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Abstract

Solving simple arithmetic word problems
is one of the challenges in Natural Lan-
guage Understanding. This paper presents
a novel method to learn to use formulas
to solve simple arithmetic word problems.
Our system, analyzes each of the sen-
tences to identify the variables and their
attributes; and automatically maps this in-
formation into a higher level representa-
tion. It then uses that representation to
recognize the presence of a formula along
with its associated variables. An equa-
tion is then generated from the formal de-
scription of the formula. In the training
phase, it learns to score the <formula,
variables> pair from the systematically
generated higher level representation. It is
able to solve 86.07% of the problems in
a corpus of standard primary school test
questions and beats the state-of-the-art by
a margin of 8.07%.

1 Introduction

Developing algorithms to solve math word prob-
lems (Table 1) has been an interest of NLP re-
searchers for a long time (Feigenbaum and Feld-
man, 1963). It is an interesting topic of study from
the point of view of natural language understand-
ing and reasoning for several reasons. First, it in-
corporates rigorous standards of accurate compre-
hension. Second, we know of a good representa-
tion to solve the word problems, namely algebraic
equations. Finally, the evaluation is straightfor-
ward and the problems can be collected easily.

In the recent years several challenges have
been proposed for natural language understanding.
This includes the Winograd Schema challenge
for commonsense reasoning (Levesque, 2011),

Story Comprehension Challenge (Richardson et
al., 2013), Facebook bAbl task (Weston et al.,
2015), Semantic Textual Similarity (Agirre et al.,
2012) and Textual Entailment (Bowman et al.,
2015; Dagan et al., 2010). The study of word math
problems is also an important problem as quantita-
tive reasoning is inextricably related to human life.
Clark & Etzioni (Clark, 2015; Clark and Etzioni,
2016) discuss various properties of math word
(and science) problems emphasizing elementary
school science and math tests as a driver for AI.

Researchers at Allen AI Institute have published
two standard datasets as part of the Project Euclid1

for future endeavors in this regard. One of them
contains simple addition-subtraction arithmetic
problems (Hosseini et al., 2014) and the other
contains general arithmetic problems (Koncel-
Kedziorski et al., 2015). In this research, we focus
on the former one, namely the AddSub dataset.

Dan grew 42 turnips and 38 cantelopes . Jes-
sica grew 47 turnips . How many turnips did
they grow in total ?
Formula Associated variables
part-whole whole: x, parts: {42, 47}
Equation x = 42 + 47

Table 1: Solving a word problem using part-whole

Broadly speaking, common to the existing ap-
proaches (Kushman et al., 2014; Hosseini et al.,
2014; Zhou et al., 2015; Shi et al., 2015; Roy and
Roth, 2015) is the task of grounding, that takes as
input a word problem in the natural language and
represents it in a formal language, such as, a sys-
tem of equations, expression trees or states (Hos-
seini et al., 2014), from which the answer can be
easily computed. In this work, we divide this task
of grounding into two parts as follows:

1http://allenai.org/euclid.html
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In the first step, the system learns to connect the
assertions in a word problem to abstract mathe-
matical concepts or formulas. In the second step,
it maps that formula into an algebraic equation.
Examples of such formulas in the arithmetic do-
main includes part whole which says, ‘the whole
is equal to the sum of its parts’, or the Unitary
Method that is used to solve problems like ‘A man
walks seven miles in two hours. What is his aver-
age speed?’.

Consider the problem in Table 1. If the system
can determine it is a ‘part whole’ problem where
the unknown quantity X plays the role of whole
and its parts are 42 and 47, it can easily express
the relation as X = 42 + 47. The translation of
a formula to an equation requires only the knowl-
edge of the formula and can be formally encoded.
Thus, we are interested in the question, ‘how can
an agent learn to apply the formulas for the word
problems?’ Solving a word problem in general,
requires several such applications in series or par-
allel, generating multiple equations. However, in
this research, we restrict the problems to be of a
single equation which requires only one applica-
tion.

Our system currently considers three mathemat-
ical concepts: 1) the concept of part whole, 2) the
concept of change and 3) the concept of compar-
ison. These concepts are sufficient to solve the
arithmetic word problems in AddSub. Table 2 il-
lustrates each of these three concepts with exam-
ples. The part whole problems deal with the part
whole relationships and ask for either the part or
the whole. The change problems make use of the
relationship between the new value of a quantity
and its original value after the occurrence of a se-
ries of increase or decrease. The question then
asks for either the initial value of the quantity or
the final value of the quantity or the change. In
case of comparison problems, the equation can be
visualized as a comparison between two quanti-
ties and the question typically looks for either the
larger quantity or the smaller quantity or the dif-
ference. While the equations are simple, the prob-
lems describe a wide variety of scenarios and the
system needs to make sense of multiple sentences
without a priori restrictions on the syntax or the
vocabulary to solve the problem.

Training has been done in a supervised fash-
ion. For each example problem, we specify the
formula that should be applied to generate the ap-

Change
RESULT UNKNOWN

Mary had 18 baseball cards , and 8 were torn .
Fred gave Mary 26 new baseball cards . Mary
bought 40 baseball cards . How many baseball
cards does Mary have now ?
CHANGE UNKNOWN

There were 28 bales of hay in the barn . Tim
stacked bales in the barn today . There are now
54 bales of hay in the barn . How many bales
did he store in the barn ?
START UNKNOWN

Sam ’s dog had puppies and 8 had spots . He
gave 2 to his friends . He now has 6 puppies .
How many puppies did he have to start with?
Part Whole
TOTAL SET UNKNOWN

Tom went to 4 hockey games this year , but
missed 7 . He went to 9 games last year . How
many hockey games did Tom go to in all ?
PART UNKNOWN

Sara ’s high school played 12 basketball games
this year . The team won most of their games
. They were defeated during 4 games . How
many games did they win ?
Comparision
DIFFERENCE UNKNOWN

Last year , egg producers in Douglas County
produced 1416 eggs . This year , those same
farms produced 4636 eggs . How many more
eggs did the farms produce this year ?
LARGE QUANTITY UNKNOWN

Bill has 9 marbles. Jim has 7 more marbles than
Bill. How many marbles does Jim have?
SMALL QUANTITY UNKNOWN

Bill has 9 marbles. He has 7 more marbles than
Jim. How many marbles does Jim have?

Table 2: Examples of Add-Sub Word Problems

propriate equation and the relevant variables. The
system then learns to apply the formulas for new
problems. It achieves an accuracy of 86.07% on
the AddSub corpus containing 395 word arithmetic
problems with a margin of 8.07% with the current
state-of-the-art (Roy and Roth, 2015).

Our contributions are three-fold: (a) We model
the application of a formula and present a novel
method to learn to apply a formula; (b) We anno-
tate the publicly available AddSub corpus with the
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correct formula and its associated variables; and
(c) We make the code publicly available. 2

The rest of the paper is organized as follows. In
section 2, we formally define the problem and de-
scribe our learning algorithm. In section 3, we de-
fine our feature function. In section 4, we discuss
related works. Section 5 provides a detailed de-
scription of the experimental evaluation. Finally,
we conclude the paper in section 6.

2 Problem Formulation

A single equation word arithmetic problem P is
a sequence of k words 〈w1, ..., wk〉 and contains
a set of variables VP = {v0, v1, ..., vn−1, x}
where v0, v1, ..., vn−1 are numbers in P and x is
the unknown whose value is the answer we seek
(Koncel-Kedziorski et al., 2015). Let Paddsub be
the set of all such problems, where each prob-
lem P ∈ Paddsub can be solved by a evaluating
a valid mathematical equation E formed by com-
bining the elements of VP and the binary operators
from O = {+,−}.

We assume that each target equation E of
P ∈ Paddsub is generated by applying one
of the possible mathematical formulas from
C = {Cpartwhole, Cchange, Ccomparision}. Let
P1
addsub ⊆ Paddsub be the set of all problems

where the target equation E can be generated by a
single application of one of the possible formulas
from C. The goal is then to find the correct appli-
cation of a formula for the problem P ∈ P1

addsub.

2.1 Modelling Formulas And their
Applications

We model each formula as a template that has pre-
defined slots and can be mapped to an equation
when the slots are filled with variables. Applica-
tion of a formula C ∈ C to the problem P , is then
defined as the instantiation of the template by a
subset of VP that contains the unknown.

Part Whole The concept of part whole has
two slots, one for the whole that accepts a single
variable and the other for its parts that accepts a
set of variables of size at least two. If the value
of the whole is w and the value of the parts are
p1, p2, ..., pm, then that application is mapped to
the equation, w = p1 + p2 + ... + pm, denoting
that whole is equal to the sum of its parts.

2The code and data is publicly available at
https://github.com/ari9dam/MathStudent.

Change The change concept has four slots,
namely start, end, gains, losses which respectively
denote the original value of a variable, the final
value of that variable, and the set of increments
and decrements that happen to the original value
of the variable. The start slot can be empty; in
that case it is assumed to be 0. For example, con-
sider the problem, ‘Joan found 70 seashells on the
beach . she gave Sam some of her seashells. She
has 27 seashell . How many seashells did she give
to Sam?’. In this case, our assumption is that be-
fore finding the 70 seashells Joan had an empty
hand. Given an instantiation of change concept
the equation is generated as follows:

valstart +
∑

g∈gains
valg =

∑
l∈losses

vall + valend

Comparision The comparision concept has
three slots namely the large quantity, the small
quantity and their difference. An instantiation of
the comparision concept is mapped to the follow-
ing equation: large = small + difference.

2.2 The Space of Possible Applications
Consider the problem in Table 1. Even though the
correct application is an instance of part whole
formula with whole = x and the parts being
{42, 47}, there are many other possible applica-
tions, such as, partWhole(whole=47, parts=x,42),
change(start=47, losses={x}, gains={}, end
= 42), comparison(large=47, small=x, differ-
ence=42). Note that, comparison(large=47,
small=38, difference=42) is not a valid applica-
tion since none of the associated variables is an
unknown. Let AP be the set of all possible appli-
cations to the problem P . The following lemma
characterizes the size of AP as a function of the
number of variables in P .
Lemma 2.2.1. Let P ∈ P1

addsub be an arithmetic
word problem with n variables (|VP | = n), then
the following are true:

1. The number of possible applications of part
whole formula to the problem P , Npartwhole

is (n+ 1)2n−2 + 1.

2. The number of possible applications of
change formula to the problem P , Nchange

is 3n−3(2n2 + 6n+ 1)− 2n+ 1.

3. The number of possible applications of
comparison formula to the problem P ,
Ncomparison is 3(n− 1)(n− 2).
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4. The number of all possible applications to
the problem P is Npartwhole + Nchange +
Ncomparison.

Proof of lemma 2.2.1 is provided in the Ap-
pendix. The total number of applications for prob-
lems having 3, 6, 7, 8 number of variables are 47,
3, 105, 11, 755, 43, 699 respectively. Addition-
Subtraction arithmetic problems hardly contain
more than 6 variables. So, the number of possi-
ble applications is not intractable in practice.

The total number of applications increases
rapidly mainly due to the change concept. Since,
the template involves two sets, there is a 3n−3 fac-
tor present in the formula of Nchange. However,
any application of change concept with gains and
losses slots containing a collection of variables can
be broken down into multiple instances of change
concept where the gains and losses slots accepts
only a single variable by introducing more inter-
mediate unknown variables. Since, for any for-
mula that does not have a slot that accepts a set,
the number of applications is polynomial in the
number of variables, there is a possibility to re-
duce the application space. We plan to explore
this possibility in our future work. For the part
whole concept, even though there is a exponen-
tial term involved, it is practically tractable (for
n = 10, Npartwhole = 2, 817 ). In practice, we
believe that there will hardly be any part whole
application involving more than 10 variables. For
formulas that are used for other categories of word
math problems (algebraic or arithmetic), such as
the unitary method, formulas for ratio, percentage,
time-distance and rate of interest, none of them
have any slot that accepts sets of variables. Thus,
further increase in the space of possible applica-
tions will be polynomial.

2.3 Probabilistic Model
For each problem P there are different possible
applications y ∈ AP , however not all of them are
meaningful. To capture the semantics of the word
problem to discriminate between competing appli-
cations we use the log-linear model, which has a
feature function φ and parameter vector θ ∈ Rd.
The feature function φ : H → Rd takes as in-
put a problem P and a possible application y and
maps it to a d-dimensional real vector (feature
vector) that aims to capture the important infor-
mation required to discriminate between compet-
ing applications. Here, the set H is defined as

{(P, y) : P ∈ P1
addsub ∧ y ∈ AP }, to accommo-

date the dependency of the possible applications
on the problem instance. Given the definition of
the feature function φ and the parameter vector θ,
the probability of an application y given a problem
P is defined as,

p(y|P ; θ) =
eθ.φ(P,y)∑

y′∈AP
eθ.φ(P,y′)

Here, . denotes dot product. Section 3 defines
the feature function. Assuming that the parame-
ter θ is known, the function f that computes the
correct application is defined as,

f(P ) = arg max
y∈AP

p(y|P ; θ)

2.4 Parameter Estimation
To learn the function f , we need to estimate the
parameter vector θ. For that, we assume access to
n training examples, {Pi, y∗i : i = 1 . . . n}, each
containing a word problem Pi and the correct ap-
plication y∗i for the problem Pi. We estimate θ
by minimizing the negative of the conditional log-
likelihood of the data:

O(θ) = −
n∑
i=1

log p(y∗i |Pi; θ)

= −
n∑
i=1

[θ.φ(Pi, y∗i )− log
∑
y∈APi

eθ.φ(Pi,y)]

We use stochastic gradient descent to optimize
the parameters. The gradient of the objective func-
tion is given by:

∇O
∇θ = −

n∑
i=1

[φ(Pi, y∗i )−∑
y∈APi

p(y|Pi; θ)× φ(Pi, y)]
(1)

Note that, even though the space of possible ap-
plications vary with the problem Pi, the gradient
for the example containing the problem Pi can be
easily computed.

3 Feature Function φ

A formula captures the relationship between vari-
ables in a compact way which is sufficient to gen-
erate an appropriate equation. In a word prob-
lem, those relations are hidden in the assertions
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of the story. The goal of the feature function is
thus to gather enough information from the story
so that underlying mathematical relation between
the variables can be discovered. The feature func-
tion thus needs to be aware of the mathemati-
cal relations so that it knows what information it
needs to find. It should also be “familiar” with
the word problem language so that it can extract
the information from the text. In this research,
the feature function has access to machine read-
able dictionaries such as WordNet (Miller, 1995),
ConceptNet (Liu and Singh, 2004) which captures
inter word relationships such as hypernymy, syn-
onymy, antonymy etc, and syntactic and depen-
dency parsers that help to extract the subject, verb,
object, preposition and temporal information from
the sentences in the text. Given these resources,
the feature function first computes a list of at-
tributes for each variable. Then, for each applica-
tion y it uses that information, to compute if some
aspects of the expected relationship described in y
is satisfied by the variables in y.

Let the first b dimensions of the feature vector
contain part whole related features, the next c di-
mensions are for change related features and the
remaining d features are for comparison concept.
Then the feature vector for a problem P and an
application of a formula y is computed in the fol-
lowing way:

Data: A word problem P , an application y
Result: d-dimensional feature vector, fv
Initialize fv := 0
if y is instance of part whole then

compute fv[1 : b]
end
if y is instance of change then

compute fv[b+ 1 : b+ c]
end
if y is instance of comparision then

compute fv[b+ c+ 1 : b+ c+ d]
end

Algorithm 1: Skeleton of the feature function φ

The rest of the section is organized as follows.
We first describe the attributes of the variables that
are computed from the text. Then, we define a list
of boolean variables which computes semantic re-
lations between the attributes of each pair of vari-
ables. Finally, we present the complete definition
of the feature function using the description of the
attributes and the boolean variables.

3.1 Attributes of Variables
For each occurrence of a number in the text a vari-
able is created with the attribute value referring
to that numeric value. An unknown variable is
created corresponding to the question. A special
attribute type denotes the kind of object the vari-
able refers to. Table 3 shows several examples
of the type attribute. It plays an important role
in identifying irrelevant numbers while answering
the question.

Text Type
John had 70 seashells seashells
70 seashells and 8 were broken seashells
61 male and 78 female salmon male, salmon
35 pears and 27 apples pear

Table 3: Example of type for highlighted variables.

The other attributes of a variable captures its
linguistic context to surrogate the meaning of the
variable. This includes the verb attribute i.e.
the verb attached to the variable, and attributes
corresponding to Stanford dependency relations
(De Marneffe and Manning, 2008), such as nsubj,
tmod, prep in, that spans from either the words in
associated verb or words in the type. These at-
tributes were computed using Stanford Core NLP
(Manning et al., 2014). For the sentence, “John
found 70 seashells on the beach.” the attributes of
the variable are the following: { value : {70},
verb : {found} , nsubj : {John}, prep on :
{beach }}.
3.2 Cross Attribute Relations
Once the variables are created and their attributes
are extracted, our system computes a set of
boolean variables, each denoting whether the at-
tribute a1 of the variable v1 has the same value
as the attribute a2 of the variable v2. The value
of each attribute is a set of words, consequently
set equality is used to calculate attribute equality.
Two words are considered equal if their lemma
matches.

Four more boolean variables are computed for
each pair of variables based on the attribute type
and they are defined as follows:

subType: Variable v1 is a subType of vari-
able v2 if v2.type ⊂ v1.type or their type consists
of a single word and there exists the IsA relation
between them in ConceptNet (Speer and Havasi,
2013; Liu and Singh, 2004).
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disjointType is true if v1.type
⋂
v2.type = φ

intersectingType is true if v1 is neither a
subType of v2 nor is disjointType nor equal.

We further compute some more variables by uti-
lizing several relations that exist between words:

antonym: For every pair of variables v1 and
v2, we compute an antonym variable that is true if
there exists a pair of word in (v1.verb

⋃
v1.adj)×

(v2.verb
⋃
v2.adj) that are antonym to each other

in WordNet irrespective of their part of speech tag.

relatedVerbs: The verbs of two variables are
related if there exists a RelatedTo relations in Con-
ceptNet between them.

subjConsume: The nsubj of v1 consumes the
nsubj of v2 if the formers refers to a group and the
latter is a part of that group. For example, in the
problem, ‘Joan grew 29 carrots and 14 watermel-
ons . Jessica grew 11 carrots . How many carrots
did they grow in all ?’, the nsubj of the unknown
variable consumes others. This is computed using
Stanford co-reference resolution. For the situation
where there is a variable with nsubj as ‘they’ and
it does not refer to any entity, the subjConsume
variable is assumed to be implicitly true for any
variable having a nsubj of type person.

3.3 Features: Part Whole

The part whole features look for some combina-
tions of the boolean variables and the presence
of some cue words (e.g. ‘all’) in the attribute
list. These features capture the underlying reason-
ings that can affect the decision of applying a part
whole concept. We describe the conditions which
when satisfied activate the features. If active, the
value of a feature is the number of variables asso-
ciated with the application y and 0 otherwise. This
is also true for change and comparision features
also. Part whole features are computed only when
the y is an instance of the formula part whole. The
same applies for change and comparision features.

Generic Word Cue This feature is activated
if y.whole has a word in its attributes that belongs
to the “total words set” containing the followings
words “all”, “total”, “overall”, “altogether”, “to-
gether” and “combine”; and none of the variables
in parts are marked with these words.

ISA Type Cue is active if all the part variables
are subType of the whole.

Type-Verb Cue is active if the type and verb
attributes of vwhole matches that of all the variables
in the part slot of y.

Type-Individual Group Cue is active if the
variable vwhole subjConsume each part variable vp
in y and their type matches.

Type-Verb-Tmod Cue is active if the vari-
able in the slot whole is the unknown and for each
part variable vp their verb, type and tmod (time
modifier of the verb) attributes match.

Type-SubType-Verb Cue is active if the vari-
able in the slot whole is either the unknown or
marked with a word in “total words set” and for
all parts vp, their verb matches and one of the type
or subType boolean variable is true.

Type-SubType-Related Verb Cue is similar
to Type-SubType-Verb Cue however relaxes the
verb match conditions to related verb match. This
is helpful in problems like ‘Mary went to the mall.
She spent $ 13.04 on a shirt and $ 12.27 on a
jacket . She went to 2 shops . In total , how much
money did Mary spend on clothing ? ’.

Type-Loose Verb Cue ConceptNet does not
contain all relations between verbs. For example,
according to ConceptNet ‘buy’ and ‘spend’ are re-
lated however there is no relation in ConceptNet
between ‘purchase’ and ‘spend’. To handle these
situations, we use this feature which is similar to
the previous one. The difference is that it assumes
that the verbs of part-whole variable pairs are re-
lated if all verbs associated with the parts are same,
even though there is no relation in ConceptNet.

Type-Verb-Prep Cue is active if type and
verb matches. The whole does not have a “prepo-
sition” but parts have and they are different.

Other Cues There are also features that add
nsubj match criteria to the above ones. The prior
feature for part whole is that the whole if not un-
known, is smaller than the sum of the parts. There
is one more feature that is active if the two part
variables are antonym to each other; one of type
or subType should be true.

3.4 Features: Change

The change features are computed from a set of 10
simple indicator variables, which are computed in
the following way:
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Start Cue is active if the verb associated with
the variable in start slot has one of the following
possessive verbs : {‘call for’, ‘be’, ‘contain’, ‘re-
main’, ‘want’, ‘has’, ‘have’, ‘hold’, ...}; the type
and nsubj of start variable match with the end vari-
able and the tense of the end does not precede the
start. The list of ‘possessive verbs’ is automati-
cally constructed by adding all the verbs associ-
ated with the start and the end slot variables in
annotated corpus.

Start Explicit Cue is active if one of follow-
ing words, “started with”, “initially”, “begining”,
“originally” appear in the context of the start vari-
able and the type of start and end variables match.

Start prior is active if the verb associated
with the variable in start slot is a member of the
set ‘possessive verbs’ and the variable appears in
first sentence.

Start Default Cue is active if the start vari-
able has a “possessive verb” with past tense.

End Cue is active if the verb associated with
the variable in slot end has a possessive verb with
the tense of the verb not preceding the tense of
the start, in case the start is not missing. The type
and nsubj should match with either the start or the
gains in case the start is missing.

End Prior is true if vend has a possessive verb
and an unknown quantity and at least one of vend
or vstart does not have a nsubj attribute.

Gain Cue is active if for all variables in the
gains slot, the type matches with either vend or
vstart and one of the following is true: 1) the nsubj
of the variable matches with vend or vstart and the
verb implies gain (such as ‘find’) and 2) the nsubj
of the variable does not match with vend or vstart
and the verb implies losing (e.g. spend). The set
of gain and loss verbs are collected from the anno-
tated corpus by following the above procedure.

Gain Prior is true if the problem contains
only three variables, with vstart < vend and the
only variable in the gain slot, associated with non-
possessive verb is the unknown.

Loss Cue & Loss prior are designed in a
fashion similar to the Gain cue and Gain Prior.

Let us say badgains denotes that none of the gain
prior or gain cue is active even though the gain slot
is not empty. badlosses is defined similarly and let

bad = badgains ∨ badlosses . Then the change fea-
tures are computed from these boolean indicators
using logical operators and, or, not. Table4 shows
some of the change features.

!bad ∧ gaincue ∧ startdefault ∧ endcue
!bad∧!gaincue∧ losscue∧startdefault∧endcue
!bad ∧ (gaincue ∨ losscue) ∧
startcue∧!startdefault ∧ endcue
!bad ∧ (gaincue ∨ losscue) ∧
startexplicit∧!startdefault ∧ endcue
!bad ∧ (gaincue ∨ losscue) ∧ startprior ∧
(endcue||endprior)
!bad ∧ (gaincue ∨ losscue) ∧ (startprior ∨
startcue)∧!startdefault ∧ endprior

Table 4: Activation criteria of some change related
features.

3.5 Features: Comparison
The features for the “compare” concept are rela-
tively straight forward.

Difference Unknown Que If the application
y states that the unknown quantity is the differ-
ence between the larger and smaller quantity, it is
natural to see if the variable in the difference slot is
marked with a comparative adjective or compara-
tive adverb. The prior is that the value of the larger
quantity must be bigger than the small one. An-
other two features add the type and subject match-
ing criteria along with the previous ones.

Large & Small Unknown Que These fea-
tures can be active only when the variable in the
large or small slot is unknown. To detect if the ref-
erent is bigger or smaller, it is important to know
the meaning of the comparative words such as
‘less’ and ‘longer’. Since, the corpus contains only
33 comparison problems we collect these compar-
ative words from web which are then divided into
two categories. With these categories, the features
are designed in a fashion similar to change fea-
tures that looks for type, subject matches.

3.6 Handling Arbitrary Number of Variables
This approach can handle arbitrary number of
variables. To see that consider the problem, ‘Sally
found 9 seashells , Tom found 7 seashells , and
Jessica found 5 seashells on the beach . How
many seashells did they find together ?’. Let us
say that feature vector contains only the ‘Type-
Individual Group Cue’ feature and the weight
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of that feature is 1. Consider the two follow-
ing applications: y1 = partWhole(x,{9,7}) and
y2 = partWhole(x,{9,7, 5}). For both y1 and y2

the ‘Type-Individual Group Cue’ feature is active
since the subject of the unknown x refers to a
group that contains the subject of all part variables
in y1 and y2 and their types match. However, as
mentioned in section 3.3, when active, the value
of a feature is the number of variables associated
with the application. Thus p(y2;P,θ)

p(y1;P,θ) = e4

e3
= e.

Thus, y2 is more probable than y1.

4 Related Works

Researchers in early years have studied math word
problems in a constrained domain by either lim-
iting the input sentences to a fixed set of pat-
terns (Bobrow, 1964b; Bobrow, 1964a; Hinsley et
al., 1977) or by directly operating on a proposi-
tional representation instead of a natural language
text (Kintsch and Greeno, 1985; Fletcher, 1985).
Mukherjee and Garain (2008) survey these works.

Among the recent algorithms, the most general
ones are the work in (Kushman et al., 2014; Zhou
et al., 2015) . Both algorithms try to map a word
math problem to a ‘system template’ that contains
a set of ‘equation templates’ such as ax + by =
c. These ‘system templates’ are collected from
the training data. They implicitly assume that
these templates will reoccur in the new examples
which is a major drawback of these algorithms.
Also, Koncel-Kedziorski et al. (2015) show that
the work of Kushman et al. (2014) heavily re-
lies on the overlap between train and test data and
when this overlap is reduced the system performs
poorly.

Work of (Koncel-Kedziorski et al., 2015; Roy
and Roth, 2015) on the other hand try to map the
math word problem to an expression tree. Even
though, these algorithms can handle all the four
arithmetic operators they cannot solve problems
that require more than one equation. Moreover,
experiments show that our system is much more
robust to diversity in the problem types between
training and test data for the problems it handles.

The system ARIS in (Hosseini et al., 2014)
solves the addition-subtraction problems by cat-
egorizing the verbs into seven categories such as
‘positive transfer’, ‘loss’ etc. It represents the in-
formation in a problem as a state and then updates
the state according to the category of a verb as the
story progresses. Both ARIS and our system share

the property that they give some explanation be-
hind the equation they create. However, the verb
categorization approach of ARIS can only solve a
subset of addition-subtraction problems (see error
analysis in (Hosseini et al., 2014)); whereas the us-
age of formulas to model the word problem world,
gives our system the ability to accommodate other
math word problems as well.

5 Experimental Evaluation

5.1 Dataset

The AddSub dataset consist of a total of 395
addition-subtraction arithmetic problems for third,
fourth, and fifth graders. The dataset is divided
into three diverse set MA1, MA2, IXL containing
134, 140 and 121 problems respectively. As men-
tioned in (Hosseini et al., 2014), the problems in
MA2 have more irrelevant information compared
to the other two datasets, and IXL includes more
information gaps.

5.2 Result

Hosseini et al. (2014) evaluate their system using
3-fold cross validation. We follow that same pro-
cedure. Table 5 shows the accuracy of our sys-
tem on each dataset (when trained on the other
two datasets). Table 6 shows the distribution of
the part whole, change, comparison problems and
the accuracy on recognizing the correct formula.

MA1 IXL MA2 Avg
ARIS 83.6 75.0 74.4 77.7
KAZB 89.6 51.1 51.2 64.0
ALGES - - - 77.0
Roy & Roth - - - 78.0
Majority 45.5 71.4 23.7 48.9
Our System 96.27 82.14 79.33 86.07

Table 5: Comparision with ARIS, KAZB (Kush-
man et al., 2014), ALGES (Koncel-Kedziorski et
al., 2015) and the state of the art Roy & Roth on
the accuracy of solving arithmetic problems.

As we can see in Table 6 only IXL contains
problems of type ‘comparison’. So, to study the
accuracy in detecting the compare formula we
uniformly distribute the 33 examples over the 3
datasets. Doing that results in only two errors in
the recognition of a compare formula and also in-
creases the overall accuracy of solving arithmetic
problems to 90.38%.
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5.3 Error Analysis
An equation that can be generated from a change
or comparision formula can also be generated by
a part whole formula. Four such errors happened
for the change problems and out of the 33 com-
pare problems, 18 were solved by part whole.
Also, there are 3 problems that require two appli-
cations. One example of such problem is, “There
are 48 erasers in the drawer and 30 erasers on the
desk. Alyssa placed 39 erasers and 45 rulers on
the desk. How many erasers are now there in to-
tal ?”. To solve this we need to first combine the
two numbers 48 and 30 to find the total number of
erasers she initially had. This requires the knowl-
edge of ‘part-whole’. Now, that sum of 48 and
30, 39 and x can be connected together using the
‘change’ formula. With respect to ‘solving’ arith-
metic problems, we find the following categories
as the major source of errors:

Problem Representation: Solving problems
in this category requires involved representation.
Consider the problem, ‘Sally paid $ 12.32 total for
peaches , after a ‘3 dollar’ coupon , and $ 11.54
for cherries . In total , how much money did Sally
spend?’. Since the associated verb for the variable
3 dollar is ‘pay’, our system incorrectly thinks that
Sally did spend it.

Information Gap: Often, information that is
critical to solve a problem is not present in the text.
E.g. Last year , 90171 people were born in a coun-
try , and 16320 people immigrated to it . How
many new people began living in the country last
year ?. To correctly solve this problem, it is impor-
tant to know that both the event ‘born’ and ‘immi-
gration’ imply the ‘began living’ event, however
that information is missing in the text. Another
example is the problem, “Keith spent $6.51 on a
rabbit toy , $5.79 on pet food , and a cage cost
him $12.51 . He found a dollar bill on the ground.
What was the total cost of Keith ’s purchases? ”. It
is important to know here that if a cage cost Keith
$12.51 then Keith has spent $12.51 for cage.

Modals: Consider the question ‘Jason went to
11 football games this month . He went to 17
games last month , and plans to go to 16 games
next month . How many games will he attend in
all?’ To solve this question one needs to under-
stand the meanings of the verb “plan” and “will”.
If we replace “will” in the question by “did” the
answer will be different. Currently our algorithm

Type MA1 IXL MA2

part whole
Total 59 89 51
correct 59 81 40

change
Total 74 18 68
correct 70 15 56

compare
Total 0 33 0
correct 0 0 0

Table 6: Accuracy on recognizing the correct ap-
plication. None of the MA1 and MA2 dataset con-
tains “compare” problems so the cross validation
accuracy on “IXL” for “compare” problems is 0.

cannot solve this problem and we need to either
use a better representation or a more powerful
learning algorithm to be able to answer correctly.
Another interesting example of this kind is the
following: “For his car , Mike spent $118.54 on
speakers and $106.33 on new tires . Mike wanted
3 CD ’s for $4.58 but decided not to . In total ,
how much did Mike spend on car parts?”

Incomplete IsA Knowledge: For the prob-
lem “Tom bought a skateboard for $ 9.46 , and
spent $ 9.56 on marbles . Tom also spent $ 14.50
on shorts . In total , how much did Tom spend
on toys ? ”, it is important to know that ‘skate-
board’ and ‘marbles’ are toys but ‘shorts’ are not.
However, such knowledge is not always present in
ConceptNet which results in error.

Parser Issue: Error in dependency parsing is
another source of error. Since the attribute values
are computed from the dependency parse tree, a
wrong assignment (mostly for verbs) often makes
the entity irrelevant to the computation.

6 Conclusion

Solving math word problems often requires ex-
plicit modeling of the word. In this research, we
use well-known math formulas to model the word
problem and develop an algorithm that learns to
map the assertions in the story to the correct for-
mula. Our future plan is to apply this model to
general arithmetic problems which require multi-
ple applications of formulas.
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