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Abstract

Most previous work on annotation projec-
tion has been limited to a subset of Indo-
European languages, using only a single
source language, and projecting annota-
tion for one task at a time. In contrast,
we present an Integer Linear Program-
ming (ILP) algorithm that simultaneously
projects annotation for multiple tasks from
multiple source languages, relying on par-
allel corpora available for hundreds of lan-
guages. When training POS taggers and
dependency parsers on jointly projected
POS tags and syntactic dependencies us-
ing our algorithm, we obtain better perfor-
mance than a standard approach on 20/23
languages using one parallel corpus; and
18/27 languages using another.

1 Introduction

Cross-language annotation projection for unsuper-
vised POS tagging and syntactic parsing was in-
troduced fifteen years ago (Yarowsky et al., 2001;
Hwa et al., 2005), and the best unsupervised de-
pendency parsers today rely on annotation projec-
tion (Rasooli and Collins, 2015).

Despite the maturity of the field, there is an in-
herent language bias in previous work on cross-
language annotation projection. Cross-language
annotation projection experiments require training
data in m source languages, a parallel corpus of
translations from the m source languages into the
target language of interest, as well as evaluation
data for the target language.! Since the canonical
resource for parallel text is the Europarl Corpus
(Koehn, 2005), which covers languages spoken in
the European parliament, annotation projection is

TAll previous work that we are aware of—with the possi-
ble exception of McDonald et al. (2011); but see Sections 2

and 5—uses only a single source (m = 1), but in our experi-
ments, we use multiple source languages.
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typically limited to the subset of Indo-European
languages that have treebanks.

Previous work is also limited in another respect.
While treebanks typically contain multiple layers
of annotation, previous work has focused on pro-
jecting data for a single task.

We go significantly beyond previous work in
two ways: 1) by considering multi-source pro-
jection across languages in parallel corpora that
are available for hundreds of languages, includ-
ing many non-Indo-European languages; and 2)
by jointly projecting annotation for two mutually
dependent tasks, namely POS tagging and depen-
dency parsing. Using multiple source languages
makes our projections denser. In single source
projection, the source language may not contain
all syntactic phenomena of the target language; we
combat this by transferring syntactic information
from multiple source languages. Our work also
differs from previous work on annotation projec-
tion in projecting soft rather than hard constraints,
i.e., scores rather than labels and edges.

Contributions We present a novel ILP-based al-
gorithm for jointly projecting POS labels and de-
pendency annotations across word-aligned parallel
corpora. The performance of our algorithm com-
pares favorably to that of a state-of-the-art projec-
tion algorithm, as well as to multi-source delex-
icalized transfer. Our experiments include be-
tween 23 and 27 languages using two parallel cor-
pora that are available for hundreds of languages,
namely a collection of Bibles and Watchtower pe-
riodicals. Finally, we make both the parallel cor-
pora and the code publicly available.?

2 Projection algorithm

The projection algorithm is divided into two dis-
tinct steps. First, we project potential syntactic

https://bitbucket.org/lowlands/
release
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edges and POS tags from all source languages into
an intermediate target graph, which is left deliber-
ately ambiguous. In the second step, we decode
the target graph by solving a constrained optimi-
sation problem, which simultaneously resolves all
ambiguities and produces a single dependency tree
with a fixed set of POS tags. Below we describe
both steps in more detail.

2.1 Cross-language sentence

The input to our projection algorithm is a cross-
language sentence, a data structure that ties to-
gether a collection of aligned sentences from a par-
allel corpus, i.e., sentences in many different lan-
guages that are determined to be translation equiv-
alents. One sentence of the set is designated as the
target while the rest are sources. We project syn-
tactic information from the sources to the target.

All source sentences are automatically parsed
with a graph-based dependency parser and labeled
with parts of speech. Instead of using the sin-
gle best dependency tree output by the parser, we
extract its scoring matrix, an ambiguous structure
that assigns a numeric score to each potential de-
pendency edge. The target sentence is not parsed
or POS-tagged. In fact, our approach is explicitly
designed to work for target languages where no
such resources are available. Only unsupervised
word alignments couple the target sentence with
each source sentence.

More formally, a cross-language sentence may
be represented as a graph G = (V| E), where
each vertex is a POS-tagged token of a sentence
in some language. With one target and n source
languages, the total set of tagged word vertices V'
can be written as the union of sentence vertices:
V = VWU...UV,. The target sentence is V; = Vj,
while source sentences are Vs = Vi U ... U V.

Two kinds of weighted edges connect the graph.
Edges that go between tagged tokens of a sentence
V; represent potential dependency edges. Thus,
for the sentence 4, the induced subgraph G[V;] is
the (ambiguous) dependency graph. Edges con-
necting a source vertex to target vertex represent
word alignments. The set of alignment edges is
ACV, x V.

To account for POS we introduce a vertex label-
ing function [ : V +— 3, where X is the POS vo-
cabulary. The source sentences are automatically
tagged, and for any source vertex the label func-
tion simply returns this tag. For the target sentence

the POS labels are unknown, which is to say that
every target token is ambiguous between |X| POS
tags. We represent this ambiguity in the graph by
creating a vertex for each possible combination of
target word and POS. Concretely, if a source sen-
tence 7 has n tokens, and the target sentence has m
tokens, then |V;| = n, and |Vs| = m|X].

Alignments are constrained such that an align-
ment (u,v) € Vi x V; only exists if the source and
target token were linked by the automatic aligner
and [(u) = [(v), i.e., the POS tags match. This fil-
ters out potential source relations with dissimilar
syntax, a luxury that we are allowed in a multiple
source language setup.

2.2 Projecting to ambiguous target graph

The target graph G[V;] starts out empty and is pop-
ulated with edges in the following way. We go
through the source sentences, looking for poten-
tial dependency edges where both endpoints are
aligned to the target sentence, and transferring the
edge whenever we find one. Technically, for every
source sentence ¢ and for each edge in the source
graph (us,vs) € G[V;], we create an edge (uy, vt)
in the target iff both (us,u¢) and (vs,vy) € A.
The edge weight is the source edge score (as de-
termined by an automatic parser) weighted by the
joint alignment probability of (us, u;) and (vs, v¢):

d(ug,vp) = max a(ug, vs) a(us,ur) d(vs, vt).

For clarity, d refers to weights of dependency
edges, and a to alignment edge weights. Multi-
ple source sentences may project the same edge
to the target graph. When this happens we update
the target edge weight only if the new weight is
larger than the existing. The weight then reflects
the strongest evidence found for a given syntactic
relation across all source languages.

2.3 Decoding the target graph

We are now ready to decode the target graph. The
result of decoding is a dependency tree as well as
a labeling of the target sentences with POS tags.
Labeling with POS corresponds to selecting a sub-
set of the vertices V C V4, such that exactly one
vertex is chosen for each token. Similarly the de-
coded dependency tree is a subset of the projected
target edges with the constraint that it must form
a tree over the vertices of V. The joint optimiza-
tion objective is to simultaneously select a set of
vertices V and edges E to maximize the score of
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the decoded tree. We solve this constrained opti-
mization problem by casting it as an integer linear
programming (ILP) problem.

The full specification of the ILP model is dis-
played as Figure 1. The model is optimized over
two types of binary decision variables mapping di-
rectly to the target graph representation discussed
in the previous section, plus additional flow vari-
ables that enforce tree structure. An edge vari-
able e; 1, j; represents a target edge (,j) where
the POS of ¢ is k£ and the POS of j is [. For in-
stance, the variable ea v 1 N represents a directed
edge from the second token (a verb) to the first (a
noun). An active vertex variable v; j indicates that
the POS of token ¢ is chosen as k.

Following Martins (2012), we constrain the
search space to spanning trees by using a single-
commodity-flow construction. In the commodity-
flow analogy, we imagine the root as a factory that
produces n commodities (for an n token sentence)
which are distributed along the edges of the tree.
Each token is a consumer that must receive and
pass on all except one commodity to its depen-
dents, i.e., the difference between incoming and
outgoing flow should be 1. Since all commodities
must be consumed, the outgoing flow for a leaf
node will be zero. Together with the requirement
that each token must have exactly one head, this
ensures all tokens are connected to the root in the
tree structure.

The last two constraint groups enforce edge and
POS consistency, and the selection of single POS
per token. Both are new to this work.

3 Data sources

Our projection requires parallel text, ideally span-
ning a large number of languages, and dependency
treebanks for the sources.

Treebanks To train the source-side taggers and
dependency parsers, and to evaluate the cross-
lingual taggers and parsers, we use the Universal
Dependencies (UD) version 1.2 treebanks with the
corresponding test sets.’

Parallel texts We exploit two sources of par-
allel text: the Edinburgh Multilingual Bible cor-
pus (EBC) (Christodouloupoulos and Steedman,
2014), and our own collection of online texts pub-
lished by the Wathctower Society (WTC).* While

*http://hdl.handle.net/11234/1-1548
‘nttps://www.jw.org/
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ILP model
Edges €;1, € {0,1}
Vertices  v; j, € {0,1}
Flow  ¢; i e R*
Maximize Z €i k.5, Wi k,jl

i7k7j7l

One parent per token

E ikl =1

ikl
The root token (index 0) sends n flow

Z $0,0,51 =N
il

Each token consumes one unit of flow

Vj #0

> Gikai— Y bakgi=1 Vo #0

i,k,l k,j,

One POS per token

» vig=1 Vi #£0
k

Active edges choose token POS

Vik = €k jl Vi # 0,75,k

Vil = €kl Vi, j, k, 1

Above, i, j, and x are token indices, while k and [ refer
to POS. Quantification over these symbols in the equa-
tions are always with respect to a given target graph.

Figure 1: Specification of the ILP model. We list,
in order, the decision variables, the objective, and
the five groups of constraint templates.

the two collections span more than 100 languages,
we focus on the subsets that overlap with the UD
languages to facilitate evaluation. For EBC, that
amounts to 27 languages, and 23 for WTC.

Preprocessing We use simple sentence splitting
and tokenization models to segment the parallel
corpora.’ To sentence- and word-align the indi-
vidual language pairs, we use a Gibbs sampling-
based IBM1 alignment model called efmaral
(Ostling, 2015). IBMI has been shown to lead to
more robust alignments across typologically dis-
tant language pairs (Ostling, 2015). We modify

Shttps://github.com/bplank/
multilingualtokenizer



the aligner to output alignment probabilities. All
the source-side texts are POS-tagged and depen-
dency parsed using TnT (Brants, 2000) and Tur-
boParser (Martins et al., 2013). We use our own
fork of the arc-factored TurboParser to output the
edge weight matrices.®

4 Experiments

4.1 Setup

In our experiments, as in the preprocessing, we use
the TnT tagger and the arc-factored TurboParser,
which we train on the EBC and WTC texts with
projected and decoded annotations. We randomly
sample up to 20k sentences per training file in both
tagging and parsing. This 20k sampling limit ap-
plies to all systems.

We compare two cross-lingual projection-based
parsing systems, and one baseline system.

ILP The ILP-based joint projection algorithm
we presented in Section 2.

DCA Our implementation of the de facto stan-
dard annotation projection algorithm of Hwa et
al. (2005), as refined by Tiedemann (2014). In
contrast to our ILP approach, it uses heuristics to
ensure dependency tree constraints on a source-
target sentence pair basis. We gather all the pair-
wise projections into a target sentence graph and
then perform maximum spanning tree decoding
following Sagae and Lavie (2006).

DELEX The multi-source direct delexicalized
transfer baseline of McDonald et al. (2011). Each
source is represented by an approximately equal
number of sentences.

4.2 Results

Table 1 provides a summary of dependency pars-
ing scores. We report UAS scores over predicted
and gold POS. The predicted tags come from our
cross-lingual taggers. Our ILP approach consis-
tently outperforms DCA on both by a large margin
of 3-5 points UAS using predicted POS, and 5-10
points on gold POS. Note that DELEX is trained
on gold POS and therefore has an advantage in this

®https://github.com/andersjo/
TurboParser

8We do not include DELEX in the comparison for the gold
POS scenario only. In this particular scenario, DELEX is also
trained on gold POS, and thus biased: the cross-lingual tag-
gers do not have gold POS available for training, and the same
holds for DELEX and projected POS.
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Approach
Predicted POS ILP DCA DELEX
EBC 51.62(18) 48.39(8) 42.44(1)
WTC 53.58 (20) 48.40(0) 47.35(3)
Gold POS
EBC 6543 (25) 5994 (22) 64.13(-)
WTC 66.51 (23) 55.73(0) 66.68 (-)

Table 1: Macro-averaged UAS scores summariz-
ing our evaluation. EBC: Edinburgh Bible corpus,
WTC: Watchtower corpus. Numbers of languages
with top performance per system are reported in
brackets. All parsers use their respective EBC or
WTC taggers.®

setting. Relying on predicted POS and WTC data,
our ILP approach beats DCA for all the test lan-
guages. With EBC, we outperform DCA on 19
out of 27 languages.

In Table 2, we split the scores across the test
languages and parallel data sources, and we also
report the POS tagging accuracies. Our WTC tag-
gers are on average 3.5 points better than EBC tag-
gers, yielding the top score for 16/23 languages
from the overlap. Notably, on several non-Indo-
European languages, we observe significant im-
provements. For example, on Indonesian, DCA
improves over DELEX by 12 points UAS, while
ILP adds 6 more points on top. We observe a sim-
ilar pattern for Arabic and Estonian. We note that
DELEX tops ILP and DCA on only 1 EBC and 3
WTC languages, and by a narrow margin.

Analysis A projected parse is allowed to be a
composite of edges from many source languages.
To find out to what degree this actually happens,
we analyze all projections into English and Ger-
man on the WTC corpus.

For German the top four source languages are
Czech, Norwegian, French, and English, con-
tributing between 16% and 7% of all edges. For
English the top languages are Norwegian, Ital-
ian, Indonesian, and Swedish. Here, the top lan-
guage Norwegian is responsible for 42% of the
edges, while Swedish accounts for 13%. Only
the language projecting the highest scoring edge
is counted. On average, a German sentence has
edges from 4.1 source languages. The same num-
ber for English is slightly higher, at 4.5.

Manually annotated data We annotate a small
number of sentences in English from EBC and



Dependency parsing
EBC WTC

DCA DCA
37.70 32.14
17.38
60.03
45.08
41.44
53.22
50.64
56.95
42.37
44.51
53.11
50.21
37.73
39.76
35.59
44.97
23.53
58.66
68.45
58.32
59.27
60.45
56.73
49.38
53.66
52.20
55.21

48.39
8

POS tagging

EBC WTC
39.54 5391
43.43
76.45
72.83
70.81
76.43
71.90
75.55
64.94
70.41
74.25
74.36
56.52
43.65
59.99
71.57
63.30
79.28
83.41
77.00
73.36
78.41
71.56
74.07
75.68
76.72
78.26

69.40
7

ILP
36.59
22.77

50.6
54.19
52.67
61.14
55.76

62.9
23.53
43.66
53.52
45.02
62.59
30.25
18.26
49.74
51.99
63.13
68.65
65.04
62.94
63.75
57.74
49.15
59.17
63.63
65.24

51.62
18

ILP
37.41

DELEX
21.15

DELEX

13.17
27.85
57.83
42.34
40.99
49.65
48.04
49.32
28.93
41.18
48.97
49.36
37.11
19.06
21.03
43.07
31.18
53.94
41.42
53.46
5333
5291
45.73
47.06
50.55
47.6
50.85

u44‘
1

Language
Arabic
Basque
Bulgarian
Croatian
Czech
Danish
English

* Estonian
Farsi
Finnish
French
German

* Greek
Hebrew
Hindi

* Hungarian
Indonesian
Italian

* Latin
Norwegian
Polish
Portuguese
* Romanian
* Serbian
Slovene
Spanish
Swedish

48.37
45.49
47.99
55.96
53.87
48.48
19.48
41.52
51.53
45.79
54.90

37.18
50.56
44.36
58.64
57.12
58.41
12.26
35.6
51.47
36.7
5295

49.68
55.16
53.09
61.78
58.70
63.85
20.34
42.59
55.69
43.99
62.43

68.27
76.18
78.49
86.36
79.2
73.98
25.67
67.44
79.23
68.36
75.75

21.04
46.66
39.67
58.06

10.77
4233
52.29
63.57

15.95
44.17
58.01
64.88

48.86
71.42
75.61
83.82

60.11
54.87
56.99
51.23

64.37
55.4
63.16
54.78
54.8
61.90
62.45

48.40
0

66.54
63.74
64.62
58.76

8531
73.68
83.67
76.34

52.53
55.87
57.48

47.35
3

59.79
64.93
66.15

53.58
20

78.11
85.69
84.80

73.05
16

Average
Best for

Table 2: Tagging and parsing (UAS) accuracy.
Scores are macro-averaged, and all parsers use
predicted POS from respective EBC or WTC tag-
gers. *: True target languages, not used as sources.

WTC, which gives us a way to directly evaluate
the projections without training parsers. On this
small test set of 2 x 50 sentences, we obtain UAS
scores of 68% (WTC) and 62% (EBC). The POS
accuracies are 79% and 80%. All figures are com-
parable to the results from the indirect projection
evaluation.

5 Related work

In recent years, we note an increased interest for
work in cross-lingual processing, and particularly
in POS tagging and dependency parsing of low-
resource languages.

Yarowsky et al. (2001) proposed the idea of in-
ducing NLP tools via parallel corpora. Their con-
tribution started a line of work in annotation pro-
jection. Das and Petrov (2011) used graph-based
label propagation to yield competitive POS tag-
gers, while Hwa et al. (2005) introduced the pro-
jection of dependency trees. Tiedemann (2014)
further improved this approach to single-source
projection in the context of synthesizing depen-
dency treebanks (Tiedemann and Agi¢, 2016).
The current state of the art in cross-lingual de-
pendency parsing also involves exploiting large
parallel corpora (Ma and Xia, 2014; Rasooli and
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Collins, 2015).

Transferring models by training parsers with-
out lexical features was first introduced by Zeman
and Resnik (2008). McDonald et al. (2011) and
S@gaard (2011) coupled delexicalization with con-
tributions from multiple sources, while McDonald
et al. (2013) were the first to leverage uniform rep-
resentations of POS and syntactic dependencies in
cross-lingual parsing.

Even more recently, Agic et al. (2015) exposed
a bias towards closely related Indo-European lan-
guages shared by most previous work on anno-
tation projection, while introducing a bias-free
projection algorithm for learning 100 POS tag-
gers from multiple sources. Their line of work is
non-trivially extended to multilingual dependency
parsing by Agié et al. (2016).

The work in annotation projection for cross-
lingual NLP invariably treats mutually dependent
layers of annotation separately. Our contribution
is distinct from these works by implementing the
first approach to joint projection of POS and de-
pendencies, while maintaining the outlook on pro-
cessing truly low-resource languages.

6 Conclusion

In our contribution, we addressed tagging and
parsing for low-resource languages through joint
cross-lingual projection of POS tags and syntac-
tic dependencies from multiple source languages.
Our novel approach to transferring the annotations
via word alignments is based on integer linear
programming, more specifically on a commodity-
flow formalization for spanning trees.

In our experiments with 27 treebanks from the
Universal Dependencies (UD) project, our ap-
proach compared very favorably to two competi-
tive cross-lingual systems: we provided the best
cross-lingual taggers and parsers for 18/27 and
20/23 languages, depending on the parallel cor-
pora used. We made no unrealistic assumptions
as to the availability of parallel texts and prepro-
cessing tools for the target languages. Our code
and data is freely available.’
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