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Abstract

We introduce a globally normalized
transition-based neural network model
that achieves state-of-the-art part-of-
speech tagging, dependency parsing and
sentence compression results. Our model
is a simple feed-forward neural network
that operates on a task-specific transition
system, yet achieves comparable or better
accuracies than recurrent models. We dis-
cuss the importance of global as opposed
to local normalization: a key insight is
that the label bias problem implies that
globally normalized models can be strictly
more expressive than locally normalized
models.

1 Introduction

Neural network approaches have taken the field
of natural language processing (NLP) by storm.
In particular, variants of long short-term mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) have produced impressive results on
some of the classic NLP tasks such as part-of-
speech tagging (Ling et al., 2015), syntactic pars-
ing (Vinyals et al., 2015) and semantic role label-
ing (Zhou and Xu, 2015). One might speculate
that it is the recurrent nature of these models that
enables these results.

In this work we demonstrate that simple feed-
forward networks without any recurrence can
achieve comparable or better accuracies than
LSTMs, as long as they are globally normalized.
Our model, described in detail in Section 2, uses
a transition system (Nivre, 2006) and feature em-
beddings as introduced by Chen and Manning
(2014). We do not use any recurrence, but per-
form beam search for maintaining multiple hy-

∗On leave from Columbia University.

potheses and introduce global normalization with
a conditional random field (CRF) objective (Bot-
tou et al., 1997; Le Cun et al., 1998; Lafferty et
al., 2001; Collobert et al., 2011) to overcome the
label bias problem that locally normalized mod-
els suffer from. Since we use beam inference,
we approximate the partition function by summing
over the elements in the beam, and use early up-
dates (Collins and Roark, 2004; Zhou et al., 2015).
We compute gradients based on this approximate
global normalization and perform full backprop-
agation training of all neural network parameters
based on the CRF loss.

In Section 3 we revisit the label bias problem
and the implication that globally normalized mod-
els are strictly more expressive than locally nor-
malized models. Lookahead features can par-
tially mitigate this discrepancy, but cannot fully
compensate for it—a point to which we return
later. To empirically demonstrate the effective-
ness of global normalization, we evaluate our
model on part-of-speech tagging, syntactic de-
pendency parsing and sentence compression (Sec-
tion 4). Our model achieves state-of-the-art ac-
curacy on all of these tasks, matching or outper-
forming LSTMs while being significantly faster.
In particular for dependency parsing on the Wall
Street Journal we achieve the best-ever published
unlabeled attachment score of 94.61%.

As discussed in more detail in Section 5, we
also outperform previous structured training ap-
proaches used for neural network transition-based
parsing. Our ablation experiments show that we
outperform Weiss et al. (2015) and Alberti et
al. (2015) because we do global backpropagation
training of all model parameters, while they fix
the neural network parameters when training the
global part of their model. We also outperform
Zhou et al. (2015) despite using a smaller beam.
To shed additional light on the label bias problem
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in practice, we provide a sentence compression ex-
ample where the local model completely fails. We
then demonstrate that a globally normalized pars-
ing model without any lookahead features is al-
most as accurate as our best model, while a locally
normalized model loses more than 10% absolute
in accuracy because it cannot effectively incorpo-
rate evidence as it becomes available.

Finally, we provide an open-source implemen-
tation of our method, called SyntaxNet,1 which
we have integrated into the popular TensorFlow2

framework. We also provide a pre-trained,
state-of-the art English dependency parser called
“Parsey McParseface,” which we tuned for a bal-
ance of speed, simplicity, and accuracy.

2 Model

At its core, our model is an incremental transition-
based parser (Nivre, 2006). To apply it to different
tasks we only need to adjust the transition system
and the input features.

2.1 Transition System

Given an input x, most often a sentence, we define:
• A set of states S(x).
• A special start state s† ∈ S(x).
• A set of allowed decisionsA(s, x) for all s ∈
S(x).
• A transition function t(s, d, x) returning a

new state s′ for any decision d ∈ A(s, x).
We will use a function ρ(s, d, x; θ) to compute the
score of decision d in state s for input x. The
vector θ contains the model parameters and we
assume that ρ(s, d, x; θ) is differentiable with re-
spect to θ.

In this section, for brevity, we will drop the de-
pendence of x in the functions given above, simply
writing S, A(s), t(s, d), and ρ(s, d; θ).

Throughout this work we will use transition sys-
tems in which all complete structures for the same
input x have the same number of decisions n(x)
(or n for brevity). In dependency parsing for ex-
ample, this is true for both the arc-standard and
arc-eager transition systems (Nivre, 2006), where
for a sentence x of length m, the number of deci-
sions for any complete parse is n(x) = 2 × m.3

1http://github.com/tensorflow/models/tree/master/syntaxnet
2http://www.tensorflow.org
3Note that this is not true for the swap transition system

defined in Nivre (2009).

A complete structure is then a sequence of deci-
sion/state pairs (s1, d1) . . . (sn, dn) such that s1 =
s†, di ∈ S(si) for i = 1 . . . n, and si+1 =
t(si, di). We use the notation d1:j to refer to a de-
cision sequence d1 . . . dj .

We assume that there is a one-to-one mapping
between decision sequences d1:j−1 and states sj :
that is, we essentially assume that a state encodes
the entire history of decisions. Thus, each state
can be reached by a unique decision sequence
from s†.4 We will use decision sequences d1:j−1

and states interchangeably: in a slight abuse of
notation, we define ρ(d1:j−1, d; θ) to be equal to
ρ(s, d; θ) where s is the state reached by the deci-
sion sequence d1:j−1.

The scoring function ρ(s, d; θ) can be defined
in a number of ways. In this work, following
Chen and Manning (2014), Weiss et al. (2015),
and Zhou et al. (2015), we define it via a feed-
forward neural network as

ρ(s, d; θ) = φ(s; θ(l)) · θ(d).

Here θ(l) are the parameters of the neural network,
excluding the parameters at the final layer. θ(d) are
the final layer parameters for decision d. φ(s; θ(l))
is the representation for state s computed by the
neural network under parameters θ(l). Note that
the score is linear in the parameters θ(d). We next
describe how softmax-style normalization can be
performed at the local or global level.

2.2 Global vs. Local Normalization

In the Chen and Manning (2014) style of greedy
neural network parsing, the conditional probabil-
ity distribution over decisions dj given context
d1:j−1 is defined as

p(dj |d1:j−1; θ) =
exp ρ(d1:j−1, dj ; θ)
ZL(d1:j−1; θ)

, (1)

where

ZL(d1:j−1; θ) =
∑

d′∈A(d1:j−1)

exp ρ(d1:j−1, d
′; θ).

4It is straightforward to extend the approach to make use
of dynamic programming in the case where the same state
can be reached by multiple decision sequences.
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Each ZL(d1:j−1; θ) is a local normalization term.
The probability of a sequence of decisions d1:n is

pL(d1:n) =
n∏
j=1

p(dj |d1:j−1; θ)

=
exp

∑n
j=1 ρ(d1:j−1, dj ; θ)∏n

j=1 ZL(d1:j−1; θ)
. (2)

Beam search can be used to attempt to find the
maximum of Eq. (2) with respect to d1:n. The
additive scores used in beam search are the log-
softmax of each decision, ln p(dj |d1:j−1; θ), not
the raw scores ρ(d1:j−1, dj ; θ).

In contrast, a Conditional Random Field (CRF)
defines a distribution pG(d1:n) as follows:

pG(d1:n) =
exp

∑n
j=1 ρ(d1:j−1, dj ; θ)
ZG(θ)

, (3)

where

ZG(θ) =
∑

d′1:n∈Dn

exp
n∑
j=1

ρ(d′1:j−1, d
′
j ; θ)

and Dn is the set of all valid sequences of deci-
sions of length n. ZG(θ) is a global normalization
term. The inference problem is now to find

argmax
d1:n∈Dn

pG(d1:n) = argmax
d1:n∈Dn

n∑
j=1

ρ(d1:j−1, dj ; θ).

Beam search can again be used to approximately
find the argmax.

2.3 Training

Training data consists of inputs x paired with gold
decision sequences d∗1:n. We use stochastic gradi-
ent descent on the negative log-likelihood of the
data under the model. Under a locally normalized
model, the negative log-likelihood is

Llocal(d∗1:n; θ) = − ln pL(d∗1:n; θ) = (4)

−
n∑
j=1

ρ(d∗1:j−1, d
∗
j ; θ) +

n∑
j=1

lnZL(d∗1:j−1; θ),

whereas under a globally normalized model it is

Lglobal(d∗1:n; θ) = − ln pG(d∗1:n; θ) =

−
n∑
j=1

ρ(d∗1:j−1, d
∗
j ; θ) + lnZG(θ). (5)

A significant practical advantange of the locally
normalized cost Eq. (4) is that the local parti-
tion function ZL and its derivative can usually be
computed efficiently. In contrast, the ZG term in
Eq. (5) contains a sum over d′1:n ∈ Dn that is in
many cases intractable.

To make learning tractable with the globally
normalized model, we use beam search and early
updates (Collins and Roark, 2004; Zhou et al.,
2015). As the training sequence is being decoded,
we keep track of the location of the gold path in
the beam. If the gold path falls out of the beam
at step j, a stochastic gradient step is taken on the
following objective:

Lglobal−beam(d∗1:j ; θ) =

−
j∑

i=1

ρ(d∗1:i−1, d
∗
i ; θ) + ln

∑
d′
1:j∈Bj

exp

j∑
i=1

ρ(d′1:i−1, d
′
i; θ). (6)

Here the set Bj contains all paths in the beam
at step j, together with the gold path prefix d∗1:j .
It is straightforward to derive gradients of the
loss in Eq. (6) and to back-propagate gradients to
all levels of a neural network defining the score
ρ(s, d; θ). If the gold path remains in the beam
throughout decoding, a gradient step is performed
using Bn, the beam at the end of decoding.

3 The Label Bias Problem

Intuitively, we would like the model to be able
to revise an earlier decision made during search,
when later evidence becomes available that rules
out the earlier decision as incorrect. At first
glance, it might appear that a locally normal-
ized model used in conjunction with beam search
or exact search is able to revise earlier deci-
sions. However the label bias problem (see Bottou
(1991), Collins (1999) pages 222-226, Lafferty
et al. (2001), Bottou and LeCun (2005), Smith
and Johnson (2007)) means that locally normal-
ized models often have a very weak ability to re-
vise earlier decisions.

This section gives a formal perspective on the
label bias problem, through a proof that globally
normalized models are strictly more expressive
than locally normalized models. The theorem was
originally proved5 by Smith and Johnson (2007).

5More precisely Smith and Johnson (2007) prove the
theorem for models with potential functions of the form
ρ(di−1, di, xi); the generalization to potential functions of
the form ρ(d1:i−1, di, x1:i) is straightforward.
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The example underlying the proof gives a clear il-
lustration of the label bias problem.6

Global Models can be Strictly More Expressive
than Local Models Consider a tagging problem
where the task is to map an input sequence x1:n

to a decision sequence d1:n. First, consider a lo-
cally normalized model where we restrict the scor-
ing function to access only the first i input sym-
bols x1:i when scoring decision di. We will re-
turn to this restriction soon. The scoring function
ρ can be an otherwise arbitrary function of the tu-
ple 〈d1:i−1, di, x1:i〉:

pL(d1:n|x1:n) =
n∏
i=1

pL(di|d1:i−1, x1:i)

=
exp

∑n
i=1 ρ(d1:i−1, di, x1:i)∏n

i=1 ZL(d1:i−1, x1:i)
.

Second, consider a globally normalized model

pG(d1:n|x1:n) =
exp

∑n
i=1 ρ(d1:i−1, di, x1:i)
ZG(x1:n)

.

This model again makes use of a scoring function
ρ(d1:i−1, di, x1:i) restricted to the first i input sym-
bols when scoring decision di.

Define PL to be the set of all possible distribu-
tions pL(d1:n|x1:n) under the local model obtained
as the scores ρ vary. Similarly, define PG to be the
set of all possible distributions pG(d1:n|x1:n) un-
der the global model. Here a “distribution” is a
function from a pair (x1:n, d1:n) to a probability
p(d1:n|x1:n). Our main result is the following:

Theorem 3.1 See also Smith and Johnson (2007).
PL is a strict subset of PG, that is PL ( PG.

To prove this we will first prove that PL ⊆ PG.
This step is straightforward. We then show that
PG * PL; that is, there are distributions in PG
that are not in PL. The proof that PG * PL gives
a clear illustration of the label bias problem.

Proof that PL ⊆ PG: We need to show that
for any locally normalized distribution pL, we can
construct a globally normalized model pG such

6Smith and Johnson (2007) cite Michael Collins as
the source of the example underlying the proof. Note
that the theorem refers to conditional models of the form
p(d1:n|x1:n) with global or local normalization. Equiva-
lence (or non-equivalence) results for joint models of the
form p(d1:n, x1:n) are quite different: for example results
from Chi (1999) and Abney et al. (1999) imply that weighted
context-free grammars (a globally normalized joint model)
and probabilistic context-free grammars (a locally normal-
ized joint model) are equally expressive.

that pG = pL. Consider a locally normalized
model with scores ρ(d1:i−1, di, x1:i). Define a
global model pG with scores

ρ′(d1:i−1, di, x1:i) = log pL(di|d1:i−1, x1:i).

Then it is easily verified that

pG(d1:n|x1:n) = pL(d1:n|x1:n)

for all x1:n, d1:n. �
In proving PG * PL we will use a simple prob-

lem where every example seen in training or test
data is one of the following two tagged sentences:

x1x2x3 = a b c, d1d2d3 = A B C

x1x2x3 = a b e, d1d2d3 = A D E (7)

Note that the input x2 = b is ambiguous: it can
take tags B or D. This ambiguity is resolved when
the next input symbol, c or e, is observed.

Now consider a globally normalized model,
where the scores ρ(d1:i−1, di, x1:i) are de-
fined as follows. Define T as the set
{(A,B), (B,C), (A,D), (D,E)} of bigram tag
transitions seen in the data. Similarly, define E
as the set {(a,A), (b, B), (c, C), (b,D), (e, E)} of
(word, tag) pairs seen in the data. We define

ρ(d1:i−1, di, x1:i) (8)

= α× J(di−1, di) ∈ T K + α× J(xi, di) ∈ EK
where α is the single scalar parameter of the
model, and JπK = 1 if π is true, 0 otherwise.

Proof that PG * PL: We will construct a glob-
ally normalized model pG such that there is no lo-
cally normalized model such that pL = pG.

Under the definition in Eq. (8), it is straightfor-
ward to show that

lim
α→∞ pG(A B C|a b c) = lim

α→∞ pG(A D E|a b e) = 1.

In contrast, under any definition for
ρ(d1:i−1, di, x1:i), we must have

pL(A B C|a b c) + pL(A D E|a b e) ≤ 1 (9)

This follows because pL(A B C|a b c) =
pL(A|a) × pL(B|A, a b) × pL(C|A B, a b c)
and pL(A D E|a b e) = pL(A|a) ×
pL(D|A, a b) × pL(E|A D, a b e). The in-
equality pL(B|A, a b) + pL(D|A, a b) ≤ 1 then
immediately implies Eq. (9).
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En En-Union CoNLL ’09 Avg
Method WSJ News Web QTB Ca Ch Cz En Ge Ja Sp -

Linear CRF 97.17 97.60 94.58 96.04 98.81 94.45 98.90 97.50 97.14 97.90 98.79 97.17
Ling et al. (2015) 97.78 97.44 94.03 96.18 98.77 94.38 99.00 97.60 97.84 97.06 98.71 97.16

Our Local (B=1) 97.44 97.66 94.46 96.59 98.91 94.56 98.96 97.36 97.35 98.02 98.88 97.29
Our Local (B=8) 97.45 97.69 94.46 96.64 98.88 94.56 98.96 97.40 97.35 98.02 98.89 97.30
Our Global (B=8) 97.44 97.77 94.80 96.86 99.03 94.72 99.02 97.65 97.52 98.37 98.97 97.47

Parsey McParseface - 97.52 94.24 96.45 - - - - - - - - -

Table 1: Final POS tagging test set results on English WSJ and Treebank Union as well as CoNLL’09. We also show the
performance of our pre-trained open source model, “Parsey McParseface.”

It follows that for sufficiently large values of α,
we have pG(A B C|a b c) + pG(A D E|a b e) > 1,
and given Eq. (9) it is impossible to de-
fine a locally normalized model with
pL(A B C|a b c) = pG(A B C|a b c) and
pL(A D E|a b e) = pG(A D E|a b e). �

Under the restriction that scores
ρ(d1:i−1, di, x1:i) depend only on the first i
input symbols, the globally normalized model is
still able to model the data in Eq. (7), while the
locally normalized model fails (see Eq. 9). The
ambiguity at input symbol b is naturally resolved
when the next symbol (c or e) is observed, but
the locally normalized model is not able to revise
its prediction.

It is easy to fix the locally normalized model
for the example in Eq. (7) by allowing scores
ρ(d1:i−1, di, x1:i+1) that take into account the in-
put symbol xi+1. More generally we can have a
model of the form ρ(d1:i−1, di, x1:i+k) where the
integer k specifies the amount of lookahead in the
model. Such lookahead is common in practice, but
insufficient in general. For every amount of looka-
head k, we can construct examples that cannot be
modeled with a locally normalized model by du-
plicating the middle input b in (7) k + 1 times.
Only a local model with scores ρ(d1:i−1, di, x1:n)
that considers the entire input can capture any dis-
tribution p(d1:n|x1:n): in this case the decompo-
sition pL(d1:n|x1:n) =

∏n
i=1 pL(di|d1:i−1, x1:n)

makes no independence assumptions.
However, increasing the amount of context used

as input comes at a cost, requiring more powerful
learning algorithms, and potentially more train-
ing data. For a detailed analysis of the trade-
offs between structural features in CRFs and more
powerful local classifiers without structural con-
straints, see Liang et al. (2008); in these exper-
iments local classifiers are unable to reach the
performance of CRFs on problems such as pars-

ing and named entity recognition where structural
constraints are important. Note that there is noth-
ing to preclude an approach that makes use of both
global normalization and more powerful scoring
functions ρ(d1:i−1, di, x1:n), obtaining the best of
both worlds. The experiments that follow make
use of both.

4 Experiments

To demonstrate the flexibility and modeling power
of our approach, we provide experimental results
on a diverse set of structured prediction tasks. We
apply our approach to POS tagging, syntactic de-
pendency parsing, and sentence compression.

While directly optimizing the global model de-
fined by Eq. (5) works well, we found that train-
ing the model in two steps achieves the same pre-
cision much faster: we first pretrain the network
using the local objective given in Eq. (4), and then
perform additional training steps using the global
objective given in Eq. (6). We pretrain all layers
except the softmax layer in this way. We purpose-
fully abstain from complicated hand engineering
of input features, which might improve perfor-
mance further (Durrett and Klein, 2015).

We use the training recipe from Weiss et al.
(2015) for each training stage of our model.
Specifically, we use averaged stochastic gradient
descent with momentum, and we tune the learn-
ing rate, learning rate schedule, momentum, and
early stopping time using a separate held-out cor-
pus for each task. We tune again with a different
set of hyperparameters for training with the global
objective.

4.1 Part of Speech Tagging

Part of speech (POS) tagging is a classic NLP task,
where modeling the structure of the output is im-
portant for achieving state-of-the-art performance.
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Data & Evaluation. We conducted experiments
on a number of different datasets: (1) the En-
glish Wall Street Journal (WSJ) part of the Penn
Treebank (Marcus et al., 1993) with standard POS
tagging splits; (2) the English “Treebank Union”
multi-domain corpus containing data from the
OntoNotes corpus version 5 (Hovy et al., 2006),
the English Web Treebank (Petrov and McDon-
ald, 2012), and the updated and corrected Ques-
tion Treebank (Judge et al., 2006) with identical
setup to Weiss et al. (2015); and (3) the CoNLL
’09 multi-lingual shared task (Hajič et al., 2009).

Model Configuration. Inspired by the inte-
grated POS tagging and parsing transition system
of Bohnet and Nivre (2012), we employ a simple
transition system that uses only a SHIFT action and
predicts the POS tag of the current word on the
buffer as it gets shifted to the stack. We extract the
following features on a window ±3 tokens cen-
tered at the current focus token: word, cluster,
character n-gram up to length 3. We also extract
the tag predicted for the previous 4 tokens. The
network in these experiments has a single hidden
layer with 256 units on WSJ and Treebank Union
and 64 on CoNLL’09.

Results. In Table 1 we compare our model to
a linear CRF and to the compositional character-
to-word LSTM model of Ling et al. (2015). The
CRF is a first-order linear model with exact infer-
ence and the same emission features as our model.
It additionally also has transition features of the
word, cluster and character n-gram up to length 3
on both endpoints of the transition. The results for
Ling et al. (2015) were solicited from the authors.

Our local model already compares favorably
against these methods on average. Using beam
search with a locally normalized model does not
help, but with global normalization it leads to a
7% reduction in relative error, empirically demon-
strating the effect of label bias. The set of char-
acter ngrams feature is very important, increasing
average accuracy on the CoNLL’09 datasets by
about 0.5% absolute. This shows that character-
level modeling can also be done with a simple
feed-forward network without recurrence.

4.2 Dependency Parsing

In dependency parsing the goal is to produce a di-
rected tree representing the syntactic structure of
the input sentence.

Data & Evaluation. We use the same corpora
as in our POS tagging experiments, except that
we use the standard parsing splits of the WSJ. To
avoid over-fitting to the development set (Sec. 22),
we use Sec. 24 for tuning the hyperparameters of
our models. We convert the English constituency
trees to Stanford style dependencies (De Marneffe
et al., 2006) using version 3.3.0 of the converter.
For English, we use predicted POS tags (the same
POS tags are used for all models) and exclude
punctuation from the evaluation, as is standard.
For the CoNLL ’09 datasets we follow standard
practice and include all punctuation in the evalua-
tion. We follow Alberti et al. (2015) and use our
own predicted POS tags so that we can include a
k-best tag feature (see below) but use the supplied
predicted morphological features. We report unla-
beled and labeled attachment scores (UAS/LAS).

Model Configuration. Our model configuration
is basically the same as the one originally pro-
posed by Chen and Manning (2014) and then re-
fined by Weiss et al. (2015). In particular, we use
the arc-standard transition system and extract the
same set of features as prior work: words, part of
speech tags, and dependency arcs and labels in the
surrounding context of the state, as well as k-best
tags as proposed by Alberti et al. (2015). We use
two hidden layers of 1,024 dimensions each.

Results. Tables 2 and 3 show our final parsing
results and a comparison to the best systems from
the literature. We obtain the best ever published
results on almost all datasets, including the WSJ.
Our main results use the same pre-trained word
embeddings as Weiss et al. (2015) and Alberti et
al. (2015), but no tri-training. When we artifi-
cially restrict ourselves to not use pre-trained word
embeddings, we observe only a modest drop of
∼0.5% UAS; for example, training only on the
WSJ yields 94.08% UAS and 92.15% LAS for our
global model with a beam of size 32.

Even though we do not use tri-training, our
model compares favorably to the 94.26% LAS and
92.41% UAS reported by Weiss et al. (2015) with
tri-training. As we show in Sec. 5, these gains can
be attributed to the full backpropagation training
that differentiates our approach from that of Weiss
et al. (2015) and Alberti et al. (2015). Our results
also significantly outperform the LSTM-based ap-
proaches of Dyer et al. (2015) and Ballesteros et
al. (2015).
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WSJ Union-News Union-Web Union-QTB
Method UAS LAS UAS LAS UAS LAS UAS LAS

Martins et al. (2013)? 92.89 90.55 93.10 91.13 88.23 85.04 94.21 91.54
Zhang and McDonald (2014)? 93.22 91.02 93.32 91.48 88.65 85.59 93.37 90.69
Weiss et al. (2015) 93.99 92.05 93.91 92.25 89.29 86.44 94.17 92.06
Alberti et al. (2015) 94.23 92.36 94.10 92.55 89.55 86.85 94.74 93.04

Our Local (B=1) 92.95 91.02 93.11 91.46 88.42 85.58 92.49 90.38
Our Local (B=32) 93.59 91.70 93.65 92.03 88.96 86.17 93.22 91.17
Our Global (B=32) 94.61 92.79 94.44 92.93 90.17 87.54 95.40 93.64

Parsey McParseface (B=8) - - 94.15 92.51 89.08 86.29 94.77 93.17

Table 2: Final English dependency parsing test set results. We note that training our system using only the WSJ corpus (i.e. no
pre-trained embeddings or other external resources) yields 94.08% UAS and 92.15% LAS for our global model with beam 32.

Catalan Chinese Czech English German Japanese Spanish
Method UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Best Shared Task Result - 87.86 - 79.17 - 80.38 - 89.88 - 87.48 - 92.57 - 87.64

Ballesteros et al. (2015) 90.22 86.42 80.64 76.52 79.87 73.62 90.56 88.01 88.83 86.10 93.47 92.55 90.38 86.59
Zhang and McDonald (2014) 91.41 87.91 82.87 78.57 86.62 80.59 92.69 90.01 89.88 87.38 92.82 91.87 90.82 87.34
Lei et al. (2014) 91.33 87.22 81.67 76.71 88.76 81.77 92.75 90.00 90.81 87.81 94.04 91.84 91.16 87.38
Bohnet and Nivre (2012) 92.44 89.60 82.52 78.51 88.82 83.73 92.87 90.60 91.37 89.38 93.67 92.63 92.24 89.60
Alberti et al. (2015) 92.31 89.17 83.57 79.90 88.45 83.57 92.70 90.56 90.58 88.20 93.99 93.10 92.26 89.33

Our Local (B=1) 91.24 88.21 81.29 77.29 85.78 80.63 91.44 89.29 89.12 86.95 93.71 92.85 91.01 88.14
Our Local (B=16) 91.91 88.93 82.22 78.26 86.25 81.28 92.16 90.05 89.53 87.4 93.61 92.74 91.64 88.88
Our Global (B=16) 92.67 89.83 84.72 80.85 88.94 84.56 93.22 91.23 90.91 89.15 93.65 92.84 92.62 89.95

Table 3: Final CoNLL ’09 dependency parsing test set results.

4.3 Sentence Compression

Our final structured prediction task is extractive
sentence compression.

Data & Evaluation. We follow Filippova et al.
(2015), where a large news collection is used to
heuristically generate compression instances. Our
final corpus contains about 2.3M compression in-
stances: we use 2M examples for training, 130k
for development and 160k for the final test. We re-
port per-token F1 score and per-sentence accuracy
(A), i.e. percentage of instances that fully match
the golden compressions. Following Filippova et
al. (2015) we also run a human evaluation on 200
sentences where we ask the raters to score com-
pressions for readability (read) and informative-
ness (info) on a scale from 0 to 5.

Model Configuration. The transition system
for sentence compression is similar to POS tag-
ging: we scan sentences from left-to-right and la-
bel each token as keep or drop. We extract fea-
tures from words, POS tags, and dependency la-
bels from a window of tokens centered on the in-
put, as well as features from the history of predic-
tions. We use a single hidden layer of size 400.

Generated corpus Human eval
Method A F1 read info

Filippova et al. (2015) 35.36 82.83 4.66 4.03
Automatic - - 4.31 3.77

Our Local (B=1) 30.51 78.72 4.58 4.03
Our Local (B=8) 31.19 75.69 - -
Our Global (B=8) 35.16 81.41 4.67 4.07

Table 4: Sentence compression results on News data. Auto-
matic refers to application of the same automatic extraction
rules used to generate the News training corpus.

Results. Table 4 shows our sentence compres-
sion results. Our globally normalized model again
significantly outperforms the local model. Beam
search with a locally normalized model suffers
from severe label bias issues that we discuss on
a concrete example in Section 5. We also compare
to the sentence compression system from Filip-
pova et al. (2015), a 3-layer stacked LSTM which
uses dependency label information. The LSTM
and our global model perform on par on both the
automatic evaluation as well as the human ratings,
but our model is roughly 100× faster. All com-
pressions kept approximately 42% of the tokens
on average and all the models are significantly bet-
ter than the automatic extractions (p < 0.05).
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5 Discussion

We derived a proof for the label bias problem
and the advantages of global models. We then
emprirically verified this theoretical superiority
by demonstrating state-of-the-art performance on
three different tasks. In this section we situate and
compare our model to previous work and provide
two examples of the label bias problem in practice.

5.1 Related Neural CRF Work

Neural network models have been been combined
with conditional random fields and globally nor-
malized models before. Bottou et al. (1997) and
Le Cun et al. (1998) describe global training of
neural network models for structured prediction
problems. Peng et al. (2009) add a non-linear
neural network layer to a linear-chain CRF and
Do and Artires (2010) apply a similar approach
to more general Markov network structures. Yao
et al. (2014) and Zheng et al. (2015) introduce re-
currence into the model and Huang et al. (2015)
finally combine CRFs and LSTMs. These neural
CRF models are limited to sequence labeling tasks
where exact inference is possible, while our model
works well when exact inference is intractable.

5.2 Related Transition-Based Parsing Work

For early work on neural-networks for transition-
based parsing, see Henderson (2003; 2004). Our
work is closest to the work of Weiss et al. (2015),
Zhou et al. (2015) and Watanabe and Sumita
(2015); in these approaches global normalization
is added to the local model of Chen and Manning
(2014). Empirically, Weiss et al. (2015) achieves
the best performance, even though their model
keeps the parameters of the locally normalized
neural network fixed and only trains a perceptron
that uses the activations as features. Their model
is therefore limited in its ability to revise the pre-
dictions of the locally normalized model. In Ta-
ble 5 we show that full backpropagation training
all the way to the word embeddings is very im-
portant and significantly contributes to the perfor-
mance of our model. We also compared training
under the CRF objective with a Perceptron-like
hinge loss between the gold and best elements of
the beam. When we limited the backpropagation
depth to training only the top layer θ(d), we found
negligible differences in accuracy: 93.20% and
93.28% for the CRF objective and hinge loss re-
spectively. However, when training with full back-

Method UAS LAS

Local (B=1) 92.85 90.59
Local (B=16) 93.32 91.09

Global (B=16) {θ(d)} 93.45 91.21
Global (B=16) {W2, θ

(d)} 94.01 91.77
Global (B=16) {W1,W2, θ

(d)} 94.09 91.81
Global (B=16) (full) 94.38 92.17

Table 5: WSJ dev set scores for successively deeper levels
of backpropagation. The full parameter set corresponds to
backpropagation all the way to the embeddings. Wi: hidden
layer i weights.

propagation the CRF accuracy is 0.2% higher and
training converged more than 4× faster.

Zhou et al. (2015) perform full backpropagation
training like us, but even with a much larger beam,
their performance is significantly lower than ours.
We also apply our model to two additional tasks,
while they experiment only with dependency pars-
ing. Finally, Watanabe and Sumita (2015) intro-
duce recurrent components and additional tech-
niques like max-violation updates for a corre-
sponding constituency parsing model. In contrast,
our model does not require any recurrence or spe-
cialized training.

5.3 Label Bias in Practice

We observed several instances of severe label bias
in the sentence compression task. Although us-
ing beam search with the local model outperforms
greedy inference on average, beam search leads
the local model to occasionally produce empty
compressions (Table 6). It is important to note
that these are not search errors: the empty com-
pression has higher probability under pL than the
prediction from greedy inference. However, the
more expressive globally normalized model does
not suffer from this limitation, and correctly gives
the empty compression almost zero probability.

We also present some empirical evidence that
the label bias problem is severe in parsing. We
trained models where the scoring functions in
parsing at position i in the sentence are limited to
considering only tokens x1:i; hence unlike the full
parsing model, there is no ability to look ahead
in the sentence when making a decision.7 The
result for a greedy model under this constraint

7This setting may be important in some applications,
where for example parse structures for sentence prefixes are
required, or where the input is received one word at a time
and online processing is beneficial.
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Method Predicted compression pL pG

Local (B=1) In Pakistan, former leader Pervez Musharraf has appeared in court for the first time, on treason charges. 0.13 0.05
Local (B=8) In Pakistan, former leader Pervez Musharraf has appeared in court for the first time, on treason charges. 0.16 <10−4

Global (B=8) In Pakistan, former leader Pervez Musharraf has appeared in court for the first time, on treason charges. 0.06 0.07

Table 6: Example sentence compressions where the label bias of the locally normalized model leads to a breakdown during
beam search. The probability of each compression under the local (pL) and global (pG) models shows that only the global
model can properly represent zero probability for the empty compression.

is 76.96% UAS; for a locally normalized model
with beam search is 81.35%; and for a globally
normalized model is 93.60%. Thus the globally
normalized model gets very close to the perfor-
mance of a model with full lookahead, while the
locally normalized model with a beam gives dra-
matically lower performance. In our final exper-
iments with full lookahead, the globally normal-
ized model achieves 94.01% accuracy, compared
to 93.07% accuracy for a local model with beam
search. Thus adding lookahead allows the lo-
cal model to close the gap in performance to the
global model; however there is still a significant
difference in accuracy, which may in large part be
due to the label bias problem.

A number of authors have considered modified
training procedures for greedy models, or for lo-
cally normalized models. Daumé III et al. (2009)
introduce Searn, an algorithm that allows a classi-
fier making greedy decisions to become more ro-
bust to errors made in previous decisions. Gold-
berg and Nivre (2013) describe improvements to a
greedy parsing approach that makes use of meth-
ods from imitation learning (Ross et al., 2011) to
augment the training set. Note that these meth-
ods are focused on greedy models: they are un-
likely to solve the label bias problem when used in
conjunction with beam search, given that the prob-
lem is one of expressivity of the underlying model.
More recent work (Yazdani and Henderson, 2015;
Vaswani and Sagae, 2016) has augmented locally
normalized models with correctness probabilities
or error states, effectively adding a step after every
decision where the probability of correctness of
the resulting structure is evaluated. This gives con-
siderable gains over a locally normalized model,
although performance is lower than our full glob-
ally normalized approach.

6 Conclusions

We presented a simple and yet powerful model ar-
chitecture that produces state-of-the-art results for
POS tagging, dependency parsing and sentence

compression. Our model combines the flexibil-
ity of transition-based algorithms and the model-
ing power of neural networks. Our results demon-
strate that feed-forward network without recur-
rence can outperform recurrent models such as
LSTMs when they are trained with global normal-
ization. We further support our empirical findings
with a proof showing that global normalization
helps the model overcome the label bias problem
from which locally normalized models suffer.

Acknowledgements

We would like to thank Ling Wang for training
his C2W part-of-speech tagger on our setup, and
Emily Pitler, Ryan McDonald, Greg Coppola and
Fernando Pereira for tremendously helpful discus-
sions. Finally, we are grateful to all members of
the Google Parsing Team.

References

Steven Abney, David McAllester, and Fernando
Pereira. 1999. Relating probabilistic grammars and
automata. Proceedings of the 37th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 131–160.

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved transition-based parsing
and tagging with neural networks. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1354–1359.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
349–359.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1455–1465.

2450
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