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Abstract

Classification of temporal textual data se-
quences is a common task in various do-
mains such as social media and the Web.
In this paper we propose to use Hawkes
Processes for classifying sequences of
temporal textual data, which exploit both
temporal and textual information. Our ex-
periments on rumour stance classification
on four Twitter datasets show the impor-
tance of using the temporal information of
tweets along with the textual content.

1 Introduction

Sequence classification tasks are often associated
with temporal information, where the timestamp
is available for each of the data instances. For
instance, in sentiment classification of reviews
in forums, opinions of users are associated with
a timestamp, indicating the time at which they
were posted. Similarly, in an event detection
task in Twitter, tweets being posted on a con-
tinuous basis need to be analysed and classi-
fied in order to detect the occurrence of some
event. Nevertheless, traditional sequence classi-
fication approaches (Song et al., 2014; Gorrell and
Bontcheva, 2016) ignore the time information in
these textual data sequences. In this paper, we
aim to consider the continuous time information
along with the textual information for classifying
sequences of temporal textual data. In particular,
we consider the problem of rumour stance classi-
fication in Twitter, where tweets provide temporal
information associated with the textual tweet con-
tent.

Rumours spread rapidly through social media,
creating widespread chaos, increasing anxiety in
society and in some cases even leading to riots.
For instance, during an earthquake in Chile in

2010, rumours circulating on Twitter stated that
a volcano had become active and there was a
tsunami warning, which were later proven false.
Denials and corrections of these viral pieces of in-
formation might often come late and without the
sufficient effect to prevent the harm that the ru-
mours can produce (Lewandowsky et al., 2012).
This posits the importance of carefully analysing
tweets associated with rumours and the stance ex-
pressed in them to prevent the spread of malicious
rumours. Determining the stance of rumour tweets
can in turn be effectively used for early detection
of the spread of rumours, as well as for flagging ru-
mours as being potentially false when a large num-
ber of people are found to be countering them. The
rumour stance classification task has been previ-
ously defined as that in which a classifier needs to
determine whether each of the tweets is support-
ing, denying or questioning a rumour (Qazvinian
et al., 2011). Here we add a fourth label, com-
menting, which is assigned to tweets that do not
add anything to the veracity of a rumour.

In this paper, we propose to use Hawkes Pro-
cesses (Hawkes, 1971), commonly used for mod-
elling information diffusion in social media (Yang
and Zha, 2013; De et al., 2015), for the task of
rumour stance classification. Hawkes Processes
(HP) are a self-exciting temporal point process
ideal for modelling the occurrence of tweets in
Twitter (Zhao et al., 2015). The model assumes
that the occurrence of a tweet will influence the
rate at which future tweets will arrive. Figure 1
shows the behaviour of the intensity functions as-
sociated with a multivariate Hawkes Process. Note
the intensity spikes at the points of tweet occur-
rences. In applications such as stance classifica-
tion, different labels can influence one another.
This can be modelled effectively using the mutu-
ally exciting behaviour of Hawkes Processes. In
the end, we demonstrate how the information gar-
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Figure 1: Intensities of the Hawkes Process for
an example Ferguson rumour. Tweet occurrences
over time are denoted at the bottom of the figure
by different symbols. Intensity for comments is
high throughout the rumour lifespan.

nered from rumour dynamics can be beneficial to
stance classification of tweets around rumours.

Little work has been done on stance classifica-
tion of rumour tweets. Qazvinian et al. (2011) in-
troduced a system for classifying rumour tweets
and Lukasik et al. (2015a) considered this problem
in a setting where the tweets associated with a new
emerging rumour is the target for classification.
Both works ignored the temporal information. On
the other hand, research has been done on model-
ing dynamics of rumour propagation (Lukasik et
al., 2015b). Here, we show how using information
about dynamics of rumour propagation is impor-
tant to the problem of rumour stance classification.

The novel contributions of this paper are: 1. De-
veloping a Hawkes Process model for time sen-
sitive sequence classification. 2. Demonstrating
on real world data how temporal dynamics con-
veys important information for stance classifica-
tion. 3. Establishing the new state of the art
method for rumour stance classification. 4. Broad-
ening the set of labels considered in previous work
to include a new label commenting.

Software used for experiments can be found
at https://github.com/mlukasik/
seqhawkes.

2 Problem definition

We consider a collection D of rumours,
D = {R1, · · · , R|D|}. Each rumour
Ri contains a set of tweets discussing it,
Ri = {d1, · · · , dni}. Each tweet is represented
as a tuple dj = (tj ,Wj ,mj , yj), which includes
the following information: tj is the posting time
of the tweet, Wj is the text message, mj is the
rumour category and yj is the label, yj ∈ Y =
{supporting, denying, questioning, commenting}.

We define the stance classification task as that
in which each tweet dj needs to be classified
into one of the four categories, yj ∈ Y , which
represents the stance of the tweet dj with respect
to the rumour Ri it belongs to.

We consider the Leave One Out (LOO) setting,
introduced by Lukasik et al. (2015a), where for
each rumour Ri ∈ D we construct the test set
equal to Ri and the training set equal to D \ Ri.
The final performance scores we report in the pa-
per are averaged across all rumours. This repre-
sents a realistic scenario where a classifier has to
deal with a new, unseen rumour.

3 Data

We consider four Twitter rumour datasets with
tweets annotated for stance (Zubiaga et al., 2016).1

The authors relied on a slightly different scheme
for the annotation, given that they annotated tree-
structured conversation threads where a source
tweet initiates a rumour and a number of replies
follow responding to it. Given this structure, the
source tweet of a Twitter conversation is anno-
tated as supporting, denying or underspecified,
and each subsequent tweet is annotated as agreed,
disagreed, appeal for more information (question-
ing) or commenting with respect to the source
tweet. We convert these labels into our set of
four including supporting, denying, questioning
and commenting, which extends the set of three
labels used before in the literature (Qazvinian et
al., 2011; Lukasik et al., 2015a) adding the new
label commenting. To perform this conversion,
we first remove rumours where the source tweet
is annotated as underspecified, keeping the rest
of source tweets as supporting or denying. For
the subsequent tweets, we keep their label as is
for the tweets that are questioning or comment-
ing. To convert those tweets that agree or disagree
into supporting or denying, we apply the follow-
ing set of rules: (1) if a tweet agrees to a support-
ing source tweet, we label it supporting, (2) if a
tweet agrees to a denying source tweet, we label
it denying, (3) if a tweet disagrees to a supporting
source tweet, we label it denying and (4) if a tweet
disagrees to a denying tweet, we label it support-
ing. The latter enables to infer stance with respect
to the rumour from the original annotations that in-
stead refer to agreement with respect to the source.

1While the authors annotated and released 9 datasets, here
we make use of 4 sufficiently large datasets.
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Dataset Rumours Tweets Supporting Denying Questioning Commenting

Ottawa shooting 58 782 161 76 64 481
Ferguson riots 46 1017 161 82 94 680
Charlie Hebdo 74 1053 236 56 51 710
Sydney siege 71 1124 89 223 99 713

Table 1: Statistics and distribution of labels for the four datasets used in our experiments. Each dataset
consists of multiple rumours, and the rest of the columns offer the aggregated counts for all rumours
within that dataset.

Figure 2 shows examples of tweets taken from the
dataset along with our inferred annotations.

We summarise the statistics of the resulting
dataset in Table 1. Note that the commenting la-
bel accounts for the majority of the tweets.

4 Model

Hawkes Processes are a probabilistic framework
for modelling self-exciting phenomena, which has
been used for modelling memes and their spread
across social networks (Yang and Zha, 2013).
They have been used to model the generation of
tweets over a continuous time domain (Zhao et al.,
2015). The frequency of tweets generated by them
is determined by an underlying intensity function
which considers the influence from past tweets.
The intensity function models the self-exciting na-
ture by adding up the influence from past tweets.
We use a multi-variate Hawkes process for mod-
elling the mutually exciting phenomena between
the tweet labels. In this section we describe how
we apply the Hawkes Process framework for ru-
mour stance classification.

Intensity Function In the intensity function for-
mulation, we assume that all previous tweets asso-
ciated with a rumour influence the occurrence of
a new tweet. This allows to use information on
all the other tweets that have been posted about a
rumour. We consider the intensity function to be
summation of base intensity and the intensities as-
sociated with all the previous tweets,

λy,m(t)=µy+
∑
t`<t

I(m` = m)αy`,yκ(t− t`), (1)

where the first term represents the constant base
intensity of generating label y. The second term
represents the influence from the tweets that hap-
pen prior to time of interest. The influence from
each tweet decays over time and is modelled
using an exponential decay term κ(t − t`) =

ω exp(−ω(t− t`)). The matrix α of size |Y |×|Y |
encodes the degrees of influence between pairs of
labels assigned to the tweets, e.g. a questioning la-
bel may influence the occurrence of a rejecting la-
bel in future tweets differently from how it would
influence a commenting label.

Likelihood function The parameters governing
the intensity function are learnt by maximizing the
likelihood of generating the tweets. The complete
likelihood function is given by

L(t,y,m,W ) = (2)
N∏
n=1

p(Wn|yn)×
[ N∏
n=1

λyn,mn(tn)
]
×p(ET ),

where the first term provides the likelihood of gen-
erating text given the label and is modelled as a
multinomial distribution conditioned on the label,

p(Wn|yn) =
V∏
v=1

βWnv
ynv , (3)

where V is the vocabulary size and β is the matrix
of size |Y | × V specifying the language model for
each label. The second term provides the likeli-
hood of occurrence of tweets at times t1, . . . , tn
and the third term provides the likelihood that
no tweets happen in the interval [0, T ] except at
times t1, . . . , tn. We estimate the parameters of
the model by maximizing the log-likelihood,

l(t,y,m,W ) =−
|Y |∑
y=1

|D|∑
m=1

∫ T

0
λy,m(s)ds+

N∑
n=1

log λyn,mn(tn) +
N∑
n=1

V∑
v=1

Wnv log βynv.

(4)

The integral term in Equation (4) is easily com-
puted for the intensity function since the exponen-
tial decay function and the constant function are
easily integrable.
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Rumour 1 - u1: We understand there are two gunmen and up to a dozen hostages inside the cafe
under siege at Sydney.. ISIS flags remain on display #7News [supporting]
Rumour 1 - u2: @u1 sorry - how do you know it’s an ISIS flag? Can you actually confirm that?
[questioning]
Rumour 2 - u1: These are not timid colours; soldiers back guarding Tomb of Unknown Soldier
after today’s shooting #StandforCanada –PICTURE– [supporting]
Rumour 2 - u2: @u1 This photo was taken this morning, before the shooting. [denying]
Rumour 2 - u3: @u1 More on situation at Martin Place in Sydney, AU –LINK– [commenting]

Figure 2: Examples of rumour tweets associated with two different rumours.

Note that β is independent from the dynamics
part, and a closed form solution after applying
Laplacian smoothing takes form

βyv =
∑N

n=1 I(yn = y)Wnv + 1∑N
n=1

∑V
v=1 I(yn = y)Wnv + V

.

In one approach to µ and α optimization (HP
Approx.) we approximate the log term in Equation
(4) by taking the log inside the summation terms in
Equation (1). This approximation leads to closed
form updates for µ and α,

µy =
∑N

n=1 I(yn = y)
T |D| ,

αij =
∑N

n=1

∑n
l=1 I(ml=mn)I(yl = i)I(yn=j)∑N
k=1 I(yk = i)K(T − tk)

,

where K(T − tk) = 1− exp(−ω(T − tk)) arises
from the integration of κ(t− tk).

In a different approach (HP Grad.) we find pa-
rameters using joint gradient based optimization
over µ and α, using derivatives of log-likelihood
dl
dµ and dl

dα . In optimization, we operate in the log-
space of the parameters in order to ensure posi-
tivity, and employ L-BFGS approach to gradient
search. Moreover, we initialize parameters with
those found by the HP Approx. method.

Similar to Yang and Zha (2013), we fix the de-
cay parameter ω, in our case to 0.1.

Prediction We predict the most likely label for
each test tweet as the label which maximises the
likelihood of occurrence of the tweet from Equa-
tion (2), or the approximated likelihood in case of
HP Approx. The likelihood considers both the tex-
tual information and the temporal dynamics in pre-
dicting the label for the tweet. The predicted labels
are then considered while predicting the labels for
next tweets in the test data. Thus, we follow a
greedy sequence classification approach.

5 Experiments

We conduct experiments using the rumour datasets
described in Table 1. We consider our Hawkes
Process model described in Section 4 as well as
a set of baseline and benchmark approaches.

5.1 Baselines

We compare our model against baselines:
Language Model considers only the textual in-

formation through multinomial distribution
defined in Equation (3).

Majority vote classifier based on the training la-
bel distribution.

Naive Bayes models the text using a multinomial
likelihood and a prior over label frequen-
cies (Manning et al., 2008).

Note that Multinomial, Majority vote and Naive
Bayes approaches are special cases of our Hawkes
Process model for classification, where a particu-
lar subset of parameters is fixed to 0.

5.2 Benchmark models

We compare our model against the following com-
petitive benchmark models:
SVM Support Vector Machines with the cost co-

efficient selected via nested cross-validation.
GP Gaussian Processes have been shown by

Lukasik et al. (2015a) to work well, partic-
ularly in supervised settings where a multi-
task learning kernel has been used to learn
correlations across different rumours. Here
we use a single task kernel (linear) as we con-
sider the fully unsupervised setting.

CRF Conditional Random Field (Lafferty et al.,
2001) over temporally ordered sequences us-
ing both text and neighbouring label features.
The model is trained using `2 penalized log-
likelihood where the regularisation parame-
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Ottawa Ferguson Charlie Hebdo Sydney Siege

Acc F1 Acc F1 Acc F1 Acc F1

Majority vote 61.51 19.04 66.86 20.04 67.53 20.15 63.43 19.41
SVM 64.58 35.39 66.86 20.04 69.90 35.11 67.26 37.74
GP 62.28 42.41 64.31 32.90 70.66 44.09 65.04 42.24
Lang. model 53.20 42.66 49.56 34.35 63.44 42.84 51.60 41.51
NB 61.76 40.64 62.05 31.29 70.18 39.69 62.01 38.56
CRF 64.58 33.07 67.35 28.11 71.89 40.12 67.44 35.74
HP Approx. 67.77 32.29 68.44 25.99 72.93 32.56 68.59 32.49
HP Grad. 63.43 42.40 63.23 33.14 71.79 41.91 62.99 39.45

Table 2: Accuracy and F1 scores for different methods across datasets. HP Approx. is the best method
according to accuracy, whereas Language model and GP are both strong methods according to F1.

ters are chosen using cross-validation.

5.3 Results

The results are shown in Table 2. We report accu-
racy (Acc) and macro average of F1 scores across
all labels (F1). Each metric is calculated over
combined sequences of labels from all rumours,
thus conducting a micro average over rumours.

We can observe that in terms of accuracy, HP
Approx. beats all other methods. Notice that Lan-
guage model is the worst model for this metric.
On the other hand, in terms of F1 score, Lan-
guage model and GP become the best methods,
with HP Approx. method not performing as well
anymore. Overall, different metrics yield very dif-
ferent rankings of methods. Nevertheless, we can
notice that HP Grad. outperforms NB under all
metrics on all datasets. This is the case also for
GP baseline, which turns out to be very competi-
tive according to F1 score. As we mentioned be-
fore, HP can be viewed as a NB classifier with a
time-dependent prior. This shows, that the tempo-
ral dynamics based prior provided by HP is more
helpful than the simple frequency based prior from
NB according to all considered metrics.

In Figure 1 we show an illustration of the in-
tensity function of the HP Grad. model for ru-
mour #1 from the Ferguson dataset. Notice the
self-exciting property, with spikes in the inten-
sity functions for different labels at times when
tweets occur. Moreover, spikes occur even when
a tweet from a different label is posted, for ex-
ample around 1 hour and 50 minutes into the ru-
mour lifespan a questioning tweet is posted which
causes a spike in intensity for commenting tweets.

Another issue is the approximation used in HP

Approx. which might lead to violation of the
Hawkes Process mutual-excitation property. In
particular, we noticed that in some scenarios oc-
currences of tweets cause decrease in the intensity
value rather than spikes. However, the accuracy
metric which has been used in previous work for
this task (Lukasik et al., 2015a) yielded by this
method turns out to be the best, although when
measuring F1 the relative ordering changes with
the GP performing best (Lukasik et al., 2015a)
closely followed by other techniques including HP
Grad. which is competitive on all datasets.

6 Conclusions

We proposed a novel model based on Hawkes
Processes for sequence classification of stances
in Twitter which takes into account temporal in-
formation in addition to text. Using four Twit-
ter datasets and experimenting on rumour stance
classification of tweets, we have shown that HP
is a competitive approach, which outperforms a
range of strong benchmark methods by providing
the multinomial language model with an informa-
tive prior based on temporal dynamics. Our exper-
iments posit the importance of making use of tem-
poral information available in tweets, which along
with the textual content provide valuable informa-
tion for the model to perform well on the task.
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