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Abstract

Named entity recognition, and other in-
formation extraction tasks, frequently use
linguistic features such as part of speech
tags or chunkings. For languages where
word boundaries are not readily identified
in text, word segmentation is a key first
step to generating features for an NER
system. While using word boundary tags
as features are helpful, the signals that
aid in identifying these boundaries may
provide richer information for an NER
system. New state-of-the-art word seg-
mentation systems use neural models to
learn representations for predicting word
boundaries. We show that these same rep-
resentations, jointly trained with an NER
system, yield significant improvements in
NER for Chinese social media. In our ex-
periments, jointly training NER and word
segmentation with an LSTM-CRF model
yields nearly 5% absolute improvement
over previously published results.

1 Introduction

Entity mention detection, and more specifically
named entity recognition (NER) (Collins and
Singer, 1999; McCallum and Li, 2003; Nadeau
and Sekine, 2007; Jin and Chen, 2008; He et al.,
2012), has become a popular task for social media
analysis (Finin et al., 2010; Liu et al., 2011; Ritter
et al., 2011; Fromreide et al., 2014; Li et al., 2012;
Liu et al., 2012a). Many downstream applications
that use social media, such as relation extraction
(Bunescu and Mooney, 2005) and entity linking
(Dredze et al., 2010; Ratinov et al., 2011), rely
on first identifying mentions of entities. Not sur-
prisingly, accuracy of NER systems in social me-
dia trails state-of-the-art systems for news text and
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other formal domains. While this gap is shrinking
in English (Ritter et al., 2011; Cherry and Guo,
2015), it remains large in other languages, such as
Chinese (Peng and Dredze, 2015; Fu et al., 2015).

One reason for this gap is the lack of robust
up-stream NLP systems that provide useful fea-
tures for NER, such as part-of-speech tagging or
chunking. Ritter et al. (2011) annotated Twitter
data for these systems to improve a Twitter NER
tagger, however, these systems do not exist for so-
cial media in most languages. Another approach
has been that of Cherry and Guo (2015) and Peng
and Dredze (2015), who relied on training unsu-
pervised lexical embeddings in place of these up-
stream systems and achieved state-of-the-art re-
sults for English and Chinese social media, respec-
tively. The same approach was also found helpful
for NER in the news domain (Collobert and We-
ston, 2008; Turian et al., 2010; Passos et al., 2014)

In Asian languages like Chinese, Japanese and
Korean, word segmentation is a critical first step
for many tasks (Gao et al., 2005; Zhang et al.,
2006; Mao et al., 2008). Peng and Dredze (2015)
showed the value of word segmentation to Chinese
NER in social media by using character positional
embeddings, which encoded word segmentation
information.

In this paper, we investigate better ways to in-
corporate word boundary information into an NER
system for Chinese social media. We combine the
state-of-the-art Chinese word segmentation sys-
tem (Chen et al., 2015) with the best Chinese so-
cial media NER model (Peng and Dredze, 2015).
Since both systems used learned representations,
we propose an integrated model that allows for
joint training learned representations, providing
more information to the NER system about hid-
den representations learned from word segmenta-
tion, as compared to features based on segmenta-
tion output. Our integrated model achieves nearly
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Figure 1: The joint model for Chinese word segmentation and NER. The left hand side is an LSTM module for word segmen-
tation, and the right hand side is a traditional feature-based CRF model for NER. Note that the linear chain CRF for NER has
both access to the feature extractor specifically for NER and the representations produced by the LSTM module for word seg-
mentation. The CRF in this version is a log-bilinear CRF, where it treats the embeddings and hidden vectors inputs as variables
and modifies them according to the objective function. As a result, it enables propagating the gradients back into the LSTM to
adjust the parameters. Therefore, the word segmentation and NER training share all the parameters of the LSTM module. This

facilitates the joint training.

a 5% absolute improvement over the previous best
results on both NER and nominal mentions for
Chinese social media.

2 Model

We propose a model that integrates the best Chi-
nese word segmentation system (Chen et al., 2015)
using an LSTM neural model that learns represen-
tations, with the best NER model for Chinese so-
cial media (Peng and Dredze, 2015), that supports
training neural representations by a log-bilinear
CRF. We begin with a brief review of each system.

2.1 LSTM for Word Segmentation

Chen et al. (2015) proposed a single layer, left
to right LSTM for Chinese word segmentation.
An LSTM is a recurrent neural network (RNN)
which uses a series of gates (input, forget and out-
put gate) to control how memory is propagated in
the hidden states of the model. For the Chinese
word segmentation task, each Chinese character
is initialized as a d dimensional vector, which the
LSTM will modify during its training. For each in-
put character, the model learns a hidden vector h.
These vectors are then used with a biased-linear
transformation to predict the output labels, which
in this case are Begin, Inside, End, and Singleton.
A prediction for position ¢ is given as:

y® = w,n® + b, (1)
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where W, is a matrix for the transformation pa-
rameters, b, is a vector for the bias parameters, and
h® is the hidden vector at position ¢. To model
the tag dependencies, they introduced the transi-
tion score A;; to measure the probability of jump-
ing fromtag: € T'totagj € T

We used the same model as Chen et al. (2015)
trained on the same data (segmented Chinese news
article). However, we employed a different train-
ing objective. Chen et al. (2015) employed a
max-margin objective, however, while they found
this objective yielded better results, we observed
that maximum-likelihood yielded better segmen-
tation results in our experiments'. Additionally,
we sought to integrate their model with a log-
bilinear CRF, which uses a maximum-likelihood
training objective. For consistency, we trained the
LSTM with a maximum-likelihood training objec-
tive as well. The maximum-likelihood CRF objec-
tive function for predicting segmentations is:

'Chen et al. (2015) preprocessed the data specifically for
Chinese word segmentation, such as replacing English char-
acters, symbols, dates and Chinese idioms as special sym-
bols. Our implementation discarded all these preprocessing
steps, which while it achieved nearly identical results on de-
velopment data (as inferred from their published figure), it
lagged in test accuracy by 2.4%. However, we found that
while these preprocessing steps improved segmentation, they
hurt NER results as they resulted in a mis-match between the
segmentation and NER input data. Since our focus is on im-
proving NER, we do not use their preprocessing steps in this

paper.
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Example pairs (ys,xs) are word segmented
sentences, k£ indexes examples, and ¢ indexes
positions in examples. Ts(y* ;,yF) are stan-
dard transition probabilities learned by the CRF?.
The LSTM parameters A, are used to produce

s(y¥; 2k, As), the emission probability of the la-
bel at position ¢ for input sentence k, which is ob-
tained by taking a soft-max over (1). We use a
first-order Markov model.

2.2 Log-bilinear CRF for NER

Peng and Dredze (2015) proposed a log-bilinear
model for Chinese social media NER. They used
standard NER features along with additional fea-
tures based on lexical embeddings. By fine-tuning
these embeddings, and jointly training them with
a word2vec (Mikolov et al., 2013) objective, the
resulting model is log-bilinear.

Typical lexical embeddings provide a single
embedding vector for each word type. However,
Chinese text is not word segmented, making the
mapping between input to embedding vector un-
clear. Peng and Dredze (2015) explored several
types of representations for Chinese, including
pre-segmenting the input to obtain words, using
character embeddings, and a combined approach
that learned embeddings for characters based on
their position in the word. This final representa-
tion yielded the largest improvements.

We use the same idea but augmented it with
LSTM learned representations, and we enable in-
teraction between the CRF and the LSTM param-
eters. More details are described in (§2.3).

2.3 Using Segmentation Representations to
Improve NER

The improvements provided by character position
embeddings demonstrated by Peng and Dredze
(2015) indicated that word segmentation informa-
tion can be helpful for NER. Embeddings aside, a
simple way to include this information in an NER
system would be to add features to the CRF using
the predicted segmentation labels as features.
However, these features alone may overlook
useful information from the segmentation model.

The same functionality as A;; in the model of Chen et
al. (2015).
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Previous work showed that jointly learning dif-
ferent stages of the NLP pipeline helped for Chi-
nese (Liu et al., 2012b; Zheng et al., 2013). We
thus seek approaches for deeper interaction be-
tween word segmentation and NER models. The
LSTM word segmentor learns two different types
of representations: 1) embeddings for each charac-
ter and 2) hidden vectors for predicting segmenta-
tion tags. Compressing these rich representations
down to a small feature set imposes a bottleneck
on using richer word segmentation related infor-
mation for NER. We thus experiment with includ-
ing both of these information sources directly into
the NER model.

Since the log-bilinear CRF already supports
joint training of lexical embeddings, we can also
incorporate the LSTM output hidden vectors as
dynamic features using a joint objective function.

First, we augment the CRF with the LSTM pa-
rameters as follows:

1

»Cn(yn; Tn, @) = K

1
2 les 7
+ ZAij(y,k{, $27 Ew, hw)]a
J

3

where k indexes instances, j positions, and

Fi(y" 2" ew, hw) =Y fi(yi1, 41, 2", ew, hu, i)
i=1

represents the feature functions. These features
now depend on the embeddings learned by the
LSTM (e,,) and the LSTM’s output hidden vectors
(hy). Note that by including h,, alone we create
dependence on all LSTM parameters on which the
hidden states depend (i.e. the weight matrices).
We experiment with including input embeddings
and output hidden vectors independently, as well
as both parameters together. An illustration of the
integrated model is shown in Figure 1.

Joint Training In our integrated model, the
LSTM parameters are used for both predicting
word segmentations and NER. Therefore, we con-
sider a joint training scheme. We maximize a
(weighted) joint objective:

ﬁjoint(@) = AL (ys§ Ls, 9) + £n(yn§ Ln, @)
4
where A trades off between better segmentations
or better NER, and © includes all parameters used
in both models. Since we are interested in improv-

ing NER we consider settings with A < 1.



Named Entity Nominal Mention
Dev Test Dev Test
Method Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

1 CRF with baseline features 60.27 25.43 35.77 57.47 25.77 35.59 72.06 32.56 44.85 59.84 23.55 33.80

2+ Segment Features 62.34 27.75 38.40 58.06 27.84 37.63 58.50 38.87 46.71 47.43  26.77 34.23
"3 P&Dbest NER model | 57.41 35.84 44.13 | 57.98 35.57 44.09 | 72.55 36.88 48.90 | 63.84 29.45 40.38

4 + Segment Features 47.40  42.20 44.65 48.08 38.66 42.86 76.38 36.54 49.44 63.36  26.77 37.64
"5 P &D w/Char Embeddings | 58.76 32.95 42.22 | 57.89 34.02 42.86 | 66.88 35.55 46.42 | 55.15 29.35 38.32

6 + Segment Features 51.47 40.46 45.31 52.55 37.11 43.50 65.43 40.86 50.31 54.01 32.58 40.64
"7 Pipeline Seg. Repr. + NER | 64.71 38.14 48.00 | 64.22 36.08 46.20 | 69.36 39.87 50.63 | 56.52 33.55 42.11

8 Jointly LSTM w/o feat. 59.22  35.26 44.20 60.00 35.57 44.66 60.10 39.53 47.70 56.90 31.94 40.91
"9 Jointly Train Char. Emb. | 64.21 35.26 45.52 | 63.16 37.11 46.75 | 73.55 37.87 50.00 | 65.33 31.61 42.61

10 Jointly Train LSTM Hidden 61.86 34.68 44.44 63.03 38.66 47.92 67.23  39.53 49.79 60.00 33.87 43.30

11 Jointly Train LSTM + Emb. 59.29 38.73 46.85 63.33 39.18 48.41 61.61 43.19 50.78 58.59 37.42 45.67

Table 1: NER results for named and nominal mentions on dev and test data.

3 Parameter Estimation

We train all of our models using stochastic gradi-
ent descent (SGD.) We train for up to 30 epochs,
stopping when NER results converged on dev data.
We use a separate learning rate for each part of
the joint objective, with a schedule that decays the
learning rate by half if dev results do not improve
after 5 consecutive epochs. Dropout is introduced
in the input layer of LSTM following Chen et al.
(2015). We optimize two hyper-parameters using
held out dev data: the joint coefficient A in the in-
terval [0.5, 1] and the dropout rate in the interval
[0,0.5]. All other hyper-parameters were set to the
values given by Chen et al. (2015) for the LSTM
and Peng and Dredze (2015) for the CRF.

We train the joint model using an alternating op-
timization strategy. Since the segmentation dataset
is significantly larger than the NER dataset, we
subsample the former at each iteration to be the
same size as the NER training data, with different
subsamples in each iteration. We found subsam-
pling critical and it significantly reduced training
time and allowed us to better explore the hyper-
parameter space.

We initialized LSTM input embeddings with
pre-trained  character-positional ~ embeddings
trained on 112,971,734 Weibo messages to ini-
tialize the input embeddings for LSTM. We used
word2vec (Mikolov et al., 2013) with the same
parameter settings as Peng and Dredze (2015) to
pre-train the embeddings.

4 Experiments and Analysis

4.1 Datasets

We use the same training, development and test
splits as Chen et al. (2015) for word segmentation
and Peng and Dredze (2015) for NER.

Word Segmentation The segmentation data is
taken from the SIGHAN 2005 shared task. We
used the PKU portion, which includes 43,963
word sentences as training and 4,278 sentences as
test. We did not apply any special preprocessing.

NER This dataset contains 1,890 Sina Weibo
messages annotated with four entity types (per-
son, organization, location and geo-political en-
tity), including named and nominal mentions. We
note that the word segmentation dataset is signifi-
cantly larger than the NER data, which motivates
our subsampling during training (§3).

4.2 Results and Analysis

Table 1 shows results for NER in terms of preci-
sion, recall and F1 for named (left) and nominal
(right) mentions on both dev and test sets. The
hyper-parameters are tuned on dev data and then
applied on test. We now explain the results.

We begin by establishing a CRF baseline (#1)
and show that adding segmentation features helps
(#2). However, adding those features to the full
model (with embeddings) in Peng and Dredze
(2015) (#3) did not improve results (#4). This is
probably because the character-positional embed-
dings already carry segmentation information. Re-
placing the character-positional embeddings with
character embeddings (#5) gets worse results than
(#3), but benefits from adding segmentation fea-
tures (#6). This demonstrates both that word seg-
mentation helps and that character-positional em-
beddings effectively convey word boundary infor-
mation.

We now consider our model of jointly training
the character embeddings (#9), the LSTM hidden
vectors (#10) and both (#11). They all improve
over the best published results (#3). Jointly train-
ing the LSTM hidden vectors (#10) does better
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than jointly training the embeddings (#9), proba-
bly because they carry richer word boundary in-
formation. Using both representations achieves
the single best result (#11): 4.3% improvement on
named and 5.3% on nominal mentions F1 scores.

Finally, we examine how much of the gain is
from joint training versus from pre-trained seg-
mentation representations. We first train an LSTM
for word segmentation, then use the trained em-
beddings and hidden vectors as inputs to the log-
bilinear CRF model for NER, and fine tune these
representations. This (#7) improved test F1 by
2%, about half of the overall improvements from
joint training.

5 Discussion

Huang et al. (2015) first proposed recurrent neural
networks stacked with a CRF for sequential tag-
ging tasks, as was applied to POS, chunking and
NER tasks. More recent efforts have been made
to add character level modeling and explore dif-
ferent types of RNNs (Lample et al., 2016; Ma
and Hovy, 2016; Yang et al., 2016). These meth-
ods have achieved state-of-the-art results for NER
on English news and several other Indo-European
languages. However, this work has not considered
languages that require word segmentation, nor do
they consider social media.

We can view our method as multi-task learn-
ing (Caruana, 1997; Ando and Zhang, 2005; Col-
lobert and Weston, 2008), where we are using
the same learned representations (embeddings and
hidden vectors) for two tasks: segmentation and
NER, which use different prediction and decod-
ing layers. Result #8 shows the effect of exclud-
ing the additional NER features and just sharing
a jointly trained LSTM?. While this does not per-
form as well as adding the additional NER features
(#11), it is impressive that this simple architec-
ture achieved similar F1 as the best results in Peng
and Dredze (2015). While we may expect both
NER and word segmentation results to improve,
we found the segmentation performances of the
best joint model tuned for NER lose to the stand
alone word segmentation model (F1 of 90.7% v.s.
93.3%). This lies in the fact that tuning A means
choosing between the two tasks; no single setting
achieved improvements for both, which suggests
further work is needed on better model structures

3This reduces to the multi-task setting of Yang et al.
(2016).
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and learning.

Second, our segmentation data is from the news
domain, whereas the NER data is from social me-
dia. While it is well known that segmentation sys-
tems trained on news do worse on social media
(Duan et al., 2012), we still show large improve-
ments in applying our model to these different do-
mains. It may be that we are able to obtain better
results in the case of domain mismatch because we
integrate the representations of the LSTM model
directly into our CREF, as opposed to only using the
predictions of the LSTM segmentation model. We
plan to consider expanding our model to explicitly
include domain adaptation mechanisms (Yang and
Eisenstein, 2015).
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