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Abstract

Previous optimisations of parameters af-
fecting the word-context association mea-
sure used in distributional vector space
models have focused either on high-
dimensional vectors with hundreds of
thousands of dimensions, or dense vectors
with dimensionality of a few hundreds; but
dimensionality of a few thousands is of-
ten applied in compositional tasks as it is
still computationally feasible and does not
require the dimensionality reduction step.
We present a systematic study of the in-
teraction of the parameters of the associ-
ation measure and vector dimensionality,
and derive parameter selection heuristics
that achieve performance across word sim-
ilarity and relevance datasets competitive
with the results previously reported in the
literature achieved by highly dimensional
or dense models.

1 Introduction

Words that occur in similar context have simi-
lar meaning (Harris, 1954). Thus the meaning
of a word can be modeled by counting its co-
occurrence with neighboring words in a corpus.
Distributional models of meaning represent co-
occurrence information in a vector space, where
the dimensions are the neighboring words and the
values are co-occurrence counts. Successful mod-
els need to be able to discriminate co-occurrence
information, as not all co-occurrence counts are
equally useful, for instance, the co-occurrence
with the article the is less informative than with
the noun existence. The discrimination is usually
achieved by weighting of co-occurrence counts.
Another fundamental question in vector space de-
sign is the vector space dimensionality and what

neighbor words should correspond to them.
Levy et al. (2015) propose optimisations for

co-occurrence-based distributional models, us-
ing parameters adopted from predictive mod-
els (Mikolov et al., 2013): shifting and context
distribution smoothing. Their experiments and
thus their parameter recommendations use high-
dimensional vector spaces with word vector di-
mensionality of almost 200K, and many recent
state-of-the-art results in lexical distributional se-
mantics have been obtained using vectors with
similarly high dimensionality (Baroni et al., 2014;
Kiela and Clark, 2014; Lapesa and Evert, 2014).

In contrast, much work on compositional dis-
tributional semantics employs vectors with much
fewer dimensions: e.g. 2K (Grefenstette and
Sadrzadeh, 2011; Kartsaklis and Sadrzadeh, 2014;
Milajevs et al., 2014), 3K (Dinu and Lapata, 2010;
Milajevs and Purver, 2014) or 10K (Polajnar and
Clark, 2014; Baroni and Zamparelli, 2010). The
most common reason thereof is that these models
assign tensors to functional words. For a vector
space V with k dimensions, a tensor V ⊗V · · ·⊗V
of rank n has kn dimensions. Adjectives and in-
transitive verbs have tensors of rank 2, transitive
verbs are of rank 3; for coordinators, the rank can
go up to 7. Taking k = 200K already results in
a highly intractable tensor of 8× 1015 dimensions
for a transitive verb.

An alternative way of obtaining a vector space
with few dimensions, usually with just 100–500,
is the use of SVD as a part of Latent Semantic
Analysis (Dumais, 2004) or another models such
as SGNS (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). However, these models take
more time to instantiate in comparison to weight-
ing of a co-occurrence matrix, bring more param-
eters to explore and produce vector spaces with
uninterpretable dimensions (vector space dimen-
sion interpretation is used by some lexical mod-
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els, for example, McGregor et al. (2015), and the
passage from formal semantics to tensor models
relies on it (Coecke et al., 2010)). In this work
we focus on vector spaces that directly weight a
co-occurrence matrix and report results for SVD,
GloVe and SGNS from the study of Levy et al.
(2015) for comparison.

The mismatch of recent experiments with non-
dense models in vector dimensionality between
lexical and compositional tasks gives rise to a
number of questions:
• To what extent does model performance de-

pend on vector dimensionality?
• Do parameters influence 200K and 1K di-

mensional models similarly? Can the find-
ings of Levy et al. (2015) be directly applied
to models with a few thousand dimensions?

• If not, can we derive suitable parameter se-
lection heuristics which take account of di-
mensionality?

To answer these questions, we perform a sys-
tematic study of distributional models with a rich
set of parameters on SimLex-999 (Hill et al.,
2014), a lexical similairty dataset, and test selected
models on MEN (Bruni et al., 2014), a lexical
relatedness dataset. These datasets are currently
widely used and surpass datasets stemming from
information retrieval, WordSim-353 (Finkelstein
et al., 2002), and computational linguistics, RG65
(Rubenstein and Goodenough, 1965), in quantity
by having more entries and in quality by atten-
tion to evaluated relations (Milajevs and Griffiths,
2016).

2 Parameters

2.1 PMI variants (discr)
Most co-occurrence weighting schemes in distri-
butional semantics are based on point-wise mu-
tual information (PMI, see e.g. Church and Hanks
(1990), Turney and Pantel (2010), Levy and Gold-
berg (2014)):

PMI(x, y) = log
P (x, y)

P (x)P (y)
(1)

As commonly done, we replace the infinite PMI
values,1 which arise when P (x, y) = 0, with ze-
roes and use PMI hereafter to refer to a weighting
with this fix.

1We assume that the probability of a single token is al-
ways greater than zero as it appears in the corpus at least
once.

Parameter Values

Dimensionality D
1K, 2K, 3K, 5K
10K, 20K, 30K, 40K, 50K

discr PMI, CPMI, SPMI, SCPMI
freq 1, n, log n
neg 0.2, 0.5, 0.7, 1, 1.4, 2, 5, 7
cds global, 1, 0.75
Similarity Cosine, Correlation

Table 1: Model parameters and their values.

An alternative solution is to increment the prob-
ability ratio by 1; we refer to this as compressed
PMI (CPMI, see e.g. McGregor et al. (2015)):

CPMI(x, y) = log
(
1 +

P (x, y)
P (x)P (y)

)
(2)

By incrementing the probability ratio by one,
the PMI values from the segment of (−∞; 0],
when the joint probability P (x, y) is less than the
chance P (x)P (y), are compressed into the seg-
ment of (0; 1]. As the result, the space does not
contain negative values, but has the same sparsity
as the space with PMI values.

2.2 Shifted PMI (neg)

Many approaches use only positive PMI values,
as negative PMI values may not positively con-
tribute to model performance and sparser matrices
are more computationally tractable (Turney and
Pantel, 2010). This can be generalised to an ad-
ditional cutoff parameter k (neg) following Levy
et al. (2015), giving our third PMI variant (abbre-
viated as SPMI):2

SPMIk = max(0, PMI(x, y)− log k) (3)

When k = 1 SPMI is equivalent to positive PMI.
k > 1 increases the underlying matrix sparsity
by keeping only highly associated co-occurrence
pairs. k < 1 decreases the underlying ma-
trix sparsity by including some unassociated co-
occurrence pairs, which are usually excluded due
to unreliability of probability estimates (Dagan et
al., 1993).

We can apply the same idea to CPMI:

SCPMIk = max(0, CPMI(x, y)− log 2k) (4)

2SPMI is different from CPMI because log P (x,y)
P (x)P (y)

−
log k = log P (x,y)

P (x)(P (y)k
̸= log

(
1 + P (x,y)

P (x)P (y)

)
.
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Figure 1: Effect of PMI variant (discr), smoothing (cds) and frequency weighting (freq) on
SimLex-999. Error bars correspond to a 95% confidence interval as the value is estimated by averaging
over all the values of the omitted parameters: neg and similarity.

2.3 Frequency weighting (freq)

Another issue with PMI is its bias towards rare
events (Levy et al., 2015); one way of solving this
issue is to weight the value by the co-occurrence
frequency (Evert, 2005):

LMI(x, y) = n(x, y) PMI(x, y) (5)

where n(x, y) is the number of times x was seen
together with y. For clarity, we refer to n-weighted
PMIs as nPMI, nSPMI, etc. When this weighting
component is set to 1, it has no effect; we can ex-
plicitly label it as 1PMI, 1SPMI, etc.

In addition to the extreme 1 and n weightings,
we also experiment with a log n weighting.

2.4 Context distribution smoothing (cds)

Levy et al. (2015) show that performance is af-
fected by smoothing the context distribution P (x):

Pα(x) =
n(x)α∑
c n(c)α

(6)

We experiment with α = 1 (no smoothing) and
α = 0.75. We call this estimation method local
context probability; we can also estimate a global
context probability based on the size of the corpus
C:

P (x) =
n(x)
|C| (7)

2.5 Vector dimensionality (D)

As context words we select the 1K, 2K, 3K, 5K,
10K, 20K, 30K, 40K and 50K most frequent lem-
matised nouns, verbs, adjectives and adverbs. All
context words are part of speech tagged, but we
do not distinguish between refined word types
(e.g. intransitive vs. transitive versions of verbs)
and do not perform stop word filtering.

3 Experimental setup

Table 1 lists parameters and their values. As the
source corpus we use the concatenation of Wack-
ypedia and ukWaC (Baroni et al., 2009) with a
symmetric 5-word window (Milajevs et al., 2014);
our evaluation metric is the correlation with hu-
man judgements as is standard with SimLex (Hill
et al., 2014). We derive our parameter selection
heuristics by greedily selecting parameters (cds,
neg) that lead to the highest average performance
for each combination of frequency weighting, PMI
variant and dimensionality D. Figures 1 and 2
show the interaction of cds and neg with other
parameters. We also vary the similarity measure
(cosine and correlation (Kiela and Clark, 2014)),
but do not report results here due to space limits.3

3The results are available at http://www.eecs.
qmul.ac.uk/˜dm303/aclsrw2016/
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Figure 2: The behaviour of shifted PMI (SPMI) on SimLex-999. discr=spmi, freq=1 and
neg=1 corresponds to positive PMI. Error bars correspond to a 95% confidence interval as the value
is estimated by averaging over all the values of the omitted parameters: cds and similarity.

4 Heuristics

PMI and CPMI PMI should be used with
global context probabilities. CPMI generally out-
performs PMI, with less sensitivity to parameters;
nCPMI and lognCPMI should be used with lo-
cal context probabilities and 1CPMI should apply
context distribution smoothing with α = 0.75.

SPMI 10K dimensional 1SPMI is the least sen-
sitive to parameter selection. For models with
D > 20K, context distribution smoothing should
be used with α = 0.75; for D < 20K, it is ben-
eficial to use global context probabilities. Shift-
ing also depends on the dimensionality: models
with D < 20K should set k = 0.7, but higher-
dimensional models should set k = 5. There
might be a finer-grained k selection criteria; how-
ever, we do not report this to avoid overfitting.

lognSPMI should be used with global con-
text probabilities for models with D < 20K. For
higher-dimensional spaces, smoothing should be
applied with α = 0.75, as with 1SPMI. Shifting
should be applied with k = 0.5 for models with
D < 20K, and k = 1.4 for D > 20K. In contrast
to 1SPMI, which might require change of k as the
dimensionality increases, k = 1.4 is a much more
robust choice for lognSPMI.

nSPMI gives good results with local context
probabilities (α = 1). Models with D < 20K
should use k = 1.4, otherwise k = 5 is preferred.

SCPMI With 1SCPMI and D < 20K, global
context probability should be used, with shifting
set to k = 0.7. Otherwise, local context probabil-
ity should be used with α = 0.75 and k = 2.

With nSCPMI and D < 20K, global context
probability should be used with k = 1.4. Other-
wise, local context probability without smoothing
and k = 5 is suggested.

For lognSCPMI, models with D < 20K
should use global context probabilities and k =
0.7; otherwise, local context probabilities without
smoothing should be preferred with k = 1.4.

5 Evaluation of heuristics

We evaluate these heuristics by comparing the per-
formance they give on SimLex-999 against that
obtained using the best possible parameter selec-
tions (determined via an exhaustive search at each
dimensionality setting). We also compare them
to the best scores reported by Levy et al. (2015)
for their model (PMI and SVD), word2vec-SGNS
(Mikolov et al., 2013) and GloVe (Pennington et
al., 2014)—see Figure 3a, where only the better-
performing SPMI and SCPMI are shown.

For lognPMI and lognCPMI, our heuristics
pick the best possible models. For lognSPMI,
where performance variance is low, the heuris-
tics do well, giving a performance of no more
than 0.01 points below the best configuration. For
1SPMI and nSPMI the difference is higher. With
lognSCPMI and 1SCPMI, the heuristics follow
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(a) SimLex-999. PPMI: 0.393, SVD: 0.432, SGNS: 0.438, GloVe: 0.398.
This work: 0.385.
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(c) MEN. PPMI: 0.745, SVD: 0.778, SGNS: 0.774, GloVe: 0.729. This
work: 0.765.
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Figure 3: Best configurations. The black lines show the best count models (PPMI) reported by Levy et al. (2015). We also
give our best score, SVD, SGNS and GloVe numbers from that study for comparison. On the right, our heuristic in comparison
to the best and average results together with the models selected using the recommendations presented in Levy et al. (2015).

the best selection, but with a wider gap than the
SPMI models. In general n-weighted models do
not perform as well as others.

Overall, log n weighting should be used with
PMI, CPMI and SCPMI. High-dimensional SPMI
models show the same behaviour, but if D <
10K, no weighting should be applied. SPMI and
SCPMI should be preferred over CPMI and PMI.
As Figure 3b shows, our heuristics give perfor-
mance close to the optimum for any dimensional-
ity, with a large improvement over both an average
parameter setting and the parameters suggested by
Levy et al. (2015) in a high-dimensional setting.4

Finally, to see whether the heuristics transfer
robustly, we repeat this comparison on the MEN
dataset (see Figures 3c, 3d). Again, PMI and
CPMI follow the best possible setup, with SPMI
and SCPMI showing only a slight drop below ideal
performance; and again, the heuristic settings give
performance close to the optimum, and signifi-
cantly higher than average or standard parameters.

4Our results using Levy et al. (2015)’s parameters differ
slightly from theirs due to different window sizes (5 vs 2).

6 Conclusion

This paper presents a systematic study of co-
occurrence quantification focusing on the se-
lection of parameters presented in Levy et al.
(2015). We replicate their recommendation for
high-dimensional vector spaces, and show that
with appropriate parameter selection it is possible
to achieve comparable performance with spaces of
dimensionality of 1K to 50K, and propose a set of
model selection heuristics that maximizes perfor-
mance. We foresee the results of the paper are gen-
eralisable to other experiments, since model se-
lection was performed on a similarity dataset, and
was additionally tested on a relatedness dataset.

In general, model performance depends on vec-
tor dimensionality (the best setup with 50K dimen-
sions is better than the best setup with 1K dimen-
sions by 0.03 on SimLex-999). Spaces with a few
thousand dimensions benefit from being dense and
unsmoothed (k < 1, global context probability);
while high-dimensional spaces are better sparse
and smooth (k > 1, α = 0.75). However, for un-
weighted and n-weighted models, these heuristics
do not guarantee the best possible result because
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Model SimLex-999 MEN

PPMI∗ 0.393 0.745
SVD∗ 0.432 0.778
SGNS∗ 0.438 0.774
GloVe∗ 0.398 0.729

This work 0.385 0.765

Table 2: Our model in comparison to the pre-
vious work. On the similarity dataset our model
is 0.008 points behind a PPMI model, however on
the relatedness dataset 0.020 points above. Note
the difference in dimensionality, source corpora
and window size. SVD, SGNS and GloVe num-
bers are given for comparison. ∗Results reported
by Levy et al. (2015).

of the high variance of the corresponding scores.
Based on this we suggest to use lognSPMI or
lognSCPMI with dimensionality of at least 20K
to ensure good performance on lexical tasks.

There are several directions for the future work.
Our experiments show that models with a few
thousand dimensions are competitive with more
dimensional models, see Figure 3. Moreover, for
these models, unsmoothed probabilities give the
best result. It might be the case that due to the
large size of the corpus used, the probability es-
timates for the most frequent words are reliable
without smoothing. More experiments need to be
done to see whether this holds for smaller corpora.

The similarity datasets are transferred to other
languages (Leviant and Reichart, 2015). The fu-
ture work might investigate whether our results
hold for languages other than English.

The qualitative influence of the parameters
should be studied in depth with extensive error
analysis on how parameter selection changes sim-
ilarity judgements.
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