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Abstract

We present an approach to improve sta-
tistical machine translation of image de-
scriptions by multimodal pivots defined in
visual space. The key idea is to perform
image retrieval over a database of images
that are captioned in the target language,
and use the captions of the most similar
images for crosslingual reranking of trans-
lation outputs. Our approach does not de-
pend on the availability of large amounts
of in-domain parallel data, but only re-
lies on available large datasets of monolin-
gually captioned images, and on state-of-
the-art convolutional neural networks to
compute image similarities. Our experi-
mental evaluation shows improvements of
1 BLEU point over strong baselines.

1 Introduction

Multimodal data consisting of images and natural
language descriptions (henceforth called captions)
are an abundant source of information that has led
to a recent surge in research integrating language
and vision. Recently, the aspect of multilinguality
has been added to multimodal language process-
ing in a shared task at the WMT16 conference.1

There is clearly also a practical demand for mul-
tilingual image captions, e.g., automatic transla-
tion of descriptions of art works would allow ac-
cess to digitized art catalogues across language
barriers and is thus of social and cultural interest;
multilingual product descriptions are of high com-
mercial interest since they would allow to widen
e-commerce transactions automatically to interna-
tional markets. However, while datasets of images
and monolingual captions already include millions

1http://www.statmt.org/wmt16/
multimodal-task.html

of tuples (Ferraro et al., 2015), the largest multi-
lingual datasets of images and captions known to
the authors contain 20,000 (Grubinger et al., 2006)
or 30,0002 triples of images with German and En-
glish descriptions.

In this paper, we want to address the problem
of multilingual captioning from the perspective of
statistical machine translation (SMT). In contrast
to prior work on generating captions directly from
images (Kulkarni et al. (2011), Karpathy and Fei-
Fei (2015), Vinyals et al. (2015), inter alia), our
goal is to integrate visual information into an SMT
pipeline. Visual context provides orthogonal in-
formation that is free of the ambiguities of natu-
ral language, therefore it serves to disambiguate
and to guide the translation process by ground-
ing the translation of a source caption in the ac-
companying image. Since datasets consisting of
source language captions, images, and target lan-
guage captions are not available in large quanti-
ties, we would instead like to utilize large datasets
of images and target-side monolingual captions to
improve SMT models trained on modest amounts
of parallel captions.

Let the task of caption translation be defined as
follows: For production of a target caption ei of
an image i, a system may use as input an image
caption for image i in the source language fi, as
well as the image i itself. The system may safely
assume that fi is relevant to i, i.e., the identifi-
cation of relevant captions for i (Hodosh et al.,
2013) is not itself part of the task of caption trans-
lation. In contrast to the inference problem of find-
ing ê = argmaxe p(e|f) in text-based SMT, mul-
timodal caption translation allows to take into con-
sideration i as well as fi in finding êi:

êi = argmax
ei

p(ei|fi, i)

2The dataset used at the WMT16 shared task is based on
translations of Flickr30K captions (Rashtchian et al., 2010).
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In this paper, we approach caption translation
by a general crosslingual reranking framework
where for a given pair of source caption and im-
age, monolingual captions in the target language
are used to rerank the output of the SMT sys-
tem. We present two approaches to retrieve tar-
get language captions for reranking by pivoting
on images that are similar to the input image.
One approach calculates image similarity based
deep convolutional neural network (CNN) repre-
sentations. Another approach calculates similar-
ity in visual space by comparing manually anno-
tated object categories. We compare the multi-
modal pivot approaches to reranking approaches
that are based on text only, and to standard SMT
baselines trained on parallel data. Compared to a
strong baseline trained on 29,000 parallel caption
data, we find improvements of over 1 BLEU point
for reranking based on visual pivots. Notably, our
reranking approach does not rely on large amounts
of in-domain parallel data which are not available
in practical scenarios such as e-commerce local-
ization. However, in such scenarios, monolingual
product descriptions are naturally given in large
amounts, thus our work is a promising pilot study
towards real-world caption translation.

2 Related Work

Caption generation from images alone has only re-
cently come into the scope of realistically solv-
able problems in image processing (Kulkarni et
al. (2011), Karpathy and Fei-Fei (2015), Vinyals
et al. (2015), inter alia). Recent approaches also
employ reranking of image captions by measuring
similarity between image and text using deep rep-
resentations (Fang et al., 2015). The tool of choice
in these works are neural networks whose deep
representations have greatly increased the qual-
ity of feature representations of images, enabling
robust and semantically salient analysis of image
content. We rely on the CNN framework (Socher
et al., 2014; Simonyan and Zisserman, 2015) to
solve semantic classification and disambiguation
tasks in NLP with the help of supervision sig-
nals from visual feedback. However, we consider
image captioning as a different task than caption
translation since it is not given the information of
the source language string. Therefore we do not
compare our work to caption generation models.

In the area of SMT, Wäschle and Riezler (2015)
presented a framework for integrating a large, in-

domain, target-side monolingual corpus into ma-
chine translation by making use of techniques
from crosslingual information retrieval. The in-
tuition behind their approach is to generate one or
several translation hypotheses using an SMT sys-
tem, which act as queries to find matching, se-
mantically similar sentences in the target side cor-
pus. These can in turn be used as templates for
refinement of the translation hypotheses, with the
overall effect of improving translation quality. Our
work can be seen as an extension of this method,
with visual similarity feedback as additional con-
straint on the crosslingual retrieval model. Cal-
ixto et al. (2012) suggest using images as sup-
plementary context information for statistical ma-
chine translation. They cite examples from the
news domain where visual context could poten-
tially be helpful in the disambiguation aspect of
SMT and discuss possible features and distance
metrics for context images, but do not report ex-
periments involving a full SMT pipeline using vi-
sual context. In parallel to our work, Elliott et al.
(2015) addressed the problem of caption transla-
tion from the perspective of neural machine trans-
lation.3 Their approach uses a model which is
considerably more involved than ours and relies
exclusively on the availability of parallel captions
as training data. Both approaches crucially rely
on neural networks, where they use a visually
enriched neural encoder-decoder SMT approach,
while we follow a retrieval paradigm for caption
translation, using CNNs to compute similarity in
visual space.

Integration of multimodal information into NLP
problems has been another active area of re-
cent research. For example, Silberer and La-
pata (2014) show that distributional word em-
beddings grounded in visual representations out-
perform competitive baselines on term similar-
ity scoring and word categorization tasks. The
orthogonality of visual feedback has previously
been exploited in a multilingual setting by Kiela et
al. (2015) (relying on previous work by Bergsma
and Van Durme (2011)), who induce a bilingual
lexicon using term-specific multimodal represen-
tations obtained by querying the Google image

3We replicated the results of Elliott et al. (2015) on the
IAPR TC-12 data. However, we decided to not include their
model as baseline in this paper since we found our hierarchi-
cal phrase-based baselines to yield considerably better results
on IAPR TC-12 as well as on MS COCO.
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Figure 1: Overview of model architecture.

search engine.4 Funaki and Nakayama (2015)
use visual similarity for crosslingual document
retrieval in a multimodal and bilingual vector
space obtained by generalized canonical correla-
tion analysis, greatly reducing the need for parallel
training data. The common element is that CNN-
based visual similarity information is used as a
“hub” (Funaki and Nakayama, 2015) or pivot con-
necting corpora in two natural languages which
lack direct parallelism, a strategy which we apply
to the problem of caption translation.

3 Models

3.1 Overview

Following the basic approach set out by Wäschle
and Riezler (2015), we use a crosslingual retrieval
model to find sentences in a target language doc-
ument collection C, and use these to rerank target
language translations e of a source caption f .

The systems described in our work differ from
that of Wäschle and Riezler (2015) in a number
of aspects. Instead of a two-step architecture of
coarse-grained and fine-grained retrieval, our sys-
tem uses relevance scoring functions for retrieval
of matches in the document collection C, and for

4https://images.google.com/

reranking of translation candidates that are based
on inverse document frequency of terms (Spärck
Jones, 1972) and represent variants of the popular
TF-IDF relevance measure.

A schematic overview of our approach is given
in Figure 1. It consists of the following compo-
nents:

Input: Source caption fi, image i, target-side col-
lection C of image-captions pairs

Translation: Generate unique list Nfi
of kn-best

translations, generate unique list Rfi
of kr-

best list of translations5 using MT decoder

Multimodal retrieval: For list of translations
Nfi

, find set Mfi
of km-most relevant pairs

of images and captions in a target-side col-
lection C, using a heuristic relevance scoring
function S(m,Nfi

, i),m ∈ C
Crosslingual reranking: Use list Mfi

of image-
caption pairs to rerank list of translations
Rfi

, applying relevance scoring function
F (r,Mfi

) to all r ∈ Rfi

Output: Determine best translation hypothesis êi
by interpolating decoder score dr for a hy-
pothesis r ∈ Rfi

with its relevance score
F (r,Mfi

) with weight λ s.t.

êi = argmax
r∈Rfi

dr + λ · F (r,Mfi
)

The central concept is the scoring function
S(m,Nfi

, i) which defines three variants of
target-side retrieval (TSR), all of which make use
of the procedure outlined above. In the base-
line text-based reranking model (TSR-TXT), we
use relevance scoring function STXT . This func-
tion is purely text-based and does not make use
of multimodal context information (as such, it
comes closest to the models used for target-side
retrieval in Wäschle and Riezler (2015)). In the
retrieval model enhanced by visual information
from a deep convolutional neural network (TSR-
CNN), the scoring function SCNN incorporates a
textual relevance score with visual similarity in-
formation extracted from the neural network. Fi-
nally, we evaluate these models against a rele-
vance score based on human object-category an-
notations (TSR-HCA), using the scoring function

5In practice, the first hypothesis list may be reused. We
distinguish between the two hypothesis lists Nfi and Rfi for
notational clarity since in general, the two hypothesis lists
need not be of equal length.
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SHCA. This function makes use of the object an-
notations available for the MS COCO corpus (Lin
et al., 2014) to give an indication of the effective-
ness of our automatically extracted visual similar-
ity metric. The three models are discussed in detail
below.

3.2 Target Side Retrieval Models

Text-Based Target Side Retrieval. In the TSR-
TXT retrieval scenario, a match candidate m ∈ C
is scored in the following way:

STXT (m,Nfi
) =

Zm

∑
n∈Nfi

∑
wn∈tok(n)

∑
wm∈typ(m)

δ(wm, wn)idf(wm),

where δ is the Kronecker δ-function, Nfi
is the set

of the kn-best translation hypotheses for a source
caption fi of image i by decoder score, typ(a)
is a function yielding the set of types (unique to-
kens) contained in a caption a,6 tok(a) is a func-
tion yielding the tokens of caption a, idf(w) is
the inverse document frequency (Spärck Jones,
1972) of term w, and Zm = 1

|typ(m)| is a nor-
malization term introduced in order to avoid bias-
ing the system towards long match candidates con-
taining many low-frequency terms. Term frequen-
cies were computed on monolingual data from Eu-
roparl (Koehn, 2005) and the News Commentary
and News Discussions English datasets provided
for the WMT15 workshop.7 Note that in this
model, information from the image i is not used.

Multimodal Target Side Retrieval using CNNs.
In the TSR-CNN scenario, we supplement the tex-
tual target-side TSR model with visual similar-
ity information from a deep convolutional neu-
ral network. We formalize this by introduc-
tion of the positive-semidefinite distance function
v(ix, iy) → [0,∞) for images ix, iy (smaller val-
ues indicating more similar images). The rele-
vance scoring function SCNN used in this model

6The choice for per-type scoring of reference captions was
primarily driven by performance considerations. Since cap-
tions rarely contain repetitions of low-frequency terms, this
has very little effect in practice, other than to mitigate the in-
fluence of stopwords.

7http://www.statmt.org/wmt15/
translation-task.html

takes the following form:

SCNN (m,Nfi
, i)

=

{
STXT (m,Nfi

)e−bv(im,i), v(im, i) < d

0 otherwise,

where im is the image to which the caption m
refers and d is a cutoff maximum distance, above
which match candidates are considered irrelevant,
and b is a weight term which controls the impact
of the visual distance score v(im, i) on the overall
score.8

Our visual distance measure v was computed
using the VGG16 deep convolutional model of Si-
monyan and Zisserman (2015), which was pre-
trained on ImageNet (Russakovsky et al., 2014).
We extracted feature values for all input and refer-
ence images from the penultimate fully-connected
layer (fc7) of the model and computed the Eu-
clidean distance between feature vectors of im-
ages. If no neighboring images fell within dis-
tance d, the text-based retrieval procedure STXT

was used as a fallback strategy, which occurred 47
out of 500 times on our test data.

Target Side Retrieval by Human Category An-
notations. For contrastive purposes, we evalu-
ated a TSR-HCA retrieval model which makes use
of the human object category annotations for MS
COCO. Each image in the MS COCO corpus is
annotated with object polygons classified into 91
categories of common objects. In this scenario, a
match candidatem is scored in the following way:

SHCA(m,Nfi
, i)

= δ(cat(im), cat(i))STXT (m,Nfi
),

where cat(i) returns the set of object categories
with which image i is annotated. The amounts
to enforcing a strict match between the category
annotations of i and the reference image im, thus
pre-filtering the STXT scoring to captions for im-
ages with strict category match.9 In cases where
i was annotated with a unique set of object cate-
gories and thus no match candidates with nonzero
scores were returned by SHCA, STXT was used as
a fallback strategy, which occurred 77 out of 500
times on our test data.

8The value of b = 0.01 was found on development data
and kept constant throughout the experiments.

9Attempts to relax this strict matching criterion led to
strong performance degradation on the development test set.
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3.3 Translation Candidate Re-scoring
The relevance score F (r,Mfi

) used in the rerank-
ing model was computed in the following way for
all three models:

F (r,Mfi
) =

ZMfi

∑
m∈Mfi

∑
wm∈typ(m)

∑
wr∈tok(r)

δ(wm, wr)idf(wm)

with normalization term

ZMfi
= (

∑
m∈Mfi

|tok(m)|)−1,

where r is a translation candidate and Mfi
is a list

of km-top target side retrieval matches. Because
the model should return a score that is reflective of
the relevance of r with respect toMfi

, irrespective
of the length of Mfi

, normalization with respect
to the token count of Mfi

is necessary. The term
ZMfi

serves this purpose.

4 Experiments

4.1 Bilingual Image-Caption Data
We constructed a German-English parallel dataset
based on the MS COCO image corpus (Lin et
al., 2014). 1,000 images were selected at random
from the 2014 training section10 and, in a sec-
ond step, one of their five English captions was
chosen randomly. This caption was then trans-
lated into German by a native German speaker.
Note that our experiments were performed with
German as the source and English as the tar-
get language, therefore, our reference data was
not produced by a single speaker but reflects the
heterogeneity of the MS COCO dataset at large.
The data was split into a development set of 250
captions, a development test set of 250 captions
for testing work in progress, and a test set of
500 captions. For our retrieval experiments, we
used only the images and captions that were not
included in the development, development test
or test data, a total of 81,822 images with 5
English captions per image. All data was to-
kenized and converted to lower case using the
cdec11 utilities tokenized-anything.pl
and lowercase.pl. For the German data, we

10We constructed our parallel dataset using only the train-
ing rather than the validation section of MS COCO so as to
keep the latter pristine for future work based on this research.

11https://github.com/redpony/cdec

Section Images Captions Languages

DEV 250 250 DE-EN
DEVTEST 250 250 DE-EN
TEST 500 500 DE-EN
RETRIEVAL (C) 81,822 409,110 EN

Table 1: Number of images and sentences in
MS COCO image and caption data used in exper-
iments.

performed compound-splitting using the method
described by Dyer (2009), as implemented by the
cdec utility compound-split.pl. Table 1
gives an overview of the dataset. Our parallel de-
velopment, development test and test data is pub-
licly available.12

4.2 Translation Baselines

We compare our approach to two baseline ma-
chine translation systems, one trained on out-of-
domain data exclusively and one domain-adapted
system. Table 2 gives an overview of the training
data for the machine translation systems.

Out-of-Domain Baseline. Our baseline SMT
framework is hierarchical phrase-based translation
using synchronous context free grammars (Chi-
ang, 2007), as implemented by the cdec de-
coder (Dyer et al., 2010). Data from the Europarl
(Koehn, 2005), News Commentary and Common
Crawl corpora (Smith et al., 2013) as provided for
the WMT15 workshop was used to train the trans-
lation model, with German as source and English
as target language.

Like the retrieval dataset, training, development
and test data was tokenized and converted to lower
case, using the same cdec tools. Sentences with
lengths over 80 words in either the source or
the target language were discarded before train-
ing. Source text compound splitting was per-
formed using compound-split.pl. Align-
ments were extracted bidirectionally using the
fast-align utility of cdec and symmetrized
with the atools utility (also part of cdec) us-
ing the grow-diag-final-and symmetriza-
tion heuristic. The alignments were then used
by the cdec grammar extractor to extract a syn-
chronous context free grammar from the parallel
data.

12www.cl.uni-heidelberg.de/decoco/
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Corpus Sentences Languages System

Europarl 1,920,209 DE-EN O/I
News Commentary 216,190 DE-EN O/I
Common Crawl 2,399,123 DE-EN O/I
Flickr30k WMT16 29,000 DE-EN I

Europarl 2,218,201 EN O/I
News Crawl 28,127,448 EN O/I
News Discussions 57,803,684 EN O/I
Flickr30k WMT16 29,000 EN I

Table 2: Parallel and monolingual data used
for training machine translation systems. Sen-
tence counts are given for raw data without pre-
processing. O/I: both out-of-domain and in-
domain system, I: in-domain system only.

The target language model was trained on
monolingual data from Europarl, as well as
the News Crawl and News Discussions English
datasets provided for the WMT15 workshop (the
same data as was used for estimating term fre-
quencies for the retrieval models) with the KenLM
toolkit (Heafield et al., 2013; Heafield, 2011).13

We optimized the parameters of the translation
system for translation quality as measured by IBM
BLEU (Papineni et al., 2002) using the Margin In-
fused Relaxed Algorithm (MIRA) (Crammer and
Singer, 2003). For tuning the translation models
used for extraction of the hypothesis lists for final
evaluation, MIRA was run for 20 iterations on the
development set, and the best run was chosen for
final testing.

In-Domain Baseline. We also compared our
models to a domain-adapted machine translation
system. The domain-adapted system was iden-
tical to the out-of-domain system, except that it
was supplied with additional parallel training data
from the image caption domain. For this purpose,
we used 29,000 parallel German-English image
captions as provided for the WMT16 shared task
on multimodal machine translation. The English
captions in this dataset belong to the Flickr30k
corpus (Rashtchian et al., 2010) and are very sim-
ilar to those of the MS COCO corpus. The Ger-
man captions are expert translations. The English
captions were also used as additional training data
for the target-side language model. We generated
kn- and kr-best lists of translation candidates us-
ing this in-domain baseline system.

13https://kheafield.com/code/kenlm/

Model kn km kr λ

TSR-TXT 300 500 5 5 · 104

TSR-CNN 300 300 5 70 · 104

TSR-HCA 300 500 5 10 · 104

Table 3: Optimized hyperparameter values used
in final evaluation.

4.3 Optimization of TSR Hyperparameters

For each of our retrieval models, we performed a
step-wise exhaustive search of the hyperparame-
ter space over the four system hyperparameters for
IBM BLEU on the development set: The length
of the kn-best list the entries of which are used
as queries for retrieval; the number of km-best-
matching captions retrieved; the length of the fi-
nal kr-best list used in reranking; the interpolation
weight λ of the relevance score F relative to the
translation hypothesis log probability returned by
the decoder. The parameter ranges to be explored
were determined manually, by examining system
output for prototypical examples. Table 3 gives
an overview over the hyperparameter values ob-
tained.

For TSR-CNN, we initially set the cutoff dis-
tance d to 90.0, after manually inspecting sets of
nearest neighbors returned for various maximum
distance values. After optimization of retrieval pa-
rameters, we performed an exhaustive search from
d = 80.0 to d = 100.0, with step size 1.0 on the
development set, while keeping all other hyperpa-
rameters fixed, which confirmed out initial choice
of d = 90.0 as the optimal value.

Explored parameter spaces were identical for all
models and each model was evaluated on the test
set using its own optimal configuration of hyper-
parameters.

4.4 Significance Testing

Significance tests on the differences in transla-
tion quality were performed using the approxi-
mate randomization technique for measuring per-
formance differences of machine translation sys-
tems described in Riezler and Maxwell (2005) and
implemented by Clark et al. (2011) as part of the
Multeval toolkit.14

14https://github.com/jhclark/multeval

2404



System BLEU ↑ pc pt pd po

cdec out-dom. 25.5
cdec in-dom. 29.6 0.00
TSR-TXT 29.7 0.45 0.00
TSR-CNN 30.6 0.04 0.02 0.00
TSR-HCA 30.3 0.42 0.01 0.00 0.00

System METEOR ↑ pc pt pd po

cdec out-dom. 31.7
cdec in-dom. 34.0 0.00
TSR-TXT 34.1 0.41 0.00
TSR-CNN 34.7 0.00 0.00 0.00
TSR-HCA 34.4 0.09 0.00 0.00 0.00

System TER ↓ pc pt pd po

cdec out-dom. 49.3
cdec in-dom. 46.1 0.00
TSR-TXT 45.8 0.12 0.00
TSR-CNN 45.1 0.03 0.00 0.00
TSR-HCA 45.3 0.34 0.02 0.00 0.00

Table 4: Metric scores for all systems and their
significance levels as reported by Multeval. po-
values are relative to the cdec out-of-domain
baseline, pd-values are relative to the cdec in-
domain baseline, pt-values are relative to TSR-
TXT and pc-values are relative to TSR-CNN. Best
results are reported in bold face.15

4.5 Experimental Results

Table 4 summarizes the results for all models
on an unseen test set of 500 captions. Domain
adaptation led to a considerable improvement of
+4.1 BLEU and large improvements in terms of
METEOR and Translation Edit Rate (TER). We
found that the target-side retrieval model enhanced
with multimodal pivots from a deep convolutional
neural network, TSR-CNN and TSR-HCA, con-
sistently outperformed both the domain-adapted
cdec baseline, as well as the text-based tar-
get side retrieval model TSR-TXT. These models
therefore achieve a performance gain which goes
beyond the effect of generic domain-adaptation.
The gain in performance for TSR-CNN and TSR-
HCA was significant at p < 0.05 for BLEU, ME-
TEOR, and TER. For all evaluation metrics, the
difference between TSR-CNN and TSR-HCA was
not significant, demonstrating that retrieval using
our CNN-derived distance metric could match re-
trieval based the human object category annota-
tions.

15A baseline for which a random hypothesis was cho-
sen from the top-5 candidates of the in-domain system lies
between the other two baseline systems: 27.5 / 33.3 / 47.7
(BLEU / METEOR / TER).

a+,f+ a+,f− a−,f+ a−,f−

102

7
15

45

Figure 2: Results of the human pairwise prefer-
ence ranking experiment, given as the joint dis-
tribution of both rankings: a+ denotes preference
for TSR-CNN in terms of accuracy, f+ in terms of
fluency; a− denotes preference for the in-domain
baseline in terms of accuracy, f− in terms of flu-
ency.

The text-based retrieval baseline TSR-TXT
never significantly outperformed the in-domain
cdec baseline, but there were slight nominal im-
provements in terms of BLEU, METEOR and
TER. This finding is actually consistent with
Wäschle and Riezler (2015) who report perfor-
mance gains for text-based, target side retrieval
models only on highly technical, narrow-domain
corpora and even report performance degradation
on medium-diversity corpora such as Europarl.
Our experiments show that it is the addition of
visual similarity information by incorporation of
multimodal pivots into the image-enhanced mod-
els TSR-CNN and TSR-HCA which makes such
techniques effective on MS COCO, thus uphold-
ing our hypothesis that visual information can be
exploited for improvement of caption translation.

4.6 Human Evaluation

The in-domain baseline and TSR-CNN differed in
their output in 169 out of 500 cases on the test
set. These 169 cases were presented to a human
judge alongside the German source captions in a
double-blinded pairwise preference ranking exper-
iment. The order of presentation was randomized
for the two systems. The judge was asked to rank
fluency and accuracy of the translations indepen-
dently. The results are given in Figure 2. Overall,
there was a clear preference for the output of TSR-
CNN.
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4.7 Examples

Table 5 shows example translations produced by
both cdec baselines, TSR-TXT, TSR-CNN, and
TSR-HCA, together with source caption, image,
and reference translation. The visual information
induced by target side captions of pivot images al-
lows a disambiguation of translation alternatives
such as “skirt” versus “rock (music)” for the Ger-
man “Rock”, “pole” versus “mast” for the Ger-
man “Masten”, and is able to repair mistransla-
tions such as “foot” instead of “mouth” for the
German “Maul”.

5 Conclusions and Further Work

We demonstrated that the incorporation of multi-
modal pivots into a target-side retrieval model im-
proved SMT performance compared to a strong
in-domain baseline in terms of BLEU, METEOR
and TER on our parallel dataset derived from MS
COCO. The gain in performance was comparable
between a distance metric based on a deep convo-
lutional network and one based on human object
category annotations, demonstrating the effective-
ness of the CNN-derived distance measure. Using
our approach, SMT can, in certain cases, profit
from multimodal context information. Crucially,
this is possible without using large amounts of in-
domain parallel text data, but instead using large
amounts of monolingual image captions that are
more readily available.

Learning semantically informative distance
metrics using deep learning techniques is an area
under active investigation (Wu et al., 2013; Wang
et al., 2014; Wang et al., 2015). Despite the fact
that our simple distance metric performed com-
parably to human object annotations, using such
high-level semantic distance metrics for caption
translation by multimodal pivots is a promising av-
enue for further research.

The results were achieved on one language pair
(German-English) and one corpus (MS COCO)
only. As with all retrieval-based methods, gener-
alized statements about the relative performance
on corpora of various domains, sizes and qualities
are difficult to substantiate. This problem is aggra-
vated in the multimodal case, since the relevance
of captions with respect to images varies greatly
between different corpora (Hodosh et al., 2013).
In future work, we plan to evaluate our approach
in more naturalistic settings, such machine transla-
tion for captions in online multimedia repositories

Image:

Source: Eine Person in einem Anzug und
Krawatte und einem Rock.

cdec out-dom: a person in a suit and tie and a rock .
cdec in-dom: a person in a suit and tie and a rock .
TSR-TXT: a person in a suit and tie and a rock .
TSR-CNN: a person in a suit and tie and a skirt .
TSR-HCA: a person in a suit and tie and a rock .
Reference: a person wearing a suit and tie and a

skirt
Image:

Source: Ein Masten mit zwei Ampeln für Aut-
ofahrer.

cdec out-dom: a mast with two lights for drivers .
cdec in-dom: a mast with two lights for drivers .
TSR-TXT: a mast with two lights for drivers .
TSR-CNN: a pole with two lights for drivers .
TSR-HCA: a pole with two lights for drivers .
Reference: a pole has two street lights on it for

drivers .
Image:

Source: Ein Hund auf einer Wiese mit einem
Frisbee im Maul.

cdec out-dom: a dog on a lawn with a frisbee in the
foot .

cdec in-dom: a dog with a frisbee in a grassy field .
TSR-TXT: a dog with a frisbee in a grassy field .
TSR-CNN: a dog in a grassy field with a frisbee in

its mouth .
TSR-HCA: a dog with a frisbee in a grassy field .
Reference: a dog in a field with a frisbee in its

mouth

Table 5: Examples for improved caption transla-
tion by multimodal feedback.

2406



such as Wikimedia Commons16 and digitized art
catalogues, as well as e-commerce localization.

A further avenue of future research is improv-
ing models such as that presented in Elliott et
al. (2015) by crucial components of neural MT
such as “attention mechanisms”. For example,
the attention mechanism of Bahdanau et al. (2015)
serves as a soft alignment that helps to guide the
translation process by influencing the sequence
in which source tokens are translated. A similar
mechanism is used in Xu et al. (2015) to decide
which part of the image should influence which
part of the generated caption. Combining these
two types of attention mechanisms in a neural cap-
tion translation model is a natural next step in cap-
tion translation. While this is beyond the scope of
this work, our models should provide an informa-
tive baseline against which to evaluate such meth-
ods.

Acknowledgments

This research was supported in part by DFG
grant RI-2221/2-1 “Grounding Statistical Machine
Translation in Perception and Action”, and by
an Amazon Academic Research Award (AARA)
“Multimodal Pivots for Low Resource Machine
Translation in E-Commerce Localization”.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR), San Diego, California, USA.

Shane Bergsma and Benjamin Van Durme. 2011.
Learning bilingual lexicons using the visual similar-
ity of labeled web images. In Proceedings of the
International Joint Conference on Artificial Intelli-
gence (IJCAI), Barcelona, Spain.
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