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Abstract

We present a natural language genera-
tor based on the sequence-to-sequence ap-
proach that can be trained to produce natu-
ral language strings as well as deep syntax
dependency trees from input dialogue acts,
and we use it to directly compare two-step
generation with separate sentence plan-
ning and surface realization stages to a
joint, one-step approach.

We were able to train both setups success-
fully using very little training data. The
joint setup offers better performance, sur-
passing state-of-the-art with regards to n-
gram-based scores while providing more
relevant outputs.

1 Introduction

In spoken dialogue systems (SDS), the task of nat-
ural language generation (NLG) is to convert a
meaning representation (MR) produced by the di-
alogue manager into one or more sentences in a
natural language. It is traditionally divided into
two subtasks: sentence planning, which decides
on the overall sentence structure, and surface re-
alization, determining the exact word forms and
linearizing the structure into a string (Reiter and
Dale, 2000). While some generators keep this di-
vision and use a two-step pipeline (Walker et al.,
2001; Rieser et al., 2010; Dethlefs et al., 2013),
others apply a joint model for both tasks (Wong
and Mooney, 2007; Konstas and Lapata, 2013).

We present a new, conceptually simple NLG
system for SDS that is able to operate in both
modes: it either produces natural language strings
or generates deep syntax dependency trees, which
are subsequently processed by an external surface
realizer (Dušek et al., 2015). This allows us to
show a direct comparison of two-step generation,

where sentence planning and surface realization
are separated, with a joint, one-step approach.

Our generator is based on the sequence-to-
sequence (seq2seq) generation technique (Cho et
al., 2014; Sutskever et al., 2014), combined with
beam search and an n-best list reranker to suppress
irrelevant information in the outputs. Unlike most
previous NLG systems for SDS (e.g., (Stent et al.,
2004; Raux et al., 2005; Mairesse et al., 2010)), it
is trainable from unaligned pairs of MR and sen-
tences alone. We experiment with using much less
training data than recent systems based on recur-
rent neural networks (RNN) (Wen et al., 2015b;
Mei et al., 2015), and we find that our genera-
tor learns successfully to produce both strings and
deep syntax trees on the BAGEL restaurant infor-
mation dataset (Mairesse et al., 2010). It is able to
surpass n-gram-based scores achieved previously
by Dušek and Jurčı́ček (2015), offering a simpler
setup and more relevant outputs.

We introduce the generation setting in Section 2
and describe our generator architecture in Sec-
tion 3. Section 4 details our experiments, Section 5
analyzes the results. We summarize related work
in Section 6 and offer conclusions in Section 7.

2 Generator Setting

The input to our generator are dialogue acts (DA)
(Young et al., 2010) representing an action, such
as inform or request, along with one or more at-
tributes (slots) and their values. Our generator op-
erates in two modes, producing either deep syn-
tax trees (Dušek et al., 2012) or natural language
strings (see Fig. 1). The first mode corresponds to
the sentence planning NLG stage as it decides the
syntactic shape of the output sentence; the result-
ing deep syntax tree involves content words (lem-
mas) and their syntactic form (formemes, purple in
Fig. 1). The trees are linearized to strings using a
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t-tree
zone=en

X-name
n:subj

be
v:fin

Italian
adj:attr

restaurant
n:obj

river
n:near+X

inform(name=X-name,type=placetoeat,eattype=restaurant,
          area=riverside,food=Italian)

X is an Italian restaurant near the river.

Figure 1: Example DA (top) with the correspond-
ing deep syntax tree (middle) and natural language
string (bottom)

surface realizer from the TectoMT translation sys-
tem (Dušek et al., 2015). The second generator
mode joins sentence planning and surface realiza-
tion into one step, producing natural language sen-
tences directly.

Both modes offer their advantages: The two-
step mode simplifies generation by abstracting
away from complex surface syntax and morphol-
ogy, which can be handled by a handcrafted,
domain-independent module to ensure grammat-
ical correctness at all times (Dušek and Jurčı́ček,
2015), and the joint mode does not need to model
structure explicitly and avoids accumulating errors
along the pipeline (Konstas and Lapata, 2013).

3 The Seq2seq Generation Model

Our generator is based on the seq2seq approach
(Cho et al., 2014; Sutskever et al., 2014), a type
of an encoder-decoder RNN architecture operat-
ing on variable-length sequences of tokens. We
address the necessary conversion of input DA
and output trees/sentences into sequences in Sec-
tion 3.1 and then describe the main seq2seq com-
ponent in Section 3.2. It is supplemented by a
reranker, as explained in Section 3.3.

3.1 Sequence Representation of DA, Trees,
and Sentences

We represent DA, deep syntax trees, and sentences
as sequences of tokens to enable their usage in the
sequence-based RNN components of our genera-
tor (see Sections 3.2 and 3.3). Each token is rep-
resented by its embedding – a vector of floating-
point numbers (Bengio et al., 2003).

To form a sequence representation of a DA,
we create a triple of the structure “DA type, slot,
value” for each slot in the DA and concatenate

the triples (see Fig. 3). The deep syntax tree out-
put from the seq2seq generator is represented in
a bracketed notation similar to the one used by
Vinyals et al. (2015, see Fig. 2). The inputs to the
reranker are always a sequence of tokens; struc-
ture is disregarded in trees, resulting in a list of
lemma-formeme pairs (see Fig. 2).

3.2 Seq2seq Generator
Our seq2seq generator with attention (Bahdanau et
al., 2015, see Fig. 3)1 starts with the encoder stage,
which uses an RNN to encode an input sequence
x = {x1, . . . , xn} into a sequence of encoder out-
puts and hidden states h = {h1, . . . , hn}, where
ht = lstm(xt, ht−1), a non-linear function rep-
resented by the long-short-term memory (LSTM)
cell (Graves, 2013).

The decoder stage then uses the hidden states to
generate a sequence y = {y1, . . . , ym} with a sec-
ond LSTM-based RNN. The probability of each
output token is defined as:

p(yt|y1, . . . , yt−1,x) = softmax((st ◦ ct)WY )

Here, st is the decoder state where s0 = hn

and st = lstm((yt−1 ◦ ct)WS , st−1), i.e., the de-
coder is initialized by the last hidden state and
uses the previous output token at each step. WY

and WS are learned linear projection matrices and
“◦” denotes concatenation. ct is the context vec-
tor – a weighted sum of the encoder hidden states
ct =

∑n
i=1 αtihi, where αti corresponds to an

alignment model, represented by a feed-forward
network with a single tanh hidden layer.

On top of this basic seq2seq model, we im-
plemented a simple beam search for decoding
(Sutskever et al., 2014; Bahdanau et al., 2015). It
proceeds left-to-right and keeps track of log prob-
abilities of top n possible output sequences, ex-
panding them one token at a time.

3.3 Reranker
To ensure that the output trees/strings correspond
semantically to the input DA, we implemented a
classifier to rerank the n-best beam search outputs
and penalize those missing required information
and/or adding irrelevant one. Similarly to Wen et
al. (2015a), the classifier provides a binary deci-
sion for an output tree/string on the presence of
all dialogue act types and slot-value combinations
seen in the training data, producing a 1-hot vector.

1We use the implementation in the TensorFlow frame-
work (Abadi et al., 2015).
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( <root> <root> ( ( X-name n:subj ) be v:fin ( ( Italian adj:attr ) restaurant n:obj ( river n:near+X ) ) ) )

X-name n:subj be v:fin Italian adj:attr restaurant n:obj river n:near+X

Figure 2: Trees encoded as sequences for the seq2seq generator (top) and the reranker (bottom)
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Figure 3: Seq2seq generator with attention
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Figure 4: The reranker
The input DA is converted to a similar 1-hot vec-
tor and the reranking penalty of the sentence is the
Hamming distance between the two vectors (see
Fig. 4). Weighted penalties for all sentences are
subtracted from their n-best list log probabilities.

We employ a similar architecture for the classi-
fier as in our seq2seq generator encoder (see Sec-
tion 3.2), with an RNN encoder operating on the
output trees/strings and a single logistic layer for
classification over the last encoder hidden state.
Given an output sequence representing a string or
a tree y = {y1, . . . , yn} (cf. Section 3.1), the en-
coder again produces a sequence of hidden states
h = {h1, . . . , hn} where ht = lstm(yt, ht−1).
The output binary vector o is computed as:

oi = sigmoid((hn ·WR + b)i)
Here, WR is a learned projection matrix and b is a
corresponding bias term.

4 Experiments

We perform our experiments on the BAGEL data
set of Mairesse et al. (2010), which contains
202 DA from the restaurant information domain
with two natural language paraphrases each, de-
scribing restaurant locations, price ranges, food
types etc. Some properties such as restaurant
names or phone numbers are delexicalized (re-
placed with “X” symbols) to avoid data spar-
sity.2Unlike Mairesse et al. (2010), we do not use

2We adopt the delexicalization scenario used by Mairesse
et al. (2010) and Dušek and Jurčı́ček (2015).

manually annotated alignment of slots and values
in the input DA to target words and phrases and
let the generator learn it from data, which simpli-
fies training data preparation but makes our task
harder. We lowercase the data and treat plural
-s as separate tokens for generating into strings,
and we apply automatic analysis from the Treex
NLP toolkit (Popel and Žabokrtský, 2010) to ob-
tain deep syntax trees for training tree-based gen-
erator setups.3 Same as Mairesse et al. (2010), we
apply 10-fold cross-validation, with 181 training
DA and 21 testing DA. In addition, we reserve 10
DA from the training set for validation.4

To train our seq2seq generator, we use the
Adam optimizer (Kingma and Ba, 2015) to min-
imize unweighted sequence cross-entropy.5 We
perform 10 runs with different random initializa-
tion of the network and up to 1,000 passes over the
training data,6 validating after each pass and se-
lecting the parameters that yield the highest BLEU
score on the validation set. Neither beam search
nor the reranker are used for validation.

We use the Adam optimizer minimizing cross-
entropy to train the reranker as well.7 We perform
a single run of up to 100 passes over the data,
and we also validate after each pass and select the
parameters giving minimal Hamming distance on
both validation and training set.8

3The input vocabulary size is around 45 (DA types, slots,
and values added up) and output vocabulary sizes are around
170 for string generation and 180 for tree generation (45
formemes and 135 lemmas).

4We treat the two paraphrases for the same DA as sepa-
rate instances in the training set but use them together as two
references to measure BLEU and NIST scores (Papineni et
al., 2002; Doddington, 2002) on the validation and test sets.

5Based on a few preliminary experiments, the learning
rate is set to 0.001, embedding size 50, LSTM cell size 128,
and batch size 20. Reranking penalty for decoding is 100.

6Training is terminated early if the top 10 so far achieved
validation BLEU scores do not change for 100 passes.

7We use the same settings as with the seq2seq generator.
8The validation set is given 10 times more importance.
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Setup BLEU NIST ERR
Mairesse et al. (2010)∗ ∼67 - 0
Dušek and Jurčı́ček (2015) 59.89 5.231 30
Greedy with trees 55.29 5.144 20
+ Beam search (b. size 100) 58.59 5.293 28
+ Reranker (beam size 5) 60.77 5.487 24

(beam size 10) 60.93 5.510 25
(beam size 100) 60.44 5.514 19

Greedy into strings 52.54 5.052 37
+ Beam search (b. size 100) 55.84 5.228 32
+ Reranker (beam size 5) 61.18 5.507 27

(beam size 10) 62.40 5.614 21
(beam size 100) 62.76 5.669 19

Table 1: Results on the BAGEL data set
NIST, BLEU, and semantic errors in a sample of the output.
∗Mairesse et al. (2010) use manual alignments in their work,
so their result is not directly comparable to ours. The zero
semantic error is implied by the manual alignments and the
architecture of their system.

5 Results

The results of our experiments and a comparison
to previous works on this dataset are shown in Ta-
ble 1. We include BLEU and NIST scores and the
number of semantic errors (incorrect, missing, and
repeated information), which we assessed manu-
ally on a sample of 42 output sentences (outputs
of two randomly selected cross-validation runs).

The outputs of direct string generation show
that the models learn to produce fluent sentences
in the domain style;9 incoherent sentences are rare,
but semantic errors are very frequent in the greedy
search. Most errors involve confusion of semanti-
cally close items, e.g., Italian instead of French
or riverside area instead of city centre (see Ta-
ble 2); items occurring more frequently are pre-
ferred regardless of their relevance. The beam
search brings a BLEU improvement but keeps
most semantic errors in place. The reranker is able
to reduce the number of semantic errors while in-
creasing automatic scores considerably. Using a
larger beam increases the effect of the reranker as
expected, resulting in slightly improved outputs.

Models generating deep syntax trees are also
able to learn the domain style, and they have virtu-
ally no problems producing valid trees.10 The sur-
face realizer works almost flawlessly on this lim-

9The average sentence length is around 13 tokens.
10The generated sequences are longer, but have a very rigid

structure, i.e., less uncertainty per generation step. The av-
erage output length is around 36 tokens in the generated se-
quence or 9 tree nodes; surface realizer outputs have a similar
length as the sentences produced in direct string generation.

ited domain (Dušek and Jurčı́ček, 2015), leaving
the seq2seq generator as the major error source.
The syntax-generating models tend to make dif-
ferent kinds of errors than the string-based mod-
els: Some outputs are valid trees but not entirely
syntactically fluent; missing, incorrect, or repeated
information is more frequent than a confusion of
semantically similar items (see Table 2). Seman-
tic error rates of greedy and beam-search decod-
ing are lower than for string-based models, partly
because confusion of two similar items counts as
two errors. The beam search brings an increase in
BLEU but also in the number of semantic errors.
The reranker is able to reduce the number of errors
and improve automatic scores slightly. A larger
beam leads to a small BLEU decrease even though
the sentences contain less errors; here, NIST re-
flects the situation more accurately.

A comparison of the two approaches goes in fa-
vor of the joint setup: Without the reranker, mod-
els generating trees produce less semantic errors
and gain higher BLEU/NIST scores. However,
with the reranker, the string-based model is able
to reduce the number of semantic errors while
producing outputs significantly better in terms of
BLEU/NIST.11 In addition, the joint setup does
not need an external surface realizer. The best re-
sults of both setups surpass the best results on this
dataset using training data without manual align-
ments (Dušek and Jurčı́ček, 2015) in both auto-
matic metrics12 and the number of semantic errors.

6 Related Work

While most recent NLG systems attempt to learn
generation from data, the choice of a particular
approach – pipeline or joint – is often arbitrary
and depends on system architecture or particular
generation domain. Works using the pipeline ap-
proach in SDS tend to focus on sentence planning,
improving a handcrafted generator (Walker et al.,
2001; Stent et al., 2004; Paiva and Evans, 2005)
or using perceptron-guided A* search (Dušek and
Jurčı́ček, 2015). Generators taking the joint ap-
proach employ various methods, e.g., factored lan-
guage models (Mairesse et al., 2010), inverted
parsing (Wong and Mooney, 2007; Konstas and
Lapata, 2013), or a pipeline of discriminative clas-
sifiers (Angeli et al., 2010). Unlike most previous

11The difference is statistically significant at 99% level ac-
cording to pairwise bootstrap resampling test (Koehn, 2004).

12The BLEU/NIST differences are statistically significant.
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Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, area=citycentre, near=X-near,
food=”Chinese takeaway”, food=Japanese)

Reference X is a Chinese takeaway and Japanese restaurant in the city centre near X.
Greedy with trees X is a restaurant offering chinese takeaway in the centre of town near X. [Japanese]
+ Beam search X is a restaurant and japanese food and chinese takeaway.
+ Reranker X is a restaurant serving japanese food in the centre of the city that offers chinese takeaway.
Greedy into strings X is a restaurant offering italian and indian takeaway in the city centre area near X. [Japanese, Chinese]
+ Beam search X is a restaurant that serves fusion chinese takeaway in the riverside area near X. [Japanese, citycentre]
+ Reranker X is a japanese restaurant in the city centre near X providing chinese food. [takeaway]
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, area=riverside, food=French)
Reference X is a French restaurant on the riverside.
Greedy with trees X is a restaurant providing french and continental and by the river.
+ Beam search X is a restaurant that serves french takeaway. [riverside]
+ Reranker X is a french restaurant in the riverside area.
Greedy into strings X is a restaurant in the riverside that serves italian food. [French]
+ Beam search X is a restaurant in the riverside that serves italian food. [French]
+ Reranker X is a restaurant in the riverside area that serves french food.
Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near, food=Continental, food=French)
Reference X is a French and Continental restaurant near X.
Greedy with trees X is a french restaurant that serves french food and near X. [Continental]
+ Beam search X is a french restaurant that serves french food and near X. [Continental]
+ Reranker X is a restaurant serving french and continental food near X.
Greedy into strings X is a french and continental style restaurant near X.
+ Beam search X is a french and continental style restaurant near X.
+ Reranker X is a restaurant providing french and continental food, near X.

Table 2: Example outputs of different generator setups (beam size 100 is used). Errors are marked in
color (missing, superfluous, repeated information, disfluency).

NLG systems, our generator is trainable from un-
aligned pairs of MR and sentences alone.

Recent RNN-based generators are most simi-
lar to our work. Wen et al. (2015a) combined
two RNN with a convolutional network reranker;
Wen et al. (2015b) later replaced basic sigmoid
cells with an LSTM. Mei et al. (2015) present
the only seq2seq-based NLG system known to
us. We extend the previous works by generating
deep syntax trees as well as strings and directly
comparing pipeline and joint generation. In ad-
dition, we experiment with an order-of-magnitude
smaller dataset than other RNN-based systems.

7 Conclusions and Future Work
We have presented a direct comparison of two-step
generation via deep syntax trees with a direct gen-
eration into strings, both using the same NLG sys-
tem based on the seq2seq approach. While both
approaches offer decent performance, their out-
puts are quite different. The results show the di-
rect approach as more favorable, with significantly
higher n-gram based scores and a similar number
of semantic errors in the output.

We also showed that our generator can learn
to produce meaningful utterances using a much
smaller amount of training data than what is typi-
cally used for RNN-based approaches. The result-
ing models had virtually no problems with produc-

ing fluent, coherent sentences or with generating
valid structure of bracketed deep syntax trees. Our
generator was able to surpass the best BLEU/NIST
scores on the same dataset previously achieved
by a perceptron-based generator of Dušek and
Jurčı́ček (2015) while reducing the amount of ir-
relevant information on the output.

Our generator is released on GitHub at the fol-
lowing URL:

https://github.com/UFAL-DSG/tgen

We intend to apply it to other datasets for a broader
comparison, and we plan further improvements,
such as enhancing the reranker or including a bidi-
rectional encoder (Bahdanau et al., 2015; Mei et
al., 2015; Jean et al., 2015) and sequence level
training (Ranzato et al., 2015).
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