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Abstract 

Dimensional sentiment analysis aims to 
recognize continuous numerical values in 
multiple dimensions such as the valence-
arousal (VA) space. Compared to the cate-
gorical approach that focuses on sentiment 
classification such as binary classification 
(i.e., positive and negative), the dimensional 
approach can provide more fine-grained 
sentiment analysis. This study proposes a 
regional CNN-LSTM model consisting of 
two parts: regional CNN and LSTM to pre-
dict the VA ratings of texts. Unlike a con-
ventional CNN which considers a whole 
text as input, the proposed regional CNN 
uses an individual sentence as a region, di-
viding an input text into several regions 
such that the useful affective information in 
each region can be extracted and weighted 
according to their contribution to the VA 
prediction. Such regional information is se-
quentially integrated across regions using 
LSTM for VA prediction. By combining the 
regional CNN and LSTM, both local (re-
gional) information within sentences and 
long-distance dependency across sentences 
can be considered in the prediction process. 
Experimental results show that the proposed 
method outperforms lexicon-based, regres-
sion-based, and NN-based methods pro-
posed in previous studies. 

1 Introduction 

Sentiment analysis has been useful in the devel-
opment of online applications for customer re-
views and public opinion analysis (Pang and Lee 
2008; Calvo and D'Mello 2010; Liu 2012; Feld-
man 2013). In sentiment representation, the cate-

gorical approach represents emotional states as 
several discrete classes such as binary (i.e., posi-
tive and negative) or as multiple categories such 
as Ekman’s (1992) six basic emotions (anger, 
happiness, fear, sadness, disgust, and surprise). 
Classification algorithms can then be used to 
identify sentiment categories from texts.  

The dimensional approach represents emo-
tional states as continuous numerical values in 
multiple dimensions such as the valence-arousal 
(VA) space (Russell, 1980). The dimension of 
valence refers to the degree of positive and nega-
tive sentiment, whereas the dimension of arousal 
refers to the degree of calm and excitement. Both 
dimensions range from 1 (highly negative or 
calm) to 9 (highly positive or excited) based on 
the self-assessment manikin (SAM) annotation 
scheme (Bradley et al. 1994). For example, the 
following passage consisting of three sentences 
is associated with a valence-arousal rating of (2.5, 
7.8), which displays a high degree of negativity 
and arousal. 

(r1) A few days ago I checked into a franchise 
hotel. 

(r2) The front desk service was terrible, and 
they didn’t know much about local attrac-
tions. 

(r3) I would not recommend this hotel to a 
friend. 

Such high-arousal negative (or high-arousal posi-
tive) texts are usually of interest and could priori-
tized in product review systems. Dimensional 
sentiment analysis can accomplish this by recog-
nizing the VA ratings of texts and rank them ac-
cordingly, thus providing more intelligent and fi-
ne-grained sentiment applications. 
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Figure 1: System architecture of the proposed regional CNN-LSTM model. 

Research on dimensional sentiment analysis 
has addressed VA recognition at both the word-
level (Wei et al., 2011; Malandrakis et al., 2011; 
Yu et al., 2015) and the sentence-level (Paltoglou 
et al., 2013; Malandrakis et al., 2013). At the 
word-level, Wei et al. (2011) used linear regres-
sion to transfer VA ratings from English affec-
tive words to Chinese words. Malandrakis et al. 
(2011) used a kernel function to combine the 
similarity between words for VA prediction. Yu 
et al. (2015) used a weighted graph model to it-
eratively determine the VA ratings of affective 
words. At the sentence level, Paltoglou et al. 
(2013) adopted a lexicon-based method to calcu-
late the VA ratings of texts by averaging the VA 
ratings of affective words in the texts using a 
weighted arithmetic/geometric mean. 
Malandrakis et al. (2013) proposed a regression 
method that extracted n-gram with affective rat-
ings as features to predict VA values for texts.  

Recently, word embedding (Mikolov et al., 
2013a; Mikolov et al., 2013b) and deep neural 
networks (NN) such as convolutional neural 
networks (CNN) (Kim, 2014; Kalchbrenner et al., 
2014), recurrent neural networks (RNN) (Graves, 
2012; Irsoy and Cardie, 2014) and long short-
term memory (LSTM) (Wang et al., 2015; Liu et 
al., 2015) have been successfully employed for 

categorical sentiment analysis. In general, CNN 
is capable of extracting local information but 
may fail to capture long-distance dependency. 
LSTM can address this limitation by sequentially 
modeling texts across sentences. Such NN-based 
and word embedding methods have not been well 
explored for dimensional sentiment analysis. 

This study proposes a regional CNN-LSTM 
model consisting of two parts, regional CNN and 
LSTM, to predict the VA ratings of texts. We 
first construct word vectors for vocabulary words 
using word embedding. The regional CNN is 
then used to build text vectors for the given texts 
being predicted based on the word vectors. Un-
like a conventional CNN which considers a 
whole text as input, the proposed regional CNN 
uses individual sentences as regions, dividing an 
input text into several regions such that the use-
ful affective information in different regions can 
be extracted and weighted according to their con-
tribution to the VA prediction. For example, in 
the aforementioned example text, it would be 
useful for the system to emphasize the two sen-
tences/regions (r2) and (r3) containing negative 
affective information. Finally, such regional in-
formation is sequentially integrated across re-
gions using LSTM for VA prediction. By com-
bining the regional CNN and LSTM, both local 
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(regional) information within sentences and long-
distance dependency across sentences can be 
considered in the prediction process. 

The rest of this paper is organized as follows. 
Section 2 describes the proposed regional CNN-
LSTM model. Section 3 reports the evaluation 
results of the proposed method against lexicon-
based, regression-based, and NN-based methods. 
Conclusions are finally drawn in Section 4. 

2 Regional CNN-LSTM Model 

Figure 1 shows the overall framework of the 
proposed regional CNN-LSTM model. First, the 
word vectors of vocabulary words are trained 
from a large corpus using the word2vec toolkit. 
For each given text, the regional CNN model us-
es a sentence as a region to divide the given text 
into R regions, i.e. r1,…, ri, rj, rk,…, rR. In each 
region, useful affective features can be extracted 
once the word vectors sequentially pass through 
a convolutional layer and max pooling layer. 
Such local (regional) features are then sequen-
tially integrated across regions using LSTM to 
build a text vector for VA prediction. 

2.1 Convolutional Layer 

In each region, a convolutional layer is first used 
to extract local n-gram features. All word em-
beddings are stacked in a region matrix 

d VM ×∈ , where |V| is the vocabulary size of a 
region, and d is the dimensionality of word vec-
tors. For example, in Fig.1, the word vectors in 
the regions ri={wri 

1 , wri 
2 ,…,wri 

I }, rj={wrj 
1 ,wrj 

2 ,…, wrj 
J } 

and rk={wrk 
1 ,wrk 

2 ,…, wrk 
K } are combined to form 

the region matrices xri, xrj, and xrk. In each region, 
we use L convolutional filters to learn local n-
gram features. In a window of ω words xn:n+ω-1, a 
filter Fl (1≤l≤L) generates the feature map yl 

n as 
follows, 

 : 1( )l l l
n n ny f W bω+ −= +x   (1) 

where  is a convolutional operator, dW ω×∈
and b respectively denote the weight matrix and 
bias, ω is the length of the filter, d is the dimen-
sion of the word vector, and f is the ReLU func-
tion. When a filter gradually traverses from x1:ω-1 
to xN+ω-1:N, we get the output feature maps 

1 2 1, , ,l l l l
Ny y y ω− += …y of filter Fl. Given varying 

text lengths in the regions, yl may have different 
dimensions for different texts. Therefore, we de-
fine the maximum length of the CNN input in the 

corpora as the dimension N. If the input length is 
shorter than N, then several random vectors with 
a uniform distribution U(-0.25, 0.25) will be ap-
pended. 

2.2 Max-pooling Layer 

Max-pooling subsamples the output of the con-
volutional layer. The most common way to do 
pooling it to apply a max operation to the result 
of each filter. There are two reasons to use a 
max-pooling layer here. First, by eliminating 
non-maximal values, it reduces computation for 
upper layers. Second, it can extract the local de-
pendency within different regions to keep the 
most salient information. The obtained region 
vectors are then fed to a sequential layer. 

2.3 Sequential Layer 

To capture long-distance dependency across re-
gions, the sequential layer sequentially integrates 
each region vector into a text vector. Due to the 
problem of gradients vanishing or exploding in 
RNN (Bengio et al., 1994), LSTM is introduced 
in the sequential layer for vector composition. 
After the LSTM memory cell sequentially 
traverses through all regions, the last hidden state 
of the sequential layer is regarded as the text rep-
resentation for VA prediction. 

2.4 Linear Decoder 

Since the values in both the valence and arousal 
dimensions are continuous, the VA prediction 
task requires a regression. Instead of using a 
softmax classifier, a linear activation function 
(also known as a linear decoder) is used in the 
output layer, defined as, 

 d t dy W b= +x   (2) 

where xt is the text vector learned from the se-
quential layer, y is the degree of valence or 
arousal of the target text, and Wd and bd respec-
tively denote the weight and bias associated with 
the linear decoder. 

The regional CNN-LSTM model is trained by 
minimizing the mean squared error between the 
predicted y and actual y. Given a training set of 
text matrix X={x(1), x(2),…, x(m)}, and their VA 
ratings set y={y(1), y(2), …, y(m)}, the loss function 
is defined as 

 
2( ) ( )

1

1( , ) ( )
2

m
i i

i
L h y

m =

= −∑X y x   (3) 
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In the training phase, a back propagation (BP) 
algorithm with stochastic gradient descent (SGD) 
is used to learn model parameters. Details of the 
BP algorithm can be found in (LeCun et al., 
2012). 

3 Experiments 

This section evaluates the performance of the 
proposed regional CNN-LSTM model against 
lexicon-based, regression-based, and NN-based 
methods. 

Datasets. This experiment used two affective 
corpora. i) Stanford Sentiment Treebank (SST) 
(Socher et al., 2013) contains 8,544 training texts, 
2,210 test texts, and 1,101 validation texts. Each 
text was rated with a single dimension (valence) 
in the range of (0, 1). ii) Chinese Valence-
Arousal Texts (CVAT) (Yu et al., 2016) consists 
of 2,009 texts collected from social forums, 
manually rated with both valence and arousal 
dimensions in the range of (1, 9) using the SAM 
annotation scheme (Bradley et al. 1994). The 
word vectors for English and Chinese were re-
spectively trained using the Google News and 
Chinese wiki dumps (zhwiki) datasets. The di-
mensionality for both word vectors are 300. 

Experimental Settings. Two lexicon-based 
methods were used for comparison: weighted 
arithmetic mean (wAM) and weighted geometric 
mean (wGM) (Paltoglou et al., 2013), along with 
two regression-based methods: average values 
regression (AVR) and maximum values regres-
sion (MVR) (Malandrakis et al., 2013). The va-
lence ratings of English and Chinese words were 
respectively taken from the Extended ANEW 
(Warriner et al., 2013) and Chinese Valence-
Arousal Words (CVAW) lexicons (Yu et al., 

2016). A conventional CNN, RNN and LSTM 
were also implemented for comparison.  

Metrics. Performance was evaluated using the 
root mean square error (RMSE), mean absolute 
error (MAE), and Pearson correlation coefficient 
(r), defined as 

 Root mean square error (RMSE) 

( )2

1

n

i i
i

RMSE A P n
=

= −∑              (4) 

 Mean absolute error (MAE) 

1

1 | |
n

i i
i

MAE A P
n =

= −∑                   (5) 

 Pearson correlation coefficient (r) 

1

1 ( )( )
1

n
i i

i A P

A A P Pr
n σ σ=

− −
=

− ∑            (6) 

where Ai is the actual value, Pi is the predicted 
value, n is the number of test samples, A  and P  
respectively denote the arithmetic mean of A and 
P, and σ is the standard deviation. A lower 
RMSE or MAE and a higher r value indicates 
better prediction performance. A t-test was used 
to determine whether the performance difference 
was statistically significant. 

SST (English) 
Valence RMSE MAE r 

Lexicon-wAM 2.018 1.709 0.350 
Lexicon-wGM 1.985 1.692 0.385 

Regression-AVR 1.856 1.542 0.455 
Regression-MVR 1.868 1.551 0.448 

CNN 1.489 1.184 0.706 
RNN 1.976 1.715 0.401 

LSTM 1.444 1.151 0.717 
Regional CNN-LSTM 1.341* 0.987* 0.778* 

 * Regional CNN-LSTM vs LSTM significantly different (p<0.05) 

Table 1: Comparative results of different methods in SST. 

CVAT (Chinese) 
Valence RMSE MAE r 

Lexicon - wAM 1.884 1.632 0.406 
Lexicon - wGM 1.843 1.597 0.418 

Regression-AVR 1.685 1.374 0.476 
Regression-MVR 1.697 1.392 0.468 

CNN 1.093 0.880 0.645 
RNN 1.424 1.262 0.493 

LSTM 1.135 0.939 0.641 
Regional CNN-LSTM 1.026* 0.842* 0.781* 

Arousal RMSE MAE r 
Lexicon-wAM 1.232 0.985 0.268 
Lexicon-wGM 1.243 0.996 0.263 

Regression-AVR 1.154 0.862 0.286 
Regression-MVR 1.128 0.842 0.289 

CNN 0.991 0.788 0.453 
RNN 1.024 0.816 0.290 

LSTM 0.945 0.751 0.472 
Regional CNN-LSTM 0.874* 0.689* 0.557* 

 * Regional CNN-LSTM vs LSTM significantly different (p<0.05) 

Table 2. Comparative results of different methods in CVAT. 
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Comparative Results. Tables 1 and 2 respec-
tively present the comparative results of the re-
gional CNN-LSTM against several methods for 
VA prediction of texts in both English and Chi-
nese corpora. For the lexicon-based methods, 
wGM outperformed wAM, which is consistent 
with the results presented in (Paltoglou et al., 
2013). Instead of using the VA ratings of words 
to directly measure those of texts, the regression-
based methods learned the correlations between 
the VA ratings of words and texts, thus yielding 
better performance. Once the word embedding 
and deep learning techniques were introduced, 
the performance of NN-based methods (except 
RNN) jumped dramatically. In addition, the pro-
posed regional CNN-LSTM outperformed the 
other NN-based methods, indicating the effec-
tiveness of sequentially integrating the regional 
information across regions. Another observation 
is that the Pearson correlation coefficient of pre-
diction in arousal is lower than that for the va-
lence prediction, indicating that arousal is more 
difficult to predict. 

4 Conclusion 

This study presents a regional CNN-LSTM mod-
el to predict the VA ratings of texts. By capturing 
both local (regional) information within sentenc-
es and long-distance dependency across sentenc-
es, the proposed method outperformed regres-
sion- and conventional NN-based methods pre-
sented in previous studies. Future work will fo-
cus on the use of a parser to identify regions so 
that the structural information can be further in-
corporated to improve the prediction perfor-
mance. 
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