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Abstract

In word alignment certain source words
are only needed for fluency reasons and
do not have a translation on the target
side. Most word alignment models as-
sume a target NULL word from which
they generate these untranslatable source
words.  Hypothesising a target NULL
word is not without problems, however.
For example, because this NULL word has
a position, it interferes with the distribu-
tion over alignment jumps. We present a
word alignment model that accounts for
untranslatable source words by generat-
ing them from preceding source words.
It thereby removes the need for a tar-
get NULL word and only models align-
ments between word pairs that are actu-
ally observed in the data. Translation ex-
periments on English paired with Czech,
German, French and Japanese show that
the model outperforms its traditional IBM
counterparts in terms of BLEU score.

1 Introduction

When the IBM models (Brown et al., 1993) were
designed, some way of accounting for words that
likely have no translation was needed. The mod-
ellers back then decided to introduce a NULL
word on the target (generating) side!. All words
on the source side without a proper target transla-
tion would then be generated by that NULL word.

While this solution is technically valid, it ne-
glects that those untranslatable words are required
for source fluency. Moreover, the NULL word,
although hypothetical in nature, does have a po-
sition. It is well-known that this NULL posi-

!The target side is often identified with English and the
source side is usually taken to be French.
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tion is problematic for distortion-based alignment
models. Alignments to NULL demand a special
treatment as they would otherwise induce very
long jumps that one does not usually observe in
distortion-based alignment models. Examples of
this can be found in Vogel et al. (1996), who drop
the NULL word entirely and thus force all source
words to align lexically, and Och and Ney (2003),
who choose a fixed NULL probability.

In the present work, we introduce a family of
IBM-style alignment models that can express de-
pendencies between translated and untranslated
source words. The models do not use NULL
words and instead allow untranslatable source
words to be generated from translated words in
their context. This is achieved by modelling
source word collocations. From a technical point
of view the model can be seen as a mixture of an
alignment and a language model.

2 IBM models 1 and 2

Here, we quickly review the IBM alignment mod-
els 1 and 2 (Brown et al., 1993). We assume a ran-
dom variable E over the English (target) vocabu-
laryz, a variable F' over the French (source) vocab-
ulary and a variable A over alignment links®. The
IBM models assign probabilities to alignment con-
figurations and source sentences given the target
side. Under the assumption that all source words
are conditionally independent given the alignment
links, these probabilities factorise as

P(f",al"lep) = P(a?) [[ P(filea,) (1)
j=1

where :B’f is a vector of outcomes x,...,x; and

eq; denotes the English word that the French word

’Crucially, this vocabulary includes a NULL word.
3We denote realisations of random variables by the corre-
sponding lower case letters.
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in the j** position (f;) is aligned to under af".

In IBM model 1 P(a}*) is uniform. In IBM
model 2, all alignment links a; are assumed to
be independent and follow a categorical distribu-
tion. Here, we choose to parametrise this categori-
cal based on the distance between the two words to
be aligned, as has been done by Vogel et al. (1996)
and Liang et al. (2006). Thus, in our IBM model 2

P(am:f[lpmj):jﬁlp(i—{ |) @

where 1 is the position of the English word that a;
links to and the values [ and m stand for the target
and source sentence lengths. Notice that there is a
target position ¢ = 0 for the NULL word. Align-
ment to this NULL position often causes unusually
long alignment jumps.
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3 Removing the NULL word
3.1

Our model consists of an alignment model com-
ponent (which is either IBM model 1 or 2 without
NULL words) and a language model component.
It also contains a random variable Z that indicates
which component to use. If Z = 0 we use the
alignment model, if Z = 1 we instead use the lan-
guage model. We generate each z; conditional on
fj—1. By making the outcome z; depend on f;_1,
we allow the model to capture the tendency of in-
dividual source words to be part of a collocation,
i.e. to be followed by a closely related word. A
similar strategy has been employed for topic mod-
elling by Griffiths et al. (2007).

When generating the source side, the model
does the following for each source word f;:

Model description

1. Depending on the previous source word f;_1,
draw z;.

. If z; = 1, generate f; from f;_1 and choose
a; according to P(a;). Otherwise, if z; = 0,
generate f; from the target side and choose a;
according to the probability that it has under
the relevant alignment model without a target
NULL word.

Our model thus induces a joint probability dis-
tribution of the form

P(f",af", z{"[e})

(3)
= P(aan) HP(Zj‘fj—l)P<fj’eaj7fj—lazj)

Jj=1

170

W e Y
q z a
Vy
Fry—(
Sm
- J
S

- J

Figure 1: A graphical representation of our model
for S sentence pairs. We use V. to denote the
source/target vocabulary sizes and D to denote the
number of possible alignment link configurations.
Furthermore, S,,/; is the number of source/target
words in the current sentence and f,,., the source
word preceding the one that we currently generate.

where it is crucial to note that there is no Ej
variable, standing for the NULL word, anymore.
Therefore, jumps to a NULL position do not need
to be modelled. Notice further that the formula-
tion of our model is general enough to be readily
extensible to an HMM alignment model (Vogel et
al., 1996).

Depending on the value of z;, F} is distributed
either according to an alignment (4) or a language
model* (5).

P(fj|eaj7fj—1’zj =0)= P(fj‘eaj)
P(filea;, fi-1,25 = 1) = P(f;fj-1)

3.2 The full model

Our full model is a Bayesian model, meaning that
we treat all model parameters as random variables
that are drawn from prior distributions. A graphi-
cal depiction of the model can be found in Figure
1. We impose Dirichlet priors on the translation
(0c), language model (6y) and distortion parame-
ters (#,). This has been done before and improved
the standard IBM models.

In order to be able to bias the model against us-
ing the language model component (5) too often
and instead make it prefer the alignment model
component (4), we impose a Beta prior on the
Bernoulli distributions over component choices.
In effect, the model will only explain a source
word with the language model if there is a lot of

4
&)

“We use a bigram LM to avoid conditioning Z on longer
(n — 1)-grams.



evidence that this word cannot be translated from
the target side. The full model can be summarised
as follows:

Oe,,; ~ Dir(a)
@fj—l ~ Dir(p3)

Q ~ Beta(s,r) .

Fjle,a;,z; = 0~ Cat(0e,,)
Fjlfj-1,2j =1~ Cat(8y, )
Zj|fj—1 ~ Bernoulli(q)

For IBM model 1, A; is uniformly distributed
whereas for model 2 we have

A~ Cat(6,) ©, ~ Dir(y) .

3.3 Inference

We use a Gibbs sampler to perform inference of
the alignment and choice variables. Since our pri-
ors are conjugate to the model distributions, we
integrate over the model parameters, giving us a
collapsed sampler’. The sampler alternates be-
tween sampling alignment links A and component
choices Z.

The predictive posterior probabilities for Z; =
0 and Z; = 1 are given in Equations (6) and (7)
(up to proportionality). We use c¢(-) as a (con-
ditional) count function that counts how often an
outcome has been observed in a given context. We
furthermore use V; to denote the French (source)
vocabulary size. To ease notation, we also in-
troduce the context set C_ X; which contains the
current values of all variables in our model except
X and the set H which simply contains all hyper-
parameters.

P(Zj =0[C_z;,H) o ©)
c(filea,, 2 = 0) +
(c(z = 0[fj=1) + s) P(a;) c(ea, |z = 0) + aV;
P (ZJ ‘C Zj» ) x 7
(c(z = 1|f;_1) + r) YillizLz =D + 5

C(Z = 1|f] 1) +,6Vf

When Z; = 0, the predictive probability for align-
ment link A; is proportional to Equation (8).

P (a;|C-z,,—a,,Z; = 0,H)
a‘)c(fj]eaj,ZZO)-i-a
7 cleq,|z =0) + aVy

)

P

Derivations of samplers similar to ours can be found in
the appendices of Mermer et al. (2013) and Griffiths et al.
(2007). We omit the derivation here for space reasons.
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When Z; = 1, it is simply proportional to P(a;).
In the case of IBM model 1, P(a;) is a constant.
For IBM model 2, we use

P(aj)occ(z’— ViJ) +

where [ and m are the target and source sentence
lengths. Notice that target positions start at 1 as
we do not use a NULL word.

Notice that a naive implementation of our sam-
pler is unpractically slow. We therefore augment
the sampler with an auxiliary variable (Tanner and
Wong, 1987) that uniformly chooses only one pos-
sible new assignment per sampled link. The sam-
pling complexity, which would normally be lin-
ear in the size of the target sentence, thus becomes
constant. In practice this speed up the sampler by
several orders of magnitude, making our aligner
as fast as Giza++. Unfortunately, this strategy also
slightly impairs the mobility of our sampler.

3.4 Decoding

Our samples contain assignments of the A and Z
variables. If for a word f; we have z; = 1, we
treat the word as not aligned. We then use maxi-
mum marginal decoding (Johnson and Goldwater,
2009) over alignment links to generate final word
alignments. This means that we align each source
word to the target word it has been aligned to most
often in the samples. If the word was unaligned in
most samples, we leave it unaligned in the output
alignment.

4 Experiments and results

We present translation experiments on English
paired with German, French, Czech and Japanese,
thereby covering four language families. We com-
pare our model and the Bayesian IBM models 1
and 2 of Mermer et al. (2013) against IBM model
2 as a baseline.

4.1 Experiments

Data We use the news commentary data from
the WMT 2014 translation task® for German,
French and Czech paired with English. We use
newstest-2013 as development data and we use the
newstest-2014 for testing. We use all available
monolingual data from WMT 2014 for language
modelling. All data are truecased and sentences

*http://statmt.org/wnt14/
translation-task.html



[ Model [[ En-De [ En-Fr [ En-Cs [ En-Ja [[ De-En [ Fr-En [ Cs-En | Ja-En |
Brown et al. (model 2) 1456 | 27.16 | 13.74 | 25.78 18.12 | 26.69 | 18.77 | 23.29
Mermer et al. (model 1) -0.09 -0.64 | +0.38 | -0.13 +0.32 | -0.92 | +0.66 | -0.31
Mermer et al. (model 2) +1.07 | -0.17 | +1.76 | +0.39 +1.63 | -1.04 | +1.63 | -0.21
This work (model 1) -0.03 -0.79 | -042 | +0.15 +0.29 | -1.49 | +045 | -0.65
This work (model 2) +0.92 | +1.32 | +1.66 | +1.69 || +1.73 | +2.01 | +1.42 | +2.24
Giza +0.96 | +0.23 | +1.58 | +2.97 +2.27 | 4226 | +1.96 | +2.73
fastAlign +0.88 | +0.70 | +1.47 | +1.97 +2.27 | +1.90 | +1.86 | +2.63

(a) Directional: alignments obtained in target-to-source direction.

[ Model [[ En-De [ En-Fr [ En-Cs [ En-Ja [[ De-En [ Fr-En [ Cs-En | Ja-En |
Brown et al. (model 2) +0.84 | +0.77 | +1.14 | +3.02 || +1.80 | +1.77 | +1.15 | +2.95
Mermer et al. (model 1) +0.52 | +0.80 | +1.30 | +3.19 +1.51 | +1.60 | +1.77 | +2.44
Mermer et al. (model 2) +0.63 | +0.33 | +1.94 | +3.00 +2.02 | +1.22 | +2.34 | +2.48
This work (model 1) +0.39 | +0.23 | +1.31 | +43.33 || +1.61 | +0.98 | +1.87 | +2.56
This work (model 2) +1.07 | +1.47 | +2.08 | +2.65 +2.30 | +2.19 | +2.13 | +3.21
Giza +1.59 | +0.87 | +1.70 | +4.24 || +2.54 | +2.08 | +2.36 | +3.94
fastAlign +1.39 | +1.23 | +1.87 | +2.47 +2.44 | +2.06 | +2.21 | +3.58

(b) Symmetrised: alignments obtained in both directions independently and heuristically symmetrised (grow-diag-final-and).

Table 1: Translation results from and into English. Alignments in the top (1a) and bottom (1b) tables
were obtained in the target-to-source direction and symmetrised, respectively. Differences are computed
with respect to the directional IBM model 2 in its original parameterisation (Brown et al., 1993). The

best Bayesian model in each column is boldfaced.

with more than 100 words discarded as is stan-
dardly done in SMT.

The Japanese training data consist of 200.000
randomly extracted sentence pairs from the
NTCIR-8 Patent Translation Task. The full data
are used for language modelling. We use the
NTCIR-7 dev sets for tuning and the NTCIR-9 test
set for testing.’

Training The maximum likelihood IBM model
2 is initialized with model 1 parameter estimates
and trained for 5 EM iterations. Following Mer-
mer and Saraglar (2011), we initialize the Gibbs
samplers of all Bayesian models with the Viterbi
alignment from IBM model 1. We run each sam-
pler for 1000 iterations and take a sample after ev-
ery 25" iteration. We do not use burn-in.®

Hyperparameters All Bayesian models are
trained with « 0.0001 and 8 = 0.0001 to
induce sparse lexical distributions. We also set
] 1 and r 0.1 when IBM1 is the align-
ment component in our model. This has the ef-
fect of biasing the model towards using the align-

"The Japanese data was provided to us by a colleague with
the pre-processing steps already performed, with sentences
shortened to at most 40 words. Our algorithm can handle sen-
tences of any length and there is actually no need to restrict
the sentence lengths.

8Burn-in is simply a heuristic that is not guaranteed to
improve the samples in any way. See http://users.
stat.umn.edu/~geyer/mcmc/burn.html for fur-
ther details.
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ment component. For the IBM2 version we even
set 7 = 0.01 since IBM2 is a more trustworthy
alignment model. For IBM2, we furthermore set
~v = 1 to obtain a flat distortion prior.

Observe that experiments presented here use
the same fixed hyperparameters for all language
pairs. We tried to add another level to our model
by imposing Gamma priors on the hyperparam-
eters. The hyperparameters were then inferred
using slice sampling after each Gibbs iteration.
When run on the German-English and Czech-
English data, this strategy increased the posterior
probability of the states visited by our sampler but
had no effect on BLEU. This may indicate that
either the hand-chosen hyperparameters are ade-
quate for the task or that the model generally per-
forms well for a large range of hyperparameters.

Translation We train Moses systems (Koehn
et al., 2007) with 5-gram language models with
modified Kneser-Ney-smoothing using KenLM
(Heafield et al., 2013) and orientation-based lex-
icalised reordering. We tune the systems with
MERT (Och, 2003) on the dev sets. We report the
BLEU score (Papineni et al., 2002) for all models
averaged over 5 MERT runs.

4.2 Results

We report the translation results in Tables (1a)
and (1b). Results of the full Giza++ pipeline and
fastAlign (Dyer et al., 2013) are reported as a com-



parison standard. All symmetrised results were
obtained using the grow-diag-final-and
heuristic.

Using IBM2 as an alignment component, our
model mostly outperforms the standard IBM mod-
els and their Bayesian variants. Importantly, the
improvement that our model 2 achieves over its
model 1 variant is much larger than the difference
between the corresponding models of Mermer et
al. (2013). This indicates that our model makes
better use of the distortion distribution that is not
altered by NULL alignments. We also observe that
our model gains relatively little from symmetrisa-
tion, likely because it is a very strong model al-
ready. It is interesting that although our model 2
does not use fertility parameters or dependencies
between alignment links, it often approaches the
performance of Giza which does use these fea-
tures. Moreover, it also approaches the perfor-
mance of fastAlign which does not use fertility nor
dependencies between alignment links, but has a
stronger inductive bias with respect to distortion.

5 Discussion and future work

We have presented an IBM-style word alignment
model that does not need to hypothesise a NULL
word as it explains untranslatable source words by
grouping them with translated words. This also
leads to a cleaner handling of distortion probabili-
ties.

In our present work, we have only considered
IBM models 1 and 2. As we have mentioned al-
ready, our model can easily be extended with the
HMM alignment model. We are currently explor-
ing this possibility. Our models also allow sym-
metrisation (Liang et al., 2006) of all translation
and distortion parameters where before the NULL
distortion parameters had to be fixed. We therefore
plan to extend them towards model-based instead
of heuristic alignment symmetrisation.

A limitation of our model is that it is only ca-
pable of modelling left-to-right linear dependen-
cies in the source language. In languages like Ger-
man or English, however, where an adjective or
determiner is selected by the following noun, this
may not be appropriate to model selection biases
amongst neighbouring words. An interesting ex-
tension to our model is thus to add more structure
to it such that it will be able to capture more com-
plex source side dependencies.

Another concern is the inference in our model.

Using the auxiliary variable sampler, inference be-
comes very fast but may sacrifice performance.
This is why we are interested in improving the
inference method, e.g. by using a more mobile
sampler or by employing a variational Bayes algo-
rithm.

The software used in our experiments can
be downloaded from https://github.com/
philschulz/Aligner.
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