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Abstract

Low-dimensional vector representations are
widely used as stand-ins for the text of words,
sentences, and entire documents. These em-
beddings are used to identify similar words
or make predictions about documents. In this
work, we consider embeddings for social me-
dia users and demonstrate that these can be
used to identify users who behave similarly or
to predict attributes of users. In order to cap-
ture information from all aspects of a user’s
online life, we take a multiview approach,
applying a weighted variant of Generalized
Canonical Correlation Analysis (GCCA) to a
collection of over 100,000 Twitter users. We
demonstrate the utility of these multiview em-
beddings on three downstream tasks: user en-
gagement, friend selection, and demographic
attribute prediction.

1 Introduction
Dense, low-dimensional vector representations (em-
beddings) have a long history in NLP, and recent work
on neural models have provided new and popular al-
gorithms for training representations for word types
(Mikolov et al., 2013; Faruqui and Dyer, 2014), sen-
tences (Kiros et al., 2015), and entire documents (Le
and Mikolov, 2014). These embeddings often have nice
properties, such as capturing some aspects of syntax or
semantics and outperforming their sparse counterparts
at downstream tasks.

While there are many approaches to generating em-
beddings of text, it is not clear how to learn embeddings
for social media users. There are several different types
of data (views) we can use to build user representations:
the text of messages they post, neighbors in their local
network, articles they link to, images they upload, etc.
We propose unsupervised learning of representations of
users with a variant of Generalized Canonical Correla-
tion Analysis (GCCA) (Carroll, 1968; Van De Velden
and Bijmolt, 2006; Arora and Livescu, 2014; Rastogi
et al., 2015), a multiview technique that learns a single,
low-dimensional vector for each user best capturing in-
formation from each of their views. We believe this

is more appropriate for learning user embeddings than
concatenating views into a single vector, since views
may correspond to different modalities (image vs. text
data) or have very different distributional properties.
Treating all features as equal in this concatenated vec-
tor is not appropriate.

We offer two main contributions: (1) an application
of GCCA to learning vector representations of social
media users that best accounts for all aspects of a user’s
online life, and (2) an evaluation of these vector repre-
sentations for a set of Twitter users at three different
tasks: user engagement, friend, and demographic at-
tribute prediction.

2 Twitter User Data

We begin with a description of our dataset, which
is necessary for understanding the data available to
our multiview model. We uniformly sampled 200,000
users from a stream of publicly available tweets from
the 1% Twitter stream from April 2015. To include
typical, English speaking users we removed users with
verified accounts, more than 10,000 followers, or non-
English profiles1. For each user we collected their
1,000 most recent tweets, and then filtered out non-
English tweets. Users without English tweets in Jan-
uary or February 2015 were omitted, yielding a total
of 102,328 users. Although limiting tweets to only
these two months restricted the number of tweets we
were able to work with, it also ensured that our data
are drawn from a narrow time window, controlling for
differences in user activity over time. This allows us
to learn distinctions between users, and not temporal
distinctions of content. We will use this set of users to
learn representations for the remainder of this paper.

Next, we expand the information available about
these users by collecting information about their so-
cial networks. Specifically, for each user mentioned
in a tweet by one of the 102,328 users, we collect up
to the 200 most recent English tweets for these users
from January and February 2015. Similarly, we col-
lected the 5,000 most recently added friends and fol-
lowers of each of the 102,328 users. We then sampled
10 friends and 10 followers for each user and collected

1Identified with langid (Lui and Baldwin, 2012).
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up to the 200 most recent English tweets for these users
from January and February 2015. Limits on the num-
ber of users and tweets per user were imposed so that
we could operate within Twitter’s API limits. This data
supports several of our prediction tasks, as well as the
four sources for each user: their tweets, tweets of men-
tioned users, friends and followers.

3 User Views
Our user dataset provides several sources of informa-
tion on which we can build user views: text posted by
the user (ego) and people that are mentioned, friended
or followed by the user and their posted text.

For each text source we can aggregate the many
tweets into a single document, e.g. all tweets written
by accounts mentioned by a user. We represent this
document as a bag-of-words (BOW) in a vector space
model with a vocabulary of the 20,000 most frequent
word types after stopword removal. We will consider
both count and TF-IDF weighted vectors.

A common problem with these high dimensional
representations is that they suffer from the curse of
dimensionality. A natural solution is to apply a di-
mensionality reduction technique to find a compact
representation that captures as much information as
possible from the original input. Here, we consider
principal components analysis (PCA), a ubiquitous
linear dimensionality reduction technique, as well as
word2vec (Mikolov et al., 2013), a technique to learn
nonlinear word representations.

We consider the following views for each user.
BOW: We take the bag-of-words (both count and TF-
IDF weighted) representation of all tweets made by
users in that view (ego, mention, friend, or follower)
following the above pre-processing.
BOW-PCA: We run PCA and extract the top princi-
pal components for each of the above views. We also
consider all possible combinations of views obtained
by concatenating views before applying PCA, and con-
catenating PCA-projected views. By considering all
possible concatenation of views, we ensure that this
method has access to the same information as multi-
view methods. Both the raw BOW and BOW-PCA rep-
resentations have been explored in previous work for
demographic prediction (Volkova et al., 2014; Al Za-
mal et al., 2012) and recommendation systems (Abel et
al., 2011; Zangerle et al., 2013).
Word2Vec: BOW-PCA is limited to linear representa-
tions of BOW features. Modern neural network based
approaches to learning word embeddings, including
word2vec continuous bag of words and skipgram mod-
els, can learn nonlinear representations that also cap-
ture local context around each word (Mikolov et al.,
2013). We represent each view as the simple average
of the word embeddings for all tokens within that view
(e.g., all words written by the ego user). Word em-
beddings are learned on a sample of 87,755,398 tweets
and profiles uniformly sampled from the 1% Twitter

stream in April 2015 along with all the tweets/profiles
collected for our set of users – a total of over a billion
tokens. We use the word2vec tool, select either skip-
gram or continuous bag-of-words embeddings on dev
data for each prediction task, and train for 50 epochs.
We use the default settings for all other parameters.
NetSim: An alternative to text based representations
is to use the social network of users as a representation.
We encode a user’s social network as a vector by treat-
ing the users as a vocabulary, where users with simi-
lar social networks have similar vector representations
(NetSim). An n-dimensional vector then encodes the
user’s social network as a bag-of-words over this user
vocabulary. In other words, a user is represented by
a summation of the one-hot encodings of each neigh-
boring user in their social network. In this representa-
tion, the number of friends two users have in common
is equal to the dot product between their social network
vectors. We define the social network may be as one’s
followers, friends, or the union of both. The motiva-
tion behind this representation is that users who have
similar networks may behave in similar ways. Such
network features are commonly used to construct user
representations as well as to make user recommenda-
tions (Lu et al., 2012; Kywe et al., 2012).
NetSim-PCA: The PCA-projected representations
for each NetSim vector. This may be important for
computing similarity, since users are now represented
as dense vectors capturing linear correlations in the
friends/followers a user has. NetSim-PCA is to NetSim
as BOW-PCA is to BOW– we apply PCA directly to the
user’s social network as opposed to the BOW represen-
tations of users in that network.

Each of these views can be treated independently as
a user representation. However, different downstream
tasks may favor different views. For example, the
friend network is useful at recommending new friends,
whereas the ego tweet view may be better at predict-
ing what content a user will post in the future. Pick-
ing a single view may ignore valuable information as
views may contain complementary information, so us-
ing multiple views improves on a single view. One ap-
proach is to concatenate multiple views together, but
this further increases the size of the user embeddings.
In the next section, we propose an alternate approach
for learning a single embedding from multiple views.

4 Learning Multiview User Embeddings
We use Generalized Canonical Correlation Analysis
(GCCA) (Carroll, 1968) to learn a single embedding
from multiple views. GCCA finds G,Ui that minimize:

arg min
G,Ui

∑
i

‖G−XiUi‖2F s.t. G′G = I (1)

where Xi ∈ Rn×di corresponds to the data matrix for
the ith view, Ui ∈ Rdi×k maps from the latent space
to observed view i, and G ∈ Rn×k contains all user
representations (Van De Velden and Bijmolt, 2006).
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Since each view may be more or less helpful for a
downstream task, we do not want to treat each view
equally in learning a single embedding. Instead, we
weigh each view differently in the objective:

arg min
G,Ui

∑
i

wi‖G−XiUi‖2F s.t. G′G = I, wi ≥ 0 (2)

where wi explicitly expresses the importance of the ith
view in determining the joint embedding. The columns
of G are the eigenvectors of

∑
i wiXi(X ′iXi)−1X ′i ,

and the solution for Ui = (X ′iXi)−1X ′iG. In our ex-
periments, we use the approach of Rastogi et al. (2015)
to learn G and Ui, since it is more memory-efficient
than decomposing the sum of projection matrices.

GCCA embeddings were learned over combinations
of the views in §3. When available, we also consider
GCCA-net, where in addition to the four text views, we
also include the follower and friend network views used
by NetSim-PCA. For computational efficiency, each of
these views was first reduced in dimensionality by pro-
jecting its BOW TF-IDF-weighted representation to a
1000-dimensional vector through PCA.2 We add an
identity matrix scaled by a small amount of regulariza-
tion, 10−8, to the per-view covariance matrices before
inverting, for numerical stability, and use the formula-
tion of GCCA reported in Van De Velden and Bijmolt
(2006), which ignores rows with missing data (some
users had no data in the mention tweet view and some
users accounts were private). We tune the weighting
of each view i, wi ∈ {0.0, 0.25, 1.0}, discriminatively
for each task, although the GCCA objective is unsuper-
vised once the wi are fixed.

We also consider a minor modification of GCCA,
where G is scaled by the square-root of the singular val-
ues of

∑
i wiXiX

′
i , GCCA-sv. This is inspired by pre-

vious work showing that scaling each feature of multi-
view embeddings by the singular values of the data ma-
trix can improve performance at downstream tasks such
as image or caption retrieval (Mroueh et al., 2015).
Note that if we only consider a single view, X1, with
weight w1 = 1, then the solution to GCCA-sv is iden-
tical to the PCA solution for data matrix X1, without
mean-centering.

When we compare representations in the fol-
lowing tasks, we sweep over embedding width
in {10, 20, 50, 100, 200, 300, 400, 500, 1000} for all
methods. This applies to GCCA, BOW-PCA, NetSim-
PCA, and Word2Vec. We also consider concatena-
tions of vectors for every possible subset of views:
singletons, pairs, triples, and all views. We tried ap-
plying PCA directly to the concatenation of all 1000-
dimensional BOW-PCA views, but this did not perform
competitively in our experiments.

2 We excluded count vectors from the GCCA experiments
for computational efficiency since they performed similarly
to TF-IDF representations in initial experiments.

5 Experimental Setup
We selected three user prediction tasks to demonstrate
the effectiveness of the multi-view embeddings: user
engagement prediction, friend recommendation and
demographic characteristics inference. Our focus is to
show the performance of multiview embeddings com-
pared to other representations, not on building the best
system for a given task.
User Engagement Prediction The goal of user en-
gagement prediction is to determine which topics a user
will likely tweet about, using hashtag as a proxy. This
task is similar to hashtag recommendation for a tweet
based on its contents (Kywe et al., 2012; She and Chen,
2014; Zangerle et al., 2013). Purohit et al. (2011) pre-
sented a supervised task to predict if a hashtag would
appear in a tweet using features from the user’s net-
work, previous tweets, and the tweet’s content.

We selected the 400 most frequently used hashtags
in messages authored by our users and which first ap-
peared in March 2015, randomly and evenly dividing
them into dev and test sets. We held out the first 10
users who tweeted each hashtag as exemplars of users
that would use the hashtag in the future. We ranked all
other users by the cosine distance of their embedding
to the average embedding of these 10 users. Since em-
beddings are learned on data pre-March 2015, the hash-
tags cannot impact the learned representations. Perfor-
mance is measured using precision and recall at k, as
well as mean reciprocal rank (MRR), where a user is
marked as correct if they used the hashtag. Note that
this task is different than that reported in Purohit et al.
(2011), since we are making recommendations at the
level of users, not tweets.
Friend Recommendation The goal of friend rec-
ommendation/link prediction is to recommend/predict
other accounts for a user to follow (Liben-Nowell and
Kleinberg, 2007).

We selected the 500 most popular accounts – which
we call celebrities – followed by our users, randomly,
and evenly divided them into dev and test sets. We
randomly select 10 users who follow each celebrity
and rank all other users by cosine distance to the av-
erage of these 10 representations. The tweets of se-
lected celebrities are removed during embedding train-
ing so as not to influence the learned representations.
We use the same evaluation as user engagement pre-
diction, where a user is marked as correct if they follow
the given celebrity.

For both user engagement prediction and friend rec-
ommendation we z-score normalize each feature, sub-
tracting off the mean and scaling each feature indepen-
dently to have unit variance, before computing cosine
similarity. We select the approach and whether to z-
score normalize based on the development set perfor-
mance.
Demographic Characteristics Inference Our final
task is to infer the demographic characteristics of a user
(Al Zamal et al., 2012; Chen et al., 2015).
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Model Dim P@1000 R@1000 MRR
BOW 20000 0.009/0.005 0.241/0.157 0.006/0.006
BOW-PCA 500 0.011/0.008 0.312/0.29 0.007/0.009
NetSim NA 0.006/0.006 0.159/0.201 0.004/0.004
NetSim-PCA 300 0.010/0.008 0.293/0.299 0.006/0.006
Word2Vec 100 0.009/0.007 0.254/0.217 0.005/0.004
GCCA 100 0.012/0.009 0.357/0.325 0.011/0.008
GCCA-sv 500 0.012/0.010 0.359/0.334 0.010/0.011
GCCA-net 200 0.013/0.009 0.360/0.346 0.011/0.011
NetSize NA 0.001/0.001 0.012/0.012 0.000/0.000
Random NA 0.000/0.000 0.002/0.008 0.000/0.000

Table 1: Macro performance at user engagement prediction
on dev/test. Ranking of model performance was consistent
across metrics. Precision is low since few users tweet a given
hashtag. Values bolded by best test performance per metric.
Baselines (bottom): NetSize: a ranking of users by the size of
their local network; Random randomly ranks users.
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Figure 1: The best-performing approaches on user engage-
ment prediction as a function of k (number of recommenda-
tions). The ordering of methods is consistent across k.

We use the dataset from Volkova et al. (2014;
Volkova (2015) which annotates 383 users for age
(old/young), 383 for gender (male/female), and 396 po-
litical affiliation (republican/democrat), with balanced
classes. Predicting each characteristic is a binary su-
pervised prediction task. Each set is partitioned into 10
folds, with two folds held out for test, and the other
eight for tuning via cross-fold validation. The pro-
vided dataset contained tweets from each user, men-
tioned users, friends and follower networks. It did not
contain the actual social networks for these users, so we
did not evaluate NetSim, NetSim-PCA, or GCCA-net at
these prediction tasks.

Each feature was z-score normalized before being
passed to a linear-kernel SVM where we swept over
10−4, . . . , 104 for the penalty on the error term, C.

6 Results
User Engagement Prediction Table 1 shows results
for user engagement prediction and Figure 1 the preci-
sion and recall curves as a function of number of rec-
ommendations. GCCA outperforms other methods for
precision and recall at 1000, and does close to the best
in terms of MRR. Including network views (GCCA-
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Figure 2: Macro recall@1000 on user engagement prediction
for different combinations of text views. Each bar shows the
best-performing model swept over dimensionality. E: ego,
M: mention, Fr: friend, Fol: followertweet views.

Model Dim P@1000 R@1000 MRR
BOW 20000 0.133/0.153 0.043/0.048 0.000/0.001
BOW-PCA 20 0.311/0.314 0.101/0.102 0.001/0.001
NetSim NA 0.406/0.420 0.131/0.132 0.002/0.002
NetSim-PCA 500 0.445/0.439 0.149/0.147 0.002/0.002
Word2Vec 200 0.260/0.249 0.084/0.080 0.001/0.001
GCCA 50 0.269/0.276 0.089/0.091 0.001/0.001
GCCA-sv 500 0.445/0.439 0.149/0.147 0.002/0.002
GCCA-net 20 0.376/0.364 0.123/0.120 0.001/0.001
NetSize NA 0.033/0.035 0.009/0.010 0.000/0.000
Random NA 0.034/0.036 0.010/0.010 0.000/0.000

Table 2: Macro performance for friend recommendation.
Performance of NetSim-PCA and GCCA-sv are identical
since the view weighting for GCCA-sv only selected solely
the friend view. Thus, these methods learned identical user
embeddings.

Model age gender politics
BOW 0.771/0.740 0.723/0.662 0.934/0.975
BOW-PCA 0.784/0.649 0.719/0.662 0.908/0.900
BOW-PCA + BOW 0.767/0.688 0.660/0.714 0.937/0.9875
GCCA 0.725/0.740 0.742/0.714 0.899/0.8125
GCCA + BOW 0.764/0.727 0.657/0.701 0.940/0.9625
GCCA-sv 0.709/0.636 0.699/0.714 0.871/0.850
GCCA-sv + BOW 0.761/0.688 0.647/0.675 0.937/0.9625
Word2Vec 0.790/0.753 0.777/0.766 0.927/0.938

Table 3: Average CV/test accuracy for inferring demo-
graphic characteristics.

net and GCCA-sv) improves the performance further.
The best performing GCCA setting placed weight 1
on the ego tweet view, mention view, and friend view,
while BOW-PCA concatenated these views, suggesting
that these were the three most important views but that
GCCA was able to learn a better representation. Figure
2 compares performance of different view subsets for
GCCA and BOW-PCA, showing that GCCA uses infor-
mation from multiple views more effectively for pre-
dicting user engagement.

Friend Recommendation Table 2 shows results for
friend prediction and Figure 3 similarly shows that per-
formance differences between approaches are consis-
tent across k (number of recommendations.) Adding
network views to GCCA, GCCA-net, improves per-
formance, although it cannot contend with NetSim or
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Figure 3: Performance on friend recommendation varying k.

NetSim-PCA, although GCCA-sv is able to meet the
performance of NetSim-PCA. The best GCCA placed
non-zero weight on the friend tweets view, and GCCA-
net only places weight on the friend network view;
the other views were not informative. BOW-PCA and
Word2Vec only used the friend tweet view. This sug-
gests that the friend view is the most important for
this task, and multiview techniques cannot exploit ad-
ditional views to improve performance. GCCA-sv per-
forms identically to GCCA-net, since it only placed
weight on the friend network view, learning identical
embeddings to GCCA-net.
Demographic Characteristics Prediction Table 3
shows the average cross-fold validation and test ac-
curacy on the demographic prediction task. GCCA +
BOW and BOW-PCA + BOW are the concatenation
of BOW features with GCCA and BOW-PCA, respec-
tively. The wide variation in performance is due to
the small size of the datasets, thus it’s hard to draw
many conclusions other than that GCCA seems to per-
form well compared to other linear methods. Word2Vec
surpasses other representations in two out of three
datasets.

It is difficult to compare the performance of the
methods we evaluate here to that reported in previous
work, (Al Zamal et al., 2012). This is because they re-
port cross-fold validation accuracy (not test), they con-
sider a wider range of hand-engineered features, differ-
ent subsets of networks, radial basis function kernels
for SVM, and find that accuracy varies wildly across
different feature sets. They report cross-fold validation
accuracy ranging from 0.619 to 0.805 for predicting
age, 0.560 to 0.802 for gender, and 0.725 to 0.932 for
politics.

7 Conclusion
We have proposed several representations of Twitter
users, as well as a multiview approach that combines
these views into a single embedding. Our multiview

embeddings achieve promising results on three differ-
ent prediction tasks, making use of both what a user
writes as well as the social network. We found that each
task relied on different information, which our method
successfully combined into a single representation.

We plan to consider other means for learning user
representations, including comparing nonlinear dimen-
sionality reduction techniques such as kernel PCA
(Schölkopf et al., 1997) and deep canonical correlation
analysis (Andrew et al., 2013; Wang et al., 2015). Re-
cent work on learning user representations with mul-
titask deep learning techniques (Li et al., 2015), sug-
gests that learning a nonlinear mapping from observed
views to the latent space can learn high quality user
representations. One issue with GCCA is scalabil-
ity: solving for G relies on an SVD of a large ma-
trix that must be loaded into memory. Online variants
of GCCA would allow this method to scale to larger
training sets and incrementally update representations.
The PCA-reduced views for all 102,328 Twitter users
can be found here: http://www.dredze.com/
datasets/multiview_embeddings/.
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