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Abstract

In this paper, with the help of knowl-
edge base, we build and formulate a se-
mantic space to connect the source and
target languages, and apply it to the
sequence-to-sequence framework to pro-
pose a Knowledge-Based Semantic Em-
bedding (KBSE) method. In our KB-
SE method, the source sentence is firstly
mapped into a knowledge based seman-
tic space, and the target sentence is gen-
erated using a recurrent neural network
with the internal meaning preserved. Ex-
periments are conducted on two transla-
tion tasks, the electric business data and
movie data, and the results show that our
proposed method can achieve outstanding
performance, compared with both the tra-
ditional SMT methods and the existing
encoder-decoder models.

1 Introduction

Deep neural network based machine translation,
such as sequence-to-sequence (S2S) model (Cho
et al., 2014; Sutskever et al., 2014), try to learn
translation relation in a continuous vector space.
As shown in Figure 1, the S2S framework contains
two parts: an encoder and a decoder. To compress
a variable-length source sentence into a fixed-size
vector, with a recurrent neural network (RNN), an
encoder reads words one by one and generates a
sequence of hidden vectors. By reading all the
source words, the final hidden vector should con-
tain the information of source sentence, and it is
called the context vector. Based on the context
vector, another RNN-based neural network is used
to generate the target sentence.

This work was done while the first author was visiting
Microsoft Research.
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Figure 1: An illustration of the RNN-based neural
network model for Chinese-to-English machine
translation

The context vector plays a key role in the con-
nection of source and target language spaces, and
it should contain all the internal meaning extracted
from source sentence, based on which, the decoder
can generate the target sentence keeping the mean-
ing unchanged. To extract the internal meaning
and generate the target sentence, S2S framework
usually needs large number of parameters, and a
big bilingual corpus is acquired to train them.

In many cases, the internal meaning is not easy
to learn, especially when the language is informal.
For the same intention, there are various expres-
sions with very different surface string, which ag-
gravates the difficulty of internal meaning extrac-
tion. As shown in Table 1, there are three different
expressions for a same intention, a customer wants
a white 4G cellphone with a big screen. The first
and second expressions (Sourcel and Source2) are
wordy and contain lots of verbiage. To extrac-
t the internal meaning, the encoder should ignore
these verbiage and focus on key information. This
is hard for the encoder-decoder mechanism, since
it is not defined or formulated that what kind of
information is key information. The meaning s-
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Figure 2: An illustration of Knowledge-Based Semantic Embedding (KBSE).

Sourcel T, AANAH K BR H4I4GFMND ? &

Be .,

Source2 %4 & feH 4G FALE , RIAF G 49,
BRE KX,

Source3 & M E/NHE M K FR 494G Fh .

Intention I want a white 4G cellphone with a big screen.

Enc-Dec

I need a 4G cellphone with a big screen.

Table 1: An example of various expressions for a
same intention.

pace of the context vector is only a vector space
of continuous numbers, and users cannot add ex-
ternal knowledge to constrain the internal mean-
ing space. Therefore, the encoder-decoder system
(Enc-Dec) does not generate the translation of “#&
&, #9”/“white”, and fails to preserve the correct
meaning of Sourcel, shown in Table 1.

No matter how different between the surface
strings, the key information is the same (wan-
t, white, 4G, big screen, cellphone). This
phenomenon motivates a translation process as:
we firstly extract key information (such as en-
tities and their relations) from the source sen-
tence; then based on that, we generate target sen-
tence, in which entities are translated with un-
changed predication relations. To achieve this,
background knowledge (such as, phone/computer,
black/white, 3G/4G) should be considered.

In this paper, we propose a Knowledge-Based
Semantic Embedding (KBSE) method for ma-
chine translation, as shown in Figure 2. Our KBSE
contains two parts: a Source Grounding part to
extract semantic information in source sentence,

and a Target Generation part to generate target
sentence. In KBSE, source monolingual data and
a knowledge base is leveraged to learn an explic-
it semantic vector, in which the grounding space
is defined by the given knowledge base, then the
same knowledge base and a target monolingual da-
ta are used to learn a natural language generator,
which produce the target sentence based on the
learned explicit semantic vector. Different from
S2S models using large bilingual corpus, our KB-
SE only needs monolingual data and correspond-
ing knowledge base. Also the context/semantic
vector in our KBSE is no longer implicit contin-
uous number vector, but explicit semantic vector.
The semantic space is defined by knowledge base,
thus key information can be extracted and ground-
ed from source sentence. In such a way, users can
easily add external knowledge to guide the model
to generate correct translation results.

We conduct experiments to evaluate our KB-
SE on two Chinese-to-English translation tasks,
one in electric business domain, and the other in
movie domain. Our method is compared with
phrasal SMT method and the encoder-decoder
method, and achieves significant improvement in
both BLEU and human evaluation. KBSE is al-
so combined with encoder-decoder method to get
further improvement.

In the following, we first introduce our frame-
work of KBSE in section 2, in which the details of
Source Grounding and Target Generation are il-
lustrated. Experiments is conducted in Section 3.
Discussion and related work are detailed in Sec-
tion 4, followed by conclusion and future work.
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2 KBSE: Knowledge-Based Semantic
Embedding

Our proposed KBSE contains two parts: Source
Grounding part (in Section 2.1) embeds the
source sentence into a knowledge semantic space,
in which the grounded semantic information can
be represented by semantic tuples; and Target
Generation part (in Section 2.2) generates the tar-
get sentence based on these semantic tuples.

2.1 Source Grounding

Source H, AANH K BHRHAIAGFMD? &
aé
Category.cellphone

Tuples  Appearance.color.white

Appearance.size.big_screen
Network.4G _network

Table 2: Source sentence and the grounding result.
Grounding result is organized as several tuples.

As shown in Table 2, given the source sentence,
Source Grounding part tries to extract the seman-
tic information, and map it to the tuples of knowl-
edge base. It is worth noticing that the tuples are
language-irrelevant, while the name of the enti-
ties inside can be in different languages. To get
the semantic tuples, we first use RNN to encode
the source sentence into a real space to get the
sentence embedding, based on which, correspond-
ing semantic tuples are generated with a neural-
network-based hierarchical classifier. Since the
knowledge base is organized in a tree structure, the
tuples can be seen as several paths in the tree. For

Category Network\\\Appearance \‘\
e N 3 AN
Cellphone 4G

\ \~

Computer 3G Size Shape Y Color N
oy $ 5 \

R g : \

\

\
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red ..\ white |
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\

Laptop Desktop small ... big_screen ...

Figure 3: Illustration of the tuple tree for Table
2. Each tuple extracted from source sentence can
be represented as a single path (solid line) in tuple
tree. There are 4 solid line paths representing 4
tuples of Table 2. The path circled in dashed lines
stands for the tuple Appearance.color.white.

LR classifier
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Figure 4: Illustration of Source Grounding. The
input sentence X is transformed through an embed-
ding layer f and a hidden layer g. Once we get
the sentence embedding H, we calculate the inner
product of H and the weight W, for the specific
edge e, and use a logistic regression as the classi-
fier to decide whether this edge should be chosen.

tuples in Table 2, Figure 3 shows the correspond-
ing paths (in solid lines).

2.1.1 Sentence Embedding

Sentence embedding is used to compress the
variable-length source sentence into a fixed-size
context vector. Given the input sentence X =
(z1 ... 1), we feed each word one by one into
an RNN, and the final hidden vector is used as the
sentence embedding. In detail, as shown in Fig-
ure 4, at time-stamp ¢, an input word z is fed into
the neural network. With the embedding layer f,
the word is mapped into a real vector r; = f(x¢).
Then the word embedding 7; is fed into an RNN
g to get the hidden vector hy = g(r¢, hy—1). We
input the words one by one at time 1,2, ..., 7T, and
get the hidden vectors hq, ho, ..., hp. The last hid-
den state A7 should contain all the information of
the input sentence, and it is used as the sentence
embedding H. To model the long dependency
and memorize the information of words far from
the end, Gated Recurrent Unit(GRU) (Cho et al.,
2014) is leveraged as the recurrent function g.

2.1.2 Tuple Generation

In our system, we need a tuple tree for tuple gen-
eration. For those knowledge base who is natural-
ly organized as tree structure, such as Freebase,
we use its own stucture. Otherwise, we manu-
ally build the tuple tree as the representation of
the introduced knowledge base. Given a knowl-
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edge base for a specific domain, we divide the in-
tention of this domain into several classes, while
each class has subclasses. All the classes above
can be organized as a tree structure, which is the
tuple tree we used in our system, as shown in Fig-
ure 3. It is worth noticing that the knowledge base
captures different intentions separately in different
tree structures.

Following the hierarchical log-bilinear model
(HLBL) (Mnih and Hinton, 2009; Mikolov et al.,
2013), based on the sentence embedding H, we
build our neural-network-based hierarchical clas-
sifier as follows: Each edge e of tuple tree has a
weight vector w,, which is randomly initialized,
and learned with training data. We go through the
tuple tree top-down to find the available paths. For
each current node, we have a classifier to decide
which children can be chosen. Since several chil-
dren can be chosen at the same time independent-
ly, we use logistic regression as the classifier for
each single edge, rather than a softmax classifier
to choose one best child node.

For the source sentence and corresponding tu-
ples in table 2, in the first layer, we should choose
three children nodes: Category, Appearance and
Network, and in the second layer with the paren-
t node Appearance, two children nodes color and
size should be selected recursively. As shown in
Figure 4, the probability to choose an edge e with
its connected child is computed as follows:

1

p(lle, H) = T o-well

(D
where the operator - is the dot product function.
The probability of the tuples conditioned on the
source sentence p(S|x; ... xr) is the product of
all the edges probabilities, calculated as follows:

p(S|z1 ... z7) = p(S|H)
— I »(tle, 1) T w01/, 2)

ecC e'¢C

where p(1lle, H) is the probability for an edge e
belonging to the tuple set S, and p(0|e’, H) is the
probability for an edge ¢’ not in the tuple set S.

2.2 Target Generation

With the semantic tuples grounded from source
sentence, in this section, we illustrate how to gen-
erate target sentence. The generation of the target
sentence is another RNN, which predicts the next
word y; 41 conditioned on the semantic vector C

and all the previously predicted words y1, ..., y;.
Given current word y, previous hidden vector
h:_1, and the semantic vector C, the probability
of next target word ;1 is calculated as:

hy = g(ht,l,yt,C') ()
e5(Wet1,ht)
€))

Zy/ es(y' 7hi)

where equation (2) is used to generate the next hid-
den vector h;, and equation (3) is the softmax func-
tion to compute the probability of the next word
yi+1. For the recurrent function g in equation (2),
in order to generate target sentence preserving the
semantic meaning stored in C', we modified GRU
(Cho et al., 2014) following (Wen et al., 2015;
Feng et al., 2016):

re =Wy + U hy—1 + V'e¢)

hy = tanh(Wy; + U(ry © hy_1) + Vey)
2t =0(W?y + U hi—1 + VZ¢)

di = o(Wlyy + Uhy_1 + Vi)

g =di ©cq

hi=(1 — 2)©hy + 2 O hi_1 + tanh(Ve,)

PYir1ly1--u, C) =

in which, ¢; is the semantic embedding at time ¢,
which is initialized with C, and changed with a ex-
traction gate d;. The introduced extraction gate d;
retrieve and remove information from the seman-
tic vector C to generate the corresponding target
word.

To force our model to generate the target sen-
tence keeping information contained in C' un-
changed, two additional terms are introduced into
the cost function:

T
1
> 10g(pui|C)) + llerlla + 7 D de = di- 2
t 7j=1

where the first term is log-likelihood cost, the
same as in the encoder-decoder. And the other t-
wo terms are introduced penalty terms. |crl|2 is
for forcing the decoding neural network to extract
as much information as possible from the semantic
vector C, thus the generated target sentence keeps
the same meaning with the source sentence. The
third term is to restrict the extract gate from ex-
tracting too much information in semantic vector
C' at each time-stamp.

For the semantic tuples in Table 2, our modified
RNN generates the target sentence word by word,
until meets the end symbol character: “I want a
white 4G cellphone with a big screen.”.
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2.3 Combination

The two components of KBSE (Source Ground-
ing and Target Generation) are separately
trained, and can be used in three ways:

e Source Grounding can be used to do seman-
tic grounding for a given sentence and get the
key information as a form of tuples;

e Target Generation can generate a natural
language sentence based on the existing se-
mantic tuples;

e Combining them, KBSE can be used to trans-
lation a source sentence into another lan-
guage with a semantic space defined by a giv-
en knowledge base.

3 Experiments

To evaluate our proposed KBSE model, in this
section, we conduct experiments on two Chinese-
to-English translation tasks. One is from electric
business domain, and the other is from movie do-
main.

3.1 Baseline and Comparison Systems

We select two baseline systems. The first one is an
in-house implementation of hierarchical phrase-
based SMT (Koehn et al., 2003; Chiang, 2007)
with traditional features, which achieves a similar
performance to the state-of-the-art phrase-based
decoder in Moses ! (Koehn et al., 2007). The 4-
gram language model is trained with target sen-
tences from training set plus the Gigaword corpus
2. Our phrase-based system is trained with MERT
(Och, 2003). The other system is the encoder-
decoder system (van Merriénboer et al., 2015) 3,
based on which our KBSE is implemented.

We also combine KBSE with encoder-decoder
system, by adding the knowledge-based semantic
embedding to be another context vector. Hence,
for the decoder there are two context vectors, one
from the encoder and the other is generated by the
Semantic Grounding part. We call this model
Enc-Dec+KBSE.

For our proposed KBSE, the number of hidden
units in both parts are 300. Embedding size of both
source and target are 200. Adadelta (Zeiler, 2012)

"http://www.statmt.org/moses/

https://catalog.ldc.upenn.edu/
LDC2011T07

3The implementation is from https://github.
com/mila-udem/blocks-examples

Source Sentence Semantic Tuples

Category.cellphone
Carrier.China_Mobile
Brand.iPhone

Name.The_Matrix
Genre.science_fiction
Director. Wachowski_bro
Language.English

% iPhone #% & %

BEFE A -G
S WY S
A R, BA

EE A RIE

Semantic Tuples

Target Sentence

Category.cellphone
Appearance.color.white
Appearance.size.big_screen

I want a white 4G phone
with a big screen .

Network.4G _network

Name.Pirates_of_Caribbean  The Pirates of the
Released.2003 Caribbean is a 2003
Country.America American film, starring
Starring.Johnny_Depp Johnny Depp .

Table 3: Illustration of dataset structure in this pa-
per. We show one example for both corpus in both
part, respectively.

is leveraged as the optimizer for neural network
training. The batch size is set to 128, and learn-
ing rate is initialized as 0.5. The model weights
are randomly initialized from uniform distribution
between [-0.005, 0.005].

3.2 Dataset Details

To train our KBSE system, we only need two kind-
s of pairs: the pair of source sentence and seman-
tic tuples to train our Source Grounding, the pair
of semantic tuples and target sentence to train our
Target Generation. Examples of our training da-
ta in the electric business and movie domains are
shown in Table 3. To control the training pro-
cess of KBSE, we randomly split 1000 instances
from both corpus for validation set and another
1000 instances for test set. Our corpus of elec-
tric business domain consists of bilingual sentence
pairs labeled with KB tuples manually , which is
a collection of source-KB-target triplets. For the
Movie domain, all the data are mined from web,
thus we only have small part of source-KB-target
triplets. In order to show the advantage of our
proposed KBSE, we also mined source-KB pairs
and KB-target pairs separately. It should be noted
that, similar as the encoder-decoder method, bilin-
gual data is needed for Enc-Dec+KBSE, thus with
the added knowledge tuples, Enc-Dec+KBSE are
trained with source-KB-target triplets.

“Due to the coverage problem, knowledge bases of com-
mon domain (such as Freebase) are not used in this paper.
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Electric Business Movie
Model BLEU HumanEval Tuple F-score BLEU HumanEval Tuple F-score
SMT 54.30 78.6 - 42.08 514 -
Enc-Dec 60.31 90.8 - 44.27 65.8 -
KBSE 62.19 97.1 92.6 47.83 724 80.5
Enc-Dec + KBSE  64.52 97.9 - 46.35 74.6 -
KBSE upperbound ~ 63.28 98.2 100 49.68 77.1 100

Table 4: The BLEU scores, human evaluation accuracy, tuple F-score for the proposed KBSE model and

other benchmark models.

Our electric business corpus contains 50,169
source-KB-target triplets. For this data, we divide
the intention of electric business into 11 classes,
which are Category, Function, Network, People,
Price, Appearance, Carrier, Others, Performance,
OS and Brand. Each class above also has subclass-
es, for example Category class has subclass com-
puter and cellphone, and computer class can be
divided into laptop, tablet_PC, desktop and AIO.

Our movie corpus contains 44,826 source-KB-
target triplets, together with 76,134 source-KB
pairs and 85,923 KB-target pairs. The data is
crawling from English Wikipedia ° and the par-
allel web page in Chinese Wikipedia . Simple
rule method is used to extract sentences and KB
pairs by matching the information in the infobox
and the sentences in the page content. Since not
all the entities from Chinese wikipedia has english
name, we have an extra entity translator to trans-
late them. For a fair comparison, this entity trans-
lator are also used in other systems. Due to the
whole process is semi-automatic, there may be a
few irregular results within. We divided the in-
tention of movie data into 14 classes, which are
BasedOn, Budget, Country, Director, Distributor,
Genre, Language, Name, Producer, Released, S-
tarring, Studio, Theme and Writer.

3.3 Evaluation

We use BLEU (Papineni et al., 2002) as the au-
tomatical evaluation matrix, significant testing is
carried out using bootstrap re-sampling method
(Koehn, 2004) with a 95% confidence level. As an
addition, we also do human evaluation for all the
comparison systems. Since the first part Source
Grounding of our KBSE is separately trained, the
F-score of KB tuples is also evaluated. Table 4

Shttps://en.wikipedia.org
*https://zh.wikipedia.org

lists evaluation results for the electric business and
movie data sets.

3.3.1 BLEU Evaluation

From Table 4, we can find that our proposed
method can achieve much higher BLEU than SMT
system, and we can also achieve 1.9 and 3.6
BLEU points improvement compared with the raw
encoder-decoder system on both eletric business
and movies data.

For the Enc-Dec+KBSE method, with the same
training data on electric business domain, in-
troducing knowledge semantic information can
achieve about 4 BLEU points compared with
the encoder-decoder and more than 2 BLEU
points compared with our KBSE. Compared with
encoder-decoder, Enc-Dec+KBSE method lever-
ages the constrained semantic space, so that key
semantic information can be extracted. Compared
with KBSE, which relies on the knowledge base,
Enc-Dec+KBSE method can reserve the informa-
tion which is not formulated in the knowledge
base, and also may fix errors generated in the
source grounding part.

Since Enc-Dec+KBSE can only be trained with
source-KB-target triplets, for the movie dataset,
the performance is not as good as our KBSE,
but still achieves a gain of more than 2 BLEU
point compared with the raw Enc-Dec system. On
movie data, our KBSE can achieve significant im-
provement compared with the models (SMT, Enc-
Dec, Enc-Dec+KBSE ) only using bilingual data.
This shows the advantage of our proposed method,
which is our model can leverage monolingual data
to learn Source Grounding and Target Genera-
tion separately.

We also separately evaluate the Source
Grounding and Target Generation parts. We
evaluate the F-score of generated KB tuples
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4G cellphone with a big

white big_screen

screen

Figure 5: An example showing how the KB tuples control the tuple features flowing into the network via

its learned semantic gates.

compared with the golden KB tuples. The result
shows that our semantic grounding performance is
quite high (92.6%), which means the first part can
extract the semantic information in high coverage
and accuracy. We evaluate the translation result
by feeding the Target Generation network with
human labeled KB tuples. The translation result
(shown as KBSE upperbound in Table 4) with
golden KB tuples can achieve about 1.1 and 1.8
BLEU scores improvement compared with KBSE
with generated KB tuples in both dataset.

3.3.2 Human Evaluation

For the human evaluation, we do not need the w-
hole sentence to be totally right. We focus on the
key information, and if a translation is right by
main information and grammar correction, we la-
bel it as correct translation, no matter how differ-
ent of the translation compared with the reference
on surface strings. Examples of correct and incor-
rect translations are shown in Table 5. As shown
in Table 4, the human evaluation result shares the
same trend as in BLEU evaluation. Our proposed
method achieves the best results compared with
SMT and raw encoder-decoder. In our method,
important information are extracted and normal-
ized by encoding the source sentence into the se-
mantic space, and the correct translation of impor-
tant information is key for human evaluation, thus
our method can generate better translation.

3.4 Qualitative Analysis

In this section, we compare the translation result
with baseline systems. Generally, since KB is in-
troduced, our model is good at memorizing the key
information of the source sentence. Also thanks
to the strong learning ability of GRU, our model
rarely make grammar mistakes. In many transla-
tions generated by traditional SMT, key informa-

Target I want a black Dell desktop.

Correct I want a Dell black desktop.
Could you please recommend me a black
Dell desktop?
I want a white Dell desktop.

Incorrect I want a black Dell laptop.

I want a black Dell desktop desktop.

Table 5: Some examples of which kind of sentence
can be seen as a correct sentence and which will be
seen as incorrect in the part of human evaluation.

tion is lost. Encoder-Decoder system does much
better, but some key information is also lost or
even repetitively generated. Even for a long source
sentence with a plenty of intentions, our model can
generate the correct translation.

To show the process of Target Generation, Fig-
ure 5 illustrates how the KB-tuples control the tar-
get sentence generation. Taking the semantic tuple
Appearance.color.white as an example, the GRU
keeps the feature value almost unchanged until the
target word “white” is generated. Almost all the
feature values drop from 1 to 0, when the corre-
sponding words generated, except the tuple Ap-
pearance.size.big_screen. To express the meaning
of this tuple, the decoding neural network should
generate two words, “big” and “screen”. When the
sentence finished, all the feature values should be
0, with the constraint loss we introduced in Sec-
tion 2.2.

Table 6 lists several translation example gener-
ated by our system, SMT system and the Encoder-
Decoder system. The traditional SMT model
sometimes generate same words or phrases several
times, or some information is not translated. But
our model rarely repeats or lose information. Be-
sides, SMT often generate sentences unreadable,
since some functional words are lost. But for KB-
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Source W, AN K ERGAGFMNDG? £ HE W,

Reference | I want a 4G network cellphone with China Telecom supported.

KBSE I need a white 4G cellphone with China Telecom supported.

Enc-Dec I want a 3G cellphone with China Telecom.

SMT Ah, that has a big screen, 4G network cellphone? give white.

Source BEAE & —26 2003 F b RPAME LA WF 8 2R, g TR, A BT A RE.
Reference | The Matrix is a 2003 English film directed by Wachowski Brothers, starring Keanu Reeves.

KBSE The Matrix is a 2003 English movie starring Keanu Reeves, directed by Wachowski Brothers.
Enc-Dec The Matrix is a 2013 English movie directed by Wachowski, starring Johnny Depp.

SMT The Matrix is directed by the Wachowski brothers film, and starring film language English.

Table 6: Examples of some translation results for our proposed KBSE system and the baseline systems.

SE, the target sentence is much easier to read. The
Encoder-Decoder model learns the representation
of the source sentence to a hidden vector, which is
implicit and hard to tell whether the key informa-
tion is kept. However KBSE learns the representa-
tion of the source sentence to a explicit tuple em-
bedding, which contains domain specific informa-
tion. So sometimes when encoder-decoder cannot
memorize intention precisely, KBSE can do better.

3.5 Error Analysis

Our proposed KBSE relies on the knowledge base.
To get the semantic vector of source sentence, our
semantic space should be able to represent any
necessary information in the sentence. For ex-
ample, since our designed knowledge base do not
have tuples for number of objects, some results of
our KBSE generate the entities in wrong plurali-
ty form. Since our KBSE consists of two separate
parts, the Source Grounding part and the Target
Generation part, the errors generated in the first
part cannot be corrected in the following process.
As we mentioned in Section 3.3.1, combining KB-
SE with encoder-decoder can alleviate these two
problems, by preserving information not captured
and correct the errors generated in source ground-
ing part.

4 Related Work

Unlike previous works using neural network to
learn features for traditional log-linear model (Li-
u et al., 2013; Liu et al., 2014), Sutskever et al.
(2014) introduced a general end-to-end approach
based on an encoder-decoder framework. In order
to compress the variable-sized source sentence in-
to a fixed-length semantic vector, an encoder RNN
reads the words in source sentence and generate a
hidden state, based on which another decoder RN-
N is used to generate target sentence. Different
from our work using a semantic space defined by

knowledge base, the hidden state connecting the
source and target RNNs is a vector of implicit and
inexplicable real numbers.

Learning the semantic information from a sen-
tence, which is also called semantic grounding, is
widely used for question answering tasks (Liang et
al., 2011; Berant et al., 2013; Bao et al., 2014; Be-
rant and Liang, 2014). In (Yih et al., 2015), with
a deep convolutional neural network (CNN), the
question sentence is mapped into a query graph,
based on which the answer is searched in knowl-
edge base. In our paper, we use RNN to encode the
sentence to do fair comparison with the encoder-
decoder framework. We can try using CNN to re-
place RNN as the encoder in the future.

To generate a sentence from a semantic vector,
Wen et al. (2015) proposed a LSTM-based natu-
ral language generator controlled by a semantic
vector. The semantic vector memorizes what in-
formation should be generated for LSTM, and it
varies along with the sentence generated. Our Tar-
get Generation part is similar with (Wen et al.,
2015), while the semantic vector is not predefined,
but generated by the Source Grounding part.

5 Conclusion and Future Work

In this paper, we propose a Knowledge Based Se-
mantic Embedding method for machine transla-
tion, in which Source Grounding maps the source
sentence into a semantic space, based on which
Target Generation is used to generate the transla-
tion. Unlike the encoder-decoder neural network,
in which the semantic space is implicit, the seman-
tic space of KBSE is defined by a given knowl-
edge base. Semantic vector generated by KBSE
can extract and ground the key information, with
the help of knowledge base, which is preserved in
the translation sentence. Experiments are conduct-
ed on a electronic business and movie data sets,
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and the results show that our proposed method can
achieve significant improvement, compared with
conventional phrase SMT system and the state-of-
the-art encoder-decoder system.

In the future, we will conduct experiments on
large corpus in different domains. We also want to
introduce the attention method to leverage all the
hidden states of the source sentence generated by
recurrent neural network of Source Grounding.
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