Complex Systems:1695.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research, pages 457–479.

Santo Fortunato. 2010. Community detection in
graphs. Physics reports, 486(3):75–174.

Christos Giatsidis, Dimitrios M Thilikos, and Michalis
Vazirgiannis. 2011. D-cores: Measuring collabo-
ration of directed graphs based on degeneracy. In
Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 201–210. IEEE.

Maria Grineva, Maxim Grinev, and Dmitry Lizorkin.
2009. Extracting key terms from noisy and multi-
theme documents. In Proceedings of the 18th inter-
national conference on World wide web, pages 661–
670. ACM.

Kurt Hornik, 2015. openNLP: Apache OpenNLP Tools
Interface. R package version 0.2-5.

Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin,
Fredrik Liljeros, Lev Muchnik, H Eugene Stanley,

and Hernán A Makse. 2010. Identification of in-
fluential spreaders in complex networks. Nature
physics, 6(11):888–893.

R Duncan Luce and Albert D Perry. 1949. A method
of matrix analysis of group structure. Psychome-
trika, 14(2):95–116.

Fragkiskos D Malliaros and Konstantinos Skianis.
2015. Graph-based term weighting for text catego-
rization. In Proceedings of the 2015 IEEE/ACM In-
ternational Conference on Advances in Social Net-
works Analysis and Mining 2015, pages 1473–1479.
ACM.

Fragkiskos D Malliaros, Maria-Evgenia G Rossi, and
Michalis Vazirgiannis. 2016. Locating influen-
tial nodes in complex networks. Scientific reports,
6:19307.

Rada Mihalcea and Paul Tarau. 2004. Textrank:
Bringing order into texts. Association for Compu-
tational Linguistics.

Mark EJ Newman and Michelle Girvan. 2004. Find-
ing and evaluating community structure in networks.
Physical review E, 69(2):026113.

Pascal Pons and Matthieu Latapy. 2005. Computing
communities in large networks using random walks.
In Computer and Information Sciences-ISCIS 2005,
pages 284–293. Springer.

R Core Team, 2015. R: A Language and Environment
for Statistical Computing. R Foundation for Statis-
tical Computing, Vienna, Austria.

Martin Rosvall and Carl T Bergstrom. 2008. Maps of
random walks on complex networks reveal commu-
nity structure. Proceedings of the National Academy
of Sciences, 105(4):1118–1123.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: new approach to ad hoc
ir. In Proceedings of the 22nd ACM international
conference on Conference on information & knowl-
edge management, pages 59–68. ACM.

François Rousseau and Michalis Vazirgiannis. 2015.
Main core retention on graph-of-words for single-
document keyword extraction. In Advances in In-
formation Retrieval, pages 382–393. Springer.

François Rousseau, Emmanouil Kiagias, and Michalis
Vazirgiannis. 2015. Text categorization as a graph
classification problem. In ACL, volume 15, page
107.

Stephen B Seidman. 1983. Network structure and min-
imum degree. Social networks, 5(3):269–287.

Jia Wang and James Cheng. 2012. Truss decomposi-
tion in massive networks. Proceedings of the VLDB
Endowment, 5(9):812–823.

Hadley Wickham, 2015. stringr: Simple, Consistent
Wrappers for Common String Operations. R pack-
age version 1.0.0.

156

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 157–162,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

LiMoSINe pipeline: Multilingual UIMA-based NLP platform
Olga Uryupina1, Barbara Plank2, Gianni Barlacchi1,3,

Francisco Valverde Albacete4, Manos Tsagkias5, Antonio Uva1, and Alessandro Moschitti6,1

1Department of Information Engineering and Computer Science, University of Trento, Italy
2University of Groningen, The Netherlands

3SKIL - Telecom Italia, Trento, Italy
4Dept. Teoria de Señal y Comunicaciones, Universidad Carlos III de Madrid, Spain

5904Labs, Amsterdam, The Netherlands
6Qatar Computing Research Institute

uryupina@gmail.com, b.plank@rug.nl, gianni.barlacchi@unitn.it,
fva@tsc.uc3m.es, manos@904labs.com,

antonio.uva@unitn.it, amoschitti@gmail.com

Abstract

We present a robust and efficient paralleliz-
able multilingual UIMA-based platform for au-
tomatically annotating textual inputs with dif-
ferent layers of linguistic description, ranging
from surface level phenomena all the way down
to deep discourse-level information. In partic-
ular, given an input text, the pipeline extracts:
sentences and tokens; entity mentions; syntac-
tic information; opinionated expressions; re-
lations between entity mentions; co-reference
chains and wikified entities. The system is
available in two versions: a standalone distri-
bution enables design and optimization of user-
specific sub-modules, whereas a server-client
distribution allows for straightforward high-
performance NLP processing, reducing the en-
gineering cost for higher-level tasks.

1 Introduction
With the growing amount of textual information avail-
able on an everyday basis, Natural Language Process-
ing gets more and more large-scale. Moreover, a lot of
effort has been invested in the recent years into the de-
velopment of multi- and cross-lingual resources. To ef-
ficiently use large amounts of data for high-level tasks,
e.g., for Information Extraction, we need robust par-
allelizable multilingual preprocessing pipelines to au-
tomatically annotate textual inputs with a variety of
linguistic structures. To address the issue, we present
the LiMoSINe Pipeline—a platform developed by the
FP7 EU project LiMoSINE: Linguistically Motivated
Semantic aggregation engiNes.

Several platforms and toolkits for NLP preprocess-
ing have been made available to the research commu-
nity in the past decades. The most commonly used
ones are OpenNLP1, FreeLing (Padró and Stanilovsky,
2012) and GATE (Cunningham et al., 2011). In addi-
tion, many research groups publicly release their pre-

1http://opennlp.apache.org

processing modules. These approaches, however, pose
several problems:
• most of these tools require a considerable effort for

installation, configuration and getting familiar with
the software,
• parallelization might be an issue,
• for languages other than English, many modules are

missing, while the existing ones often have only a
moderate performance level.

In the LiMoSINe project, we focus on high-
performance NLP processing for four European lan-
guages: English, Italian, Spanish and Dutch. We
combine state-of-the-art solutions with specifically de-
signed in-house modules to ensure reliable perfor-
mance. Using the UIMA framework, we opt for a fully
parallelizable approach, making it feasible to process
large amounts of data. Finally, we release the sys-
tem in two versions: a client application connects to
the pipeline installed on the LiMoSINe server to pro-
vide the users with all the annotation they require. This
does not require any advanced installation or config-
uration of the software, thus reducing the engineer-
ing cost for the potential stake holders. A local in-
stallation of the pipeline, on the contrary, requires
some effort to get familiar with the system, but it also
gives users a possibility to integrate their own modules,
thus allowing for a greater flexibility. The pipeline is
available at http://ikernels-portal.disi.
unitn.it/projects/limosine/.
2 LiMoSINe pipeline: overall structure
Our platform supports various levels of linguistic de-
scription, representing a document from different an-
gles. It should therefore combine outputs of numer-
ous linguistic preprocessors to provide a uniform and
deep representation of a document’s semantics. The
overall structure of our pipeline is shown on Figure 1.
This complex structure raises an issue of the compat-
ibility between preprocessors: with many NLP mod-
ules around—publicly available, implemented by the
LiMoSINe partners or designed by potential stake-
holders—it becomes virtually impossible to ensure that

157

plain text files

tokenization/
sentence
splitting

input

PoS tagging

tokenized sentences

named entity
tagging

syntactic/sem-
antic parsing

pos-tagged sentences

entity mention
detection

named entities

relation
extraction

parsed
sentences

opinion miningcoreference
resolution

mentions

entity linking

annotated
structures

Output contains:
- entities
- relations
- syntax/semantics
- opinions etc.

Figure 1: LiMoSINe pipeline architecture

any two modules have the same input/output format
and thus can be run as a pipeline.

We have focused on creating a platform that allows
for straightforward incorporation of various tools, co-
ordinating their inputs and outputs in a uniform way.
Our LiMoSINe Pipeline is based on Apache UIMA—
a framework for Unstructured Information Manage-
ment.2 UIMA has been successfully used for a num-
ber of NLP projects, e.g., for the IBM Watson system
(Ferrucci et al., 2010).

One of the main features of UIMA is its modularity:
the individual annotators only incrementally update the
document representation (“CAS”), but do not interact
with each other. This allows for a straightforward de-
ployment of new components: to add a new module to
a UIMA system, one only has to create a wrapper con-
verting its input and output objects into CAS structures.
Moreover, UIMA allows for full parallelization of the
processing flow, which is especially crucial when we
aim at annotating large amounts of data.

UIMA-based systems can be deployed both locally
or remotely. To run a UIMA application on a local ma-
chine, the user should follow the instructions on the
UIMA web site to download and install UIMA. The

2http://uima.apache.org/

LiMoSINe Pipeline should then be downloaded and
run. While this requires some engineering effort, such
an approach would allow the user to implement and in-
tegrate their own modules into the existing pipeline, as
well as to re-optimize (e.g., retraining a parser to cover
a specific domain).

A client-server version of the pipeline has been in-
stalled on the LiMoSINe server. The client applica-
tion can be downloaded from the pipeline website. The
users do not need to install any UIMA-related soft-
ware to use this service. While this approach does not
provide the flexibility of a local installation, it allows
the users to obtain state-of-the-art NLP annotations for
their textual inputs at no engineering cost at all. This
might provide a valuable support for projects focusing
on higher-level tasks, for example, on Question An-
swering, especially for languages other than English,
considerably reducing the effort required for imple-
menting and integrating all the preprocessing compo-
nents needed.

3 Integrated modules
The LiMoSINe project has focused on four European
languages: English, Italian, Spanish and Dutch. For all
these languages, we have created a platform that pro-
vides robust parallelizable NLP processing up to the

158

syntactic parsing level. This already allows to create
complex structural representations of sentences, to be
used for higher-level tasks, such as Opinion Mining
or Question Answering (cf. Section 4 below). In ad-
dition, where possible, we have integrated deeper se-
mantic and discourse-level processing, such as relation
extraction, coreference, opinion mining and entity link-
ing. Table 1 provides an overview of all the currently
supported modules.

The feasibility of our approach depends crucially on
the performance of linguistic processors for a specific
language and on the availability of the manually an-
notated data. Despite a growing interest in the multi-
lingual processing in the NLP community, for a num-
ber of tasks no robust processors are available for lan-
guages other than English and for some others even a
generic model cannot be retrained due to the lack of
data. While we tried to rely as much as possible on
the state-of-the-art technology, we had to implement or
re-optimize a number of preprocessors.

3.1 English
Stanford tools. To provide basic preprocessing, re-
quired by our high-level components, we created
UIMA wrappers for several Stanford NLP tools (Man-
ning et al., 2014): the tokenizer, the parser and the
named entity analyzer.

Entity Mention Detector. Both coreference re-
solver and relation extractor require information on
mentions—textual units that correspond to real-world
objects. Even though some studies focus on specific
subtypes of mentions (for example, on pronominal
coreference or on relations between named entities),
we believe that a reliable pipeline should provide in-
formation on all the possible mentions.

An entity mention detector (EMD), covering a wide
variety of mentions, has been developed at the Uni-
versity of Trento as a part of BART (see below).
A more recent version has been proposed for the
CoNLL-2011/2012 Shared Tasks (Uryupina et al.,
2011; Uryupina et al., 2012). It is a rule-based system
that combines the outputs of a parser and an NE-tagger
to extract mention boundaries (both full and minimal
nominal spans) and assign mention types (name, nom-
inal or pronoun) and semantic classes (inferred from
WordNet for common nouns, from NER labels for
proper nouns). We are currently planning to integrate
learning-based EMD (Uryupina and Moschitti, 2013)
to cover additional languages, in particular, Arabic.

Opinion Mining. The opinion expression annotator
is a system developed at the University of Trento by Jo-
hansson and Moschitti (2011). It extracts fine-grained
opinion expressions together with their polarity. To ex-
tract opinion expressions, it uses a standard sequence

labeler for subjective expression markup similar to the
approach by (Breck et al., 2007). The system has been
developed on the MPQA corpus that contains news ar-
ticles. It internally uses the syntactic/semantic LTH
dependency parser of (Johansson and Nugues, 2008).
The opinion mining tool thus requires CoNLL-2008-
formatted data as input, as output by the parser, and as
such needs pre-tokenized and tagged input.

Relation Extraction. The relation extractor (RE) is a
tree-kernel based system developed at the University of
Trento (Moschitti, 2006; Plank and Moschitti, 2013).
Tree kernel-based methods have been shown to outper-
form feature-based RE approach (Nguyen et al., 2015).
The system takes as input the entity mentions detected
by the EMD module (which provides information on
the entity types, i.e. PERSON, LOCATION, ORGA-
NIZATION or ENTITY).

The first version of the relation extractor was trained
on the ACE 2004 data. It provides the following binary
relations as output: Physical, Personal/Social, Employ-
ment/Membership, PER/ORG Affiliation and GPE Af-
filiation.

An extended version of the Relation Extractor in-
cludes an additional model trained on the CoNLL 2004
data (Roth and Yih, 2004) following the setup of Giu-
liano et al. (2007). The model uses a composite kernel
consisting of a constituency-based path-enclosed tree
kernel and a linear feature vector encoding local and
global contexts (Giuliano et al., 2007). The CoNLL
2004 model contains the following relations: LiveIn,
LocatedIn, WorkFor, OrgBasedIn, Kill.

Both models exhibit state-of-the art performance.
For the ACE 2004 data, experiments are reported
in (Plank and Moschitti, 2013). For the CoNLL 2004
data, our model achieves results comparable to or
advancing the state-of-the-art (Giuliano et al., 2007;
Ghosh and Muresan, 2012).

Coreference Resolution. Our coreference resolution
Analysis Engine is a wrapper around BART—a toolkit
for Coreference Resolution developed at the University
of Trento (Versley et al., 2008; Uryupina et al., 2012).
It is a modular anaphora resolution system that sup-
ports state-of-the-art statistical approaches to the task
and enables efficient feature engineering. BART imple-
ments several models of anaphora resolution (mention-
pair and entity-mention; best-first vs. ranking), has in-
terfaces to different machine learners (MaxEnt, SVM,
decision trees) and provides a large set of linguistically
motivated features, along with the possibility to design
new ones.

Entity Linking. The Entity Linking Analysis Engine
(“Semanticizer”) makes use of the Entity Linking Web
Service developed by the University of Amsterdam

159

Annotator English Italian Spanish Dutch
tokenizer Stanford TextPro IXA xTas/Frog
POS-tagger Stanford TextPro IXA xTas/Frog
NER Stanford TextPro IXA xTas/Frog
Parsing Stanford, LTH FBK-Berkeley IXA xTas/Alpino
Entity Mention Detection BART BART-Ita - -
Opinion Mining Johansson&Moschitti (2001) - - -
Relation Extraction RE-UNITN RE-UNITN unlex - -
Coreference BART Bart-Ita - -
Entity Linking Semanticizer Semanticizer Semanticizer Semanticizer

Table 1: Supported modules for different languages

(Meij et al., 2012). The web service supports auto-
matic linking of an input text to Wikipedia articles: the
output of the web service API is a list of IDs of recog-
nized articles, together with confidence scores as well
as the part of the input text that was matched. This en-
tity linking module can be considered as cross-lingual
and cross-document co-reference resolution, since en-
tity mentions in documents in different languages are
disambiguated and linked to Wikipedia articles. Each
annotation unit corresponds to a span in the document
and is labeled with two attributes: the corresponding
Wikipedia ID and the system’s confidence.

3.2 Italian
For Italian, we have been able to integrate language-
specific processors for tokenization, sentence splitting,
named entity recognition, parsing, mention detection
and coreference. For relation extraction, we have fol-
lowed a domain adaptation approach, transferring an
unlexicalized model learned on the English data. A de-
tailed description of our annotators for Italian is pro-
vided below.

TextPro wrapper. To provide basic levels of linguis-
tic processing, we rely on TextPro—a suite of Natu-
ral Language Processing tools for analysis of Italian
(and English) texts (Pianta et al., 2008). The suite
has been designed to integrate various NLP compo-
nents developed by researchers at Fondazione Bruno
Kessler (FBK). The TextPro suite has shown excep-
tional performance for several NLP tasks at multiple
EvalIta competitions. Moreover, the toolkit is being
constantly updated and developed further by FBK. We
can therefore be sure that TextPro provides state-of-
the-art processing for Italian.

TextPro combines rule-based and statistical meth-
ods. It also allows for a straightforward integration
of task-specific user-defined pre- and post-processing
techniques. For example, one can customize TextPro
to provide better segmentation for web data.

TextPro is not a part of the LiMoSINe pipeline, it
can be obtained from FBK and installed on any plat-
form in a straightforward way. No TextPro installation
is needed for the client version of the semantic model.

Parsing. A model has been trained for Italian on the
Torino Treebank data3 using the Berkeley parser by the
Fondazione Bruno Kessler. The treebank being rela-
tively small, a better performance can be achieved by
enforcing TextPro part-of-speech tags when training
and running the parser. Both the Torino Treebank it-
self and the parsing model use specific tagsets that do
not correspond to the Penn TreeBank tags of the En-
glish parser. To facilitate cross-lingual processing and
enable unlexicalized cross-lingual modeling for deep
semantic tasks, we have mapped these tagsets to each
other.

Entity Mention Detection. We have adjusted our
Entity Mention Detection analysis engine to cover the
Italian data. Similarly to the English module, we use
BART to heuristically extract mention boundaries from
parse trees. However, due to the specifics of the Torino
Treebank annotation guidelines, we had to change the
extraction rules substantially.

Relation Extraction. Since no relation extraction
datasets are available for Italian, we have opted for a
domain adaptation solution, learning an unlexicalized
model on the English RE data. This model aims at
capturing structural patterns characteristic for specific
relations through tree kernel-based SVMs. This solu-
tion requires some experiments on making English and
Italian parse trees more uniform, for example, on trans-
lating the tagsets. We extract tree-based patterns for
CoNLL-2004 relations (see above) from the unlexical-
ized variant of the English corpus and then run it on
modified Italian parse trees. Clearly, this model cannot
provide robust and accurate annotation. It can, how-
ever, be used as a benchmark for supervised RE in
Italian. To improve the model’s precision, we have re-
stricted its coverage to named entities in contrast to all
the nominal mentions used by the English RE models.

Coreference Resolution. A coreference model for
BART has been trained on the Italian portion of the
SemEval-2010 Task 1 dataset (Uryupina and Moschitti,
2014). Apart from retraining the model, we have in-
corporated some language-specific features to account,

3http://www.di.unito.it/˜tutreeb/

160

for example, for abbreviation and aliasing patterns in
Italian. The Italian version of BART, therefore, is
a high-performance language-specific system. It has
shown reliable performance at the recent shared tasks
for Italian, in particular, at the SemEval-2010 Task 1
(Broscheit et al., 2010) and at the EvalIta 2009 (Biggio
et al., 2009).

Both our English and Italian coreference modules
are based on BART. Their configurations (parameter
settings and features) have been optimized separately
to enhance the performance level on a specific lan-
guage. Since BART is a highly modular toolkit it-
self and its language-specific functionality can be con-
trolled via a Language Plugin, no extra BART installa-
tion is required to run the Italian coreference resolver.

3.3 Spanish
We have tested two publicly available toolkits support-
ing language processing in Spanish: OpenNLP and
IXA (Agerri et al., 2014). The latter has shown a better
performance level and has therefore been integrated for
the final release of the LiMoSINe pipeline.

For tokenization, we rely on the ixa-pipe-tok
library (version 1.5.0) from the IXA pipes project.
Since it uses FSA technology for the tokenization and
a rule-based segmenter, it is fast (tokenizing around
250K words/s) and expected to be valid accross several
dialects of Spanish (Agerri et al., 2014).

The POS tags are assigned by using the IXA model
for Maximum Entropy POS tagging, and reported
to provide 98.88% accuracy (Agerri et al., 2014).
Lemmatization uses the morfologik-stemming toolkit,
based on FSA for a lower memory footprint (up to 10%
the size of a full-fledged dictionary).

Named entities (PERSON, LOCATION, ORGANI-
ZATION and MISC) are annotated using the Maximum
Entropy model of IXA trained on the CONLL 2002
dataset and tags.

Finally, the IXA pipeline provides a module for con-
stituency parsing trained on the (Iberian) Spanish sec-
tion of the AnCora corpus.

3.4 Dutch
For Dutch, we have been able to integrate language-
specific processors for tokenization, sentence splitting,
lemmatization, named entity recognition, dependency
tree, and part-of-speech tagging.

To provide basic levels of linguistic processing, we
rely on xTas—a text analysis suite for English and
Dutch (de Rooij et al., 2012). The suite has been de-
signed to integrate various NLP components developed
by researchers at University of Amsterdam and is ex-
tendable to work with components from other parties.
xTas is designed to leverage distributed environments
for speeding up computationally demanding NLP tasks

and is available as a REST web service. xTas and in-
structions on how to install it and set it up can be found
at http://xtas.net.

Most of the Dutch processors at xTas come from
Frog, a third-party module. Frog, formerly known as
Tadpole, is an integration of memory-based NLP mod-
ules developed for Dutch (van den Bosch et al., 2007).
All NLP modules are based on Timbl, the Tilburg
memory-based learning software package. Most mod-
ules were created in the 1990s at the ILK Research
Group (Tilburg University, the Netherlands) and the
CLiPS Research Centre (University of Antwerp, Bel-
gium). Over the years they have been integrated into
a single text processing tool. More recently, a depen-
dency parser, a base phrase chunker, and a named-
entity recognizer module were added.

For dependency parsing, xTas uses Alpino, a third-
party module.4 Annotation typically starts with pars-
ing a sentence with the Alpino parser, a wide cover-
age parser of Dutch text. The number of parses that is
generated is reduced through interactive lexical analy-
sis and constituent marking. The selection of the best
parse is done efficiently with the parse selection tool.

4 Conclusion and Future/Ongoing work
In this paper, we have presented the LiMoSINe
pipeline—a platform supporting state-of-the-art NLP
technology for English, Italian, Spanish and Dutch.
Based on UIMA, it allows for efficient parallel process-
ing of large volumes of text. The pipeline is distributed
in two versions: the client application is oriented to po-
tential users that need high-performance standard tools
at a zero engineering cost. The local version, on the
contrary, requires some installation and configuration
effort, but in return it offers a great flexibility in imple-
menting and integrating user-specific modules.

Since the beginning of the LiMoSINe project, the
platform has been used for providing robust prepro-
cessing for a variety of high-level tasks. Thus, we
have recently shown how structural representations, ex-
tracted with our pipeline, improve multilingual opinion
mining on YouTube (Severyn et al., 2015) or crossword
puzzle resolution (Barlacchi et al., 2014).

The pipeline has been adopted by other parties, most
importantly by the joint QCRI and MIT project IYAS
(Interactive sYstem for Answer Selection). IYAS fo-
cuses on Question Answering, showing that represen-
tations, based on linguistic preprocessing, significantly
outperform more shallow methods (Tymoshenko and
Moschitti, 2015; Tymoshenko et al., 2014).

As part of the LiMoSINe project, we have created
the LiMoSINe Common Corpus: a large collection of
documents downloaded from different web resources

4http://www.let.rug.nl/vannoord/alp/
Alpino/

161

in any of the four addressed languages. These data
were annotated automatically. We illustrate the pro-
cessing capabilities of our pipeline on the Spanish part
of the corpus (EsLCC). To this end, we developed a
UIMA Collection Processing Engine (CPE). Once the
EsLCC was downloaded it was first tidied up with
Apache Tika. The pipeline was then applied to clean
text. It was capable of processing the approximately
103K EsLCC documents in a little bit more than 24
hours on an Ubuntu 14.04 with 16GB of RAM, on an
Intel i7@3.50GHz× 8 core box.

Currently, the QCRI team is working on extending
the pipeline, integrating various preprocessing modules
for Arabic.

5 Acknowledgements

This work has been supported by the EU Projects FP7
LiMoSINe and H2020 5G-CogNet.
References
R. Agerri, J. Bermudez, and G. Rigau. 2014. IXA pipeline:

Efficient and ready to use multilingual NLP tools. In
LREC.

G. Barlacchi, M. Nicosia, and A. Moschitti. 2014. Learn-
ing to rank answer candidates for automatic resolution of
crossword puzzles. In CoNLL-2014.

S. M. Bernaola Biggio, C. Giuliano, M. Poesio, Y. Versley,
O. Uryupina, and R. Zanoli. 2009. Local entity detection
and recognition task. In EvalIta-2009.

E. Breck, Y. Choi, and C. Cardie. 2007. Identifying expres-
sions of opinion in context. In IJCAI.

S. Broscheit, M. Poesio, S.P. Ponzetto, K.J. Rodriguez,
L. Romano, O. Uryupina, and Y. Versley. 2010. BART:
A multilingual anaphora resolution system. In SemEval.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan,
N. Aswani, I. Roberts, G. Gorrell, A. Funk, A. Roberts,
D. Damljanovic, T. Heitz, M.A. Greenwood, H. Saggion,
J. Petrak, Y. Li, and W. Peters. 2011. Text Processing
with GATE (Version 6).

O. de Rooij, J. van Gorp, and Maarten de Rijke. 2012. xtas:
Text analysis in a timely manner. In DIR 2012: 12th
Dutch-Belgian Information Retrieval Workshop.

D.A. Ferrucci, E.W. Brown, J. Chu-Carroll, J. Fan,
D. Gondek, A. Kalyanpur, A. Lally, J.W. Murdock,
E. Nyberg, J.M. Prager, N. Schlaefer, and Ch.A. Welty.
2010. Building Watson: An overview of the DeepQA
project. AI Magazine, pages 59–79.

D. Ghosh and S. Muresan. 2012. Relation classification
using entity sequence kernels. In COLING 2012, pages
391–400.

C. Giuliano, A. Lavelli, and L. Romano. 2007. Relation
extraction and the influence of automatic named-entity
recognition. ACM Trans. Speech Lang. Process., 5(1).

R. Johansson and A. Moschitti. 2011. Extracting opinion
expressions and their polarities – exploration of pipelines
and joint models. In ACL.

R. Johansson and P. Nugues. 2008. Dependency-based se-
mantic role labeling of PropBank. In EMNLP.

C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J.
Bethard, and D. McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit. In ACL
System Demonstrations.

E. Meij, W. Weerkamp, and M. de Rijke. 2012. Adding
semantics to microblog posts. In WSDM.

A. Moschitti. 2006. Efficient convolution kernels for depen-
dency and constituent syntactic trees. Machine Learning:
ECML 2006.

T.H. Nguyen, B. Plank, and R. Grishman. 2015. Semantic
representations for domain adaptation: A case study on
the tree kernel-based method for relation extraction. In
ACL.

L. Padró and E. Stanilovsky. 2012. Freeling 3.0: Towards
wider multilinguality. In LREC, Istanbul, Turkey, May.
ELRA.

E. Pianta, Ch. Girardi, and R. Zanoli. 2008. The TextPro
tool suite. In LREC.

B. Plank and A. Moschitti. 2013. Embedding semantic sim-
ilarity in tree kernels for domain adaptation of relation
extraction. In ACL.

D. Roth and W. Yih. 2004. A linear programming formu-
lation for global inference in natural language tasks. In
CoNLL.

Aliaksei Severyn, Alessandro Moschitti, Olga Uryupina,
and Barbara Plank. 2015. Multilingual opinion mining
on YouTube. Information Processing and Management.

K. Tymoshenko and A. Moschitti. 2015. Assessing the im-
pact of syntactic and semantic structures for answer pas-
sages reranking. In ACM CIKM.

K. Tymoshenko, A. Moschitti, and A. Severyn. 2014. En-
coding semantic resources in syntactic structures for pas-
sage reranking. In EACL.

O. Uryupina and A. Moschitti. 2013. Multilingual mention
detection for coreference resolution. In IJCNLP.

O. Uryupina and A. Moschitti. 2014. Coreference resolu-
tion for Italian: Assessing the impact of linguistic com-
ponents. In CLIC-it.

O. Uryupina, S. Saha, A. Ekbal, and M. Poesio. 2011.
Multi-metric optimization for coreference: The UniTN /
IITP / Essex submission to the 2011 CONLL shared task.
In CoNLL.

O. Uryupina, A. Moschitti, and M. Poesio. 2012. BART
goes multilingual: The UniTN / Essex submission to the
CoNLL-2012 Shared Task. In CoNLL.

A. van den Bosch, B. Busser, S. Canisius, and W. Daele-
mans. 2007. An efficient memory-based morphosyntac-
tic tagger and parser for Dutch. In CLIN. Leuven, Bel-
gium.

Y. Versley, S.P. Ponzetto, M. Poesio, V. Eidelman, A. Jern,
J. Smith, X. Yang, and A. Moschitti. 2008. BART: a
modular toolkit for coreference resolution. In ACL.

162

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—System Demonstrations, pages 163–168,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

new/s/leak – Information Extraction and Visualization for
Investigative Data Journalists

Seid Muhie Yimam† and Heiner Ulrich‡ and Tatiana von Landesberger� and
Marcel Rosenbach‡ and Michaela Regneri‡ and Alexander Panchenko† and

Franziska Lehmann� and Uli Fahrer† and Chris Biemann† and Kathrin Ballweg�

†FG Language Technology
Computer Science Department

Technische Universität Darmstadt

�Graphic Interactive Systems Group
Computer Science Department

Technische Universität Darmstadt

‡SPIEGEL-Verlag
Hamburg, Germany

Abstract

We present new/s/leak, a novel tool de-
veloped for and with the help of journal-
ists, which enables the automatic analysis
and discovery of newsworthy stories from
large textual datasets. We rely on differ-
ent NLP preprocessing steps such named
entity tagging, extraction of time expres-
sions, entity networks, relations and meta-
data. The system features an intuitive
web-based user interface based on net-
work visualization combined with data ex-
ploring methods and various search and
faceting mechanisms. We report the cur-
rent state of the software and exemplify
it with the WikiLeaks PlusD (Cablegate)
data.

1 Introduction

This paper presents new/s/leak1, the network of
searchable leaks, a journalistic software for inves-
tigating and visualizing large textual datasets (see
live demo here2). Investigation of unstructured
document collections is a laborious task: The
sheer amount of content can be vast, for instance,
the WikiLeaks PlusD3 dataset contains around
250 thousand cables. Typically, these collections
largely consist of unstructured text with additional
metadata such as date, location or sender and re-
ceiver of messages. The largest part of these
documents are irrelevant for journalistic investi-
gations, concealing the crucial storylines. For in-
stance, war crime stories in WikiLeaks were hid-

1http://newsleak.io
2http://bev.lt.informatik.tu-darmstadt.de/

newsleak/
3https://wikileaks.org/plusd/about

den and scattered among hundreds of thousands
of routine conversations between officials. There-
fore, if journalists do not know in advance what
to look for in the document collections, they can
only vaguely target all people and organizations
(named entities) of public interest.

Currently, the discovery of novel and relevant
stories in large data leaks requires many people
and a large time budget, both of which are typi-
cally not available to journalists: If the documents
are confidential like datasets from an informer,
only a few selected journalists will have access to
the classified data, and those few will have to carry
the whole workload. On the other hand, if the doc-
uments are publicly available (e.g. a leak posted
on the web), the texts have to be analyzed under
enormous time pressure, because the journalistic
value of each story decreases rapidly if other me-
dia publish it before.

There is a plethora of tools (see Section 2)
for data journalist that automatically reveal and
visualize interesting correlations hidden within
large number-centric datasets (Janicke et al., 2015;
Kucher and Kerren, 2014). However, these tools
provide very limited automatic support with vi-
sual guidance through plain text collections. Some
tools include shallow natural language processing,
but mostly restricted to English. There is no tool
that works for multiple languages, handles a large
number of text collections, analyzes and visual-
izes named entities along with the relations be-
tween them and allows editing what is considered
as an entity. Moreover, available software is usu-
ally not open source but rather expensive and often
requires substantial training, which is unsuitable
for a journalist under time pressure and no prior
experience with such software.

163

The goal of new/s/leak is to provide journalists
with a novel visual interactive data analysis sup-
port that combines the latest advances from natural
language processing approaches and information
visualization. It enables journalists to swiftly pro-
cess large collections of text documents in order to
find interesting pieces of information.

This paper presents the core concepts and ar-
chitecture behind the new/s/leak. We also show
an in-depth analysis of user requirements and how
we implement and address these. Finally, we dis-
cuss our prototype, which will be made available
in open source4 under a lenient license.

2 Related work

Kirkpatrick (2015) states that investigative jour-
nalist should look at the facts, identify what is
wrong with the situation, uncover the truth, and
write a story that places the facts in context. This
work explains traditional story discovery engine
components which, on the technical side, consist
of a knowledge base, an inference engine and an
easy to use user interface for visualization.

Discussions with our partner journalists confirm
this view: newsworthy stories are not evident from
leaked documents, but following up on informa-
tion from leaks might reveal relevant pointers for
journalistic research.

Cohen et al. (2011) outline a vision for “a cloud
for the crowd” system to support collaborative in-
vestigative journalism, in which computational re-
sources support human expertise for efficient and
effective investigative journalism.

The DocumentCloud5 and the Overview6

project are the most popular tools comparable to
the new/s/leak, both designed for journalists deal-
ing with large set of documents. DocumentCloud
is a tool for building a document archive for the
material related to an investigation. Similarly to
our system, people, places and organizations are
recognized in documents. We put additional fo-
cus on the UI by adding a graph-based visualiza-
tion and better support for document browsing.
Overview is designed to help journalists find sto-
ries in large number of documents by topical clus-
tering. This is a complementary approach to ours:
rather than keyword-based topics, our tool centers
around entities and text-extracted relations. Fur-

4http://github.com/tudarmstadt-lt/newsleak
5https://www.documentcloud.org/home
6https://https://www.overviewdocs.com

ther, we added advanced editing capabilities for
users to add entities and edit the whole network.

Aleph.grano.cc visualizes connections of peo-
ple, places and organizations extracted from text
documents, but leaves the relationship types un-
derspecified. Detective.io, a platform for collabo-
rative network analysis, does some of the visual-
izations and annotations we are working on. How-
ever, there is a crucial difference: Detective.io as-
sumes a rigid data structure (e.g.“corporate net-
works”) and the user has to fill the underlying
database entirely manually. Our tool targets on
unstructured sources and extracts networks from
text, enabling navigation to the sources. Jigsaw7

extracts named entities from text collections and
computes various plots from them, but received lit-
tle attention from journalists due to its unintuitive
user interface.

With new/s/leak, we want to develop existing
tools a step further, by combining the automation
of entity and relationship extraction with an intu-
itive and appealing visual interface.

New/s/leak is based on two prior systems devel-
oped namely from the works of (Benikova et al.,
2014), Network of the Day8 and (Kochtchi et al.,
2014), Network of Names9. Both tools automat-
ically analyze named entities and their relation-
ships and present an interactive network visual-
ization that allows to retrieve the original sources
for displayed relations. In the current project, we
add support for faceted data browsing, a timeline,
a better access to source documents and a possi-
bility to tag and edit visualizations.

3 Objectives and User Requirements

The objective of new/s/leak is to support investiga-
tive data journalists in finding important facts and
stories in large unstructured text collections. The
two key elements are an easy-to-use interactive vi-
sualization and linguistic preprocessing.

To gain a more precise focus for our devel-
opment, we conducted structured interviews with
potential users. They seek for an answer to the
question ”Who does what to whom?” – possibly
amended with ”When and where?”. At the same
time, they always need access to the source docu-
ments, to verify the machine-given answers. The

7http://www.cc.gatech.edu/gvu/ii/jigsaw
8http://tagesnetzwerk.de
9http://maggie.lt.informatik.tu-darmstadt.

de/thesis/master/NetworksOfNames

164

outcome of these interviews are summarized in the
following requirements.
1) Identify key persons, places and organizations.
2) Browse the collection, identify interesting doc-
uments and read documents in detail.
3) Analyze the connections between entities.
4) Assess temporal evolution of the documents.
5) Explore geographic distribution of events.
6) Annotate documents with findings as well as
edit the data to enhance data quality.
7) Save and share selected documents.

While some of these requirements (like docu-
ment browsing) are standard search features, oth-
ers (like annotation and sharing) are usually not
yet integrated in journalism tools. The final ver-
sion of our system will include all of these fea-
tures.

4 Implementation details

4.1 System

The new/s/leak tool consists of two major parts
shown in Figure 1: The backend provides various
NLP tools for document pre-processing and docu-
ment analysis (Sec. 5), interactive visualization for
investigative journalism (Sec. 6). The implemen-
tation of the backend and frontend components of
new/s/leak are integrated in a modular way that
allows e.g. adding a different relation extraction
mechanism or support for multiple languages.

Figure 1: Schema of new/s/leak for visual support
of investigative analysis in text collections.

4.2 Demo datasets

We demonstrate capabilities of our system on two
well-known cases:
1) The well-investigated WikiLeaks PlusD “Ca-
blegate” collection, a collection of diplomatic
notes from over 45 years originating from US em-
bassies all over the world.
2) The Enron email dataset (Klimt and Yang,
2004) is a collection of email messages which
is available publicly from the Enron Corporation.

The dataset comprises over 600,000 messages be-
tween 158 employees. This example shows the
tools’ general applicability to email leaks.

5 Backend: information extraction

The new/s/leak backend uses different NLP tools
for preprocessing and analysis, integrated with a
relational database, a NoSQL document store and
some specific retrieval methods. First, documents
are pre-processed and converted to an interme-
diate new/s/leak document representation. This
format is generic enough to represent collections
from any possible source, such as emails, rela-
tional databases or XML documents.

In a second step, our NLP preprocessing ex-
tracts important entities, metadata (like time and
location), term co-occurrences, keywords, and re-
lationships among entities. We store relevant doc-
uments and extracted entities in a PostgreSQL10

database and an ElasticSearch11 index. We ex-
plain the following steps using the Wikileaks Ca-
blegate dataset as an example, but the tool is not
limited to this single dataset.

5.1 Preprocessing

The first step of new/s/leak workflow is prepro-
cessing the input documents and represent them
in new/s/leak’s intermediate document representa-
tion. Preprocessing of the Cablegate dataset re-
quires truecasing the original documents which
are mostly in capitals. The work of Lita et al.
(2003) indicates that truceasing improves the F-
score of named entity recognition by 26%. We
used a frequency based approach for case restor-
ing based on a very large true-cased background
corpus. Once case is restored, we extract meta-
data from the document, including the document
creation dates, subject, message sender document
creator, and other metadata already marked in the
dataset. Metadata is stored in a database as triples
of (n, t, v) where n is the name, t is the data type
(e.g. text or date) and v is the value of the meta-
data. The tool further supports manual identifica-
tion of metadata during the analysis and produc-
tion stages.

10http://www.postgresql.org
11https://www.elastic.co

165

Dataset #Documents #Entities #Relations

WikiLeaks 251,287 1,363,500 163,138,000
Enron 255,636 613,225 81,309,499

Table 1: Statistics on WikiLeaks PlusD and Enron

5.2 Entity, relation, co-occurrence, keyword,
and event time extractions

Recognition of named entities and related terms
are key steps in the investigative data-driven
journalistic process. For this purpose, we first
automatically identify four classes of entities,
namely person (PER), organization (ORG), loca-
tion (LOC) and miscellaneous (MISC) using the
named entity recognition tool from Epic12. We as-
sume relationships between entities whenever the
two entities co-occur in a document. In order to
extract relevant keywords regarding two entities,
we follow the approach by Biemann et al. (2007).
Furthermore, we extract entity relation labels by
computing document keywords using JTopia13.
JTopia extracts relevant key terms for search based
on part of speech information. To label the rela-
tionship between two entities, the most frequent
keywords from the documents where the two en-
tities appeared together is used. To extract tempo-
ral expressions, we use the Heideltime (Strötgen,
2015) tool, which disambiguates temporal expres-
sions based on document creation times. For the
WikiLeaks dataset, it is possible to extract and dis-
ambiguate more than 3.9 million temporal expres-
sions.

All the extraction and processing work-flows of
the new/s/leak components are implemented using
the Apache Spark cluster computing framework
for parallel computations. Table 1 shows the dif-
ferent statistics for the WikiLeaks PlusD and En-
ron datasets.

6 Frontend: interactive visualization

Journalists can browse through the document col-
lection using an interactive visual interface (see
Figure 2). It enables faceted document exploration
within several views:
1) Graph view: shows named entities and their re-
lations.
2) Map view: shows document distribution in ge-
ographic space.
3) Document timeline view: shows document fre-

12https://github.com/dlwh/epic
13http://github.com/srijiths/jtopia

quency over time.
4) Document view: is composed of a) document
list and b) document text for reading.

The views are interactive so that the user can
browse and explore the document collection on de-
mand. The user starts with exploring entities and
their connections in the graph view or by search-
ing for entities and keywords. All interactions in
the views define a filter that constrains the current
document set, which in turn changes information
displayed in the views. The user can assess docu-
ment frequency in a map or in the timeline, drill
down and select documents from the result list,
and read them closely. User-selected entities are
highlighted in the documents.

Graph view: entities and their co-occurrences
The graph view shows a set of entities as nodes
and their connections as links. Node size denotes
the frequency of an entity in the document col-
lection, node color denotes the entity type. The
co-occurrence of entities within the documents is
shown by edge thickness and edge label.
The user can explore the entities and their connec-
tions via expanding the graph along the neighbors
of a selected entity (plus button). The expanded
entities are slowly faded in, so that the user can
easily spot which entities appeared. Moreover, the
user can drill down into the data by displaying the
so-called ego network of a selected entity. Click-
ing on nodes and edges retrieves the respective
documents.

Map view. The map view shows the document
frequency distribution over the geographic space.
Users can hover over a country to see the number
of documents mentioning this geographic area, ef-
fectively using the map as faceted search.

Document timeline. The document timeline
shows the number of documents over time. We
use a bar chart with logarithmic scale as it better
adheres to the exponential document distribution
characteristics. The users can drill down in time to
see the document distribution over years, months
or days. It is also possible to select a time interval
for which the corresponding documents are shown
in the document view (see below).

Document view. The document view shows a
list of documents with their title or subject as se-
lected by the currently active filters. For large
document collections, the documents are loaded

166

Figure 2: Interactive Visualization Interface composed of graph view on entities, document distribution
over time, list of selected documents and a map of document geo-distribution.

on demand. The user can browse the list and
identify documents for close reading (bold, open
folder icon). The document text view shows the
full text of the document, where the entities dis-
played in the graph are underlined. The under-
line color corresponds to the type of entity. If the
user selected entities in the graph, these entities
are highlighted with the background color of the
entity. This “close reading” mode enables users
to verify hypotheses they perceive in the “distant
reading” (Moretti, 2007) visualizations.

6.1 Faceted search

The different levels of visualizations enable users
to explore the dataset via navigation through doc-
ument collection (Miller and Remington, 2004).
Another highly complementary paradigm for in-
formation retrieval used in our system, and also
one highly expected by users, is searching. Dur-
ing navigation, users explore the document collec-
tion interactively, browse with the help of the vi-
sualization interfaces, zoom in and out, gradually
discovering topics, entities and facts mentioned in
the corpus.

In contrast, searching in our system as-
sumes that a user issues a conventional faceted
search (Tunkelang, 2009) query being a free com-
bination of a full text queries with filters on docu-
ment metadata. The result of such a faceted search

is a set of documents that satisfy the specified
facets, i.e. search conditions, formulated at query
time, acting as a filter. Here facets can be any
metadata initially associated with the document
(e.g. date, sender or destination) extracted auto-
matically (e.g. named entities or topics). Search
results are presented to the user as a list of docu-
ments or in a form of a graph that corresponds to
the document view of our system (see Figure 2).

Search and navigation compliment each other
during a journalistic investigation. For instance, a
user can get an idea about information available
in the collection via interactive visualization inter-
face (see Section 6). This navigation session may
trigger a concrete journalistic hypothesis. In this
case, during the next step a user may want to issue
a specific search query to find documents that sup-
port or falsify the hypothesis. To implement this
search functionality, we rely on ElasticSearch.

7 User Study

We conducted a user study to analyze the usability
of the provided functions in the interactive visual
interface. We asked 10 volunteer students of var-
ious major subjects to perform investigative tasks
using our tool. The tasks covered all views. They
included finding documents of a particular date,
opening a document, selecting countries in a map,
showing and expanding entity network, assessing

167

entity type etc. We assessed subjective user expe-
rience.

The results showed that the implemented visu-
alizations were intuitive and the interactive func-
tions were easy to use for the requested tasks. The
volunteers especially appreciated the drill down
in the timeline, the fading in of newly appeared
nodes and edges in the graph. The legend and
tooltips were very often used as a guidance in
the interface. Upon users’ feedback, we extended
zooming and panning functions in the graph and
included highlighting of open documents in the
document list. We improved the graph layout and
look for reducing edge and node overplotting.

8 Conclusion and future work

In this paper, we presented new/s/leak, an in-
vestigative tool to support data journalists in ex-
tracting important storylines from large text doc-
uments. The backend of new/s/leak comprises
of different NLP tools for preprocessing, analyz-
ing and extracting objects such as named enti-
ties, relationships, term co-occurrences, keywords
and event time expressions. In the frontend,
new/s/leak provides network visualization with
different views supporting navigating, annotating,
and editing extracted information. We also devel-
oped a demo system presenting the current state of
the new/s/leak tool and conducted a user study to
evaluate the effectiveness of the system.

We are currently extending the tool to meet the
remaining journalists’ requirements. In particu-
lar, we include features for annotating entities and
their relations with explanations, for saving a par-
ticular view to share it with colleagues or for later
use. Moreover, we will provide journalists with
the possibility to further edit this sharable view.
Additional features for manual data curation will
enhance data quality for analysis while ensuring
protection of sources and compliance with legal
issues. We will also integrate adaptive annotation
machine learning approach (Yimam et al., 2016)
into new/s/leak to automatically identify interest-
ing objects based on the journalists’ interaction
and feedback. Further, we will investigate pulling
in other information from linked open data and the
web.

Acknowledgements

The authors are grateful to data journalists at
Spiegel Verlag for their helpful insights into jour-

nalistic work and for the identification of tool re-
quirements. The authors wish to thank Lukas Ray-
mann, Patrick Mell, Bettina Johanna Ballin, Nils
Christopher Boeschen, Patrick Wilhelmi-Dworski
and Florian Zouhar for their help with system im-
plementation and conduction of the user study.
The work is being funded by Volkswagen Foun-
dation under Grant Nr. 90 847.

References
D. Benikova, U. Fahrer, A. Gabriel, M. Kaufmann,

S. M. Yimam, T. von Landesberger, and C. Biemann.
2014. Network of the day: Aggregating and visual-
izing entity networks from online sources. In Proc.
NLP4CMC Workshop at KONVENS, Hildesheim,
Germany.

C. Biemann, G. Heyer, U. Quasthoff, and M. Richter.
2007. The Leipzig Corpora Collection – monolin-
gual corpora of standard size. In Proc. Corpus Lin-
guistics, Birmingham, UK.

S. Cohen, C. Li, J. Yang, and C. Yu. 2011. Com-
putational journalism: A call to arms to database
researchers. In Proc. CIDR-11), pages 148–151,
Asilomar, CA, USA.

S. Janicke, G. Franzini, M. F. Cheema, and G. Scheuer-
mann. 2015. On Close and Distant Reading in Digi-
tal Humanities: A Survey and Future Challenges. In
Proc. EuroVis, Cagliari, Italy.

K. Kirkpatrick. 2015. Putting the data science into
journalism. Commun. ACM, 58(5):15–17.

B. Klimt and Y. Yang. 2004. The Enron Corpus: A
New Dataset for Email Classification Research. In
Proc. ECML 2004, pages 217–226, Pisa, Italy.

A. Kochtchi, T. von Landesberger, and C. Biemann.
2014. Networks of names: Visual exploration
and semi-automatic tagging of social networks from
newspaper articles. Computer Graphics Forum,
33(3):211–220.

K. Kucher and A. Kerren. 2014. Text visualization
browser: A visual survey of text visualization tech-
niques. online textvis.lnu.se.

L.V. Lita, A. Ittycheriah, S. Roukos, and N. Kamb-
hatla. 2003. tRuEcasIng. In Proc. ACL ’03, Sap-
poro, Japan.

C. S. Miller and R. W Remington. 2004. Model-
ing information navigation: Implications for infor-
mation architecture. Human-computer interaction,
19(3):225–271.

F. Moretti. 2007. Graphs, maps, trees : abstract mod-
els for a literary history. Verso, London, UK.

J. Strötgen. 2015. Domain-sensitive Temporal Tagging
for Event-centric Information Retrieval. Ph.D. the-
sis, University of Heidelberg.

D. Tunkelang. 2009. Faceted search. Synthesis lec-
tures on information concepts, retrieval, and ser-
vices, 1(1):1–80.

S. Yimam, C. Biemann, L. Majnaric, Š. Šabanović, and
A. Holzinger. 2016. An adaptive annotation ap-
proach for biomedical entity and relation recogni-
tion. Brain Informatics, pages 1–12.

168

Author Index

Ai, Renlong, 37
Akbik, Alan, 1
Andreyev, Slava, 79

Baldwin, Timothy, 127
Ballweg, Kathrin, 163
Barlacchi, Gianni, 157
Bekki, Daisuke, 85
Benikova, Darina, 97
Biemann, Chris, 163
Biggers, Kietha, 79
Burstein, Jill, 79

C. de Souza, José G., 43, 49
Chen, Baoquan, 25
Chinkina, Maria, 7
Churkin, Elena, 73
Cohn, Trevor, 127
Cole, Ron, 121
Cram, Damien, 13

Daille, Beatrice, 13
Daniele, Falavigna, 43
de Melo, Gerard, 25
Demberg, Vera, 139

Eisner, Jason, 133
Ernst, Patrick, 19

Fahrer, Uli, 163
Federico, Marcello, 49

Ge, Tong, 25
Geigle, Chase, 91
Georgi, Ryan, 31
Goodman, Michael Wayne, 31
Gurevych, Iryna, 97

Hemsen, Holmer, 61
Hennig, Leonhard, 37
Hoffart, Johannes, 19
Hong, Xudong, 139

Jalalvand, Shahab, 43
Jalili Sabet, Masoud, 49

Kannan, Madeeswaran, 7
Kennington, Casey, 67
Kiela, Douwe, 55
Kirschnick, Johannes, 37, 61
Knowles, Rebecca, 133
Koehn, Philipp, 133

Last, Mark, 73
Lee, John, 115
Lehmann, Franziska, 163
Li, Haofeng, 25
Li, Yunyao, 1
Lison, Pierre, 67
Litvak, Marina, 73
Lommatzsch, Andreas, 109
Luo, Mengqi, 115

Madnani, Nitin, 79
Markl, Volker, 61
Martínez-Gómez, Pascual, 85
Massung, Sean, 91
Meurers, Detmar, 7
Meyer, Christian M., 97
Mieskes, Margot, 97
Milchevski, Dragan, 19
Mineshima, Koji, 85
Miyao, Yusuke, 85, 103
Moschitti, Alessandro, 157

Negri, Matteo, 43, 49
Noji, Hiroshi, 103

Ostwald, Jan, 37

Panchenko, Alexander, 163
Pannier, Jakob, 37
Plank, Barbara, 157
Ploch, Danuta, 109
Pradhan, Sameer, 121

Qwaider, Mohammed R. H., 43

Rahimi, Afshin, 127
Regneri, Michaela, 163
Renduchintala, Adithya, 133
Rosenbach, Marcel, 163

169

Sabatini, John, 79
Sayeed, Asad, 139
Schmeier, Sven, 37
Schultze, Florian, 109
Siu, Amy, 19
Skianis, Konstantinos, 151
Steinberger, Josef, 145

Thomas, Philippe, 37
Tixier, Antoine, 151
Tsagkias, Manos, 157
Turchi, Marco, 43, 49

Ulrich, Heiner, 163
Uryupina, Olga, 157
Uszkoreit, Hans, 37
Uva, Antonio, 157

Valverde-Albacete, Francisco J, 157
Vanetik, Natalia, 73
Vazirgiannis, Michalis, 151
von Landesberger, Tatiana, 163

Wang, He, 37
Wang, Yafang, 25
Ward, Wayne, 121
Weikum, Gerhard, 19

Xia, Fei, 31
Xu, Feiyu, 37

Yimam, Seid Muhie, 163

Zhai, ChengXiang, 91
Zimmermann, Nora, 37

	Program
	POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels
	Online Information Retrieval for Language Learning
	Terminology Extraction with Term Variant Detection
	DeepLife: An Entity-aware Search, Analytics and Exploration Platform for Health and Life Sciences
	Visualizing and Curating Knowledge Graphs over Time and Space
	A Web-framework for ODIN Annotation
	Real-Time Discovery and Geospatial Visualization of Mobility and Industry Events from Large-Scale, Heterogeneous Data Streams
	TranscRater: a Tool for Automatic Speech Recognition Quality Estimation
	TMop: a Tool for Unsupervised Translation Memory Cleaning
	MMFeat: A Toolkit for Extracting Multi-Modal Features
	JEDI: Joint Entity and Relation Detection using Type Inference
	OpenDial: A Toolkit for Developing Spoken Dialogue Systems with Probabilistic Rules
	MUSEEC: A Multilingual Text Summarization Tool
	Language Muse: Automated Linguistic Activity Generation for English Language Learners
	ccg2lambda: A Compositional Semantics System
	MeTA: A Unified Toolkit for Text Retrieval and Analysis
	MDSWriter: Annotation Tool for Creating High-Quality Multi-Document Summarization Corpora
	Jigg: A Framework for an Easy Natural Language Processing Pipeline
	An Advanced Press Review System Combining Deep News Analysis and Machine Learning Algorithms
	Personalized Exercises for Preposition Learning
	My Science Tutor—Learning Science with a Conversational Virtual Tutor
	pigeo: A Python Geotagging Tool
	Creating Interactive Macaronic Interfaces for Language Learning
	Roleo: Visualising Thematic Fit Spaces on the Web
	MediaGist: A Cross-lingual Analyser of Aggregated News and Commentaries
	GoWvis: A Web Application for Graph-of-Words-based Text Visualization and Summarization
	LiMoSINe Pipeline: Multilingual UIMA-based NLP Platform
	new/s/leak -- Information Extraction and Visualization for Investigative Data Journalists

