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Abstract

Frames defined in FrameNet (FN) share
highly similar structures with events in
ACE event extraction program. An even-
t in ACE is composed of an event trig-
ger and a set of arguments. Analogously,
a frame in FN is composed of a lexical u-
nit and a set of frame elements, which play
similar roles as triggers and arguments of
ACE events respectively. Besides having
similar structures, many frames in FN ac-
tually express certain types of events. The
above observations motivate us to explore
whether there exists a good mapping from
frames to event-types and if it is possible
to improve event detection by using FN.
In this paper, we propose a global infer-
ence approach to detect events in FN. Fur-
ther, based on the detected results, we an-
alyze possible mappings from frames to
event-types. Finally, we improve the per-
formance of event detection and achieve
a new state-of-the-art result by using the
events automatically detected from FN.

1 Introduction

In the ACE (Automatic Context Extraction) even-
t extraction program, an event is represented as a
structure consisting of an event trigger and a set of
arguments. This paper tackles with the event de-
tection (ED) task, which is a crucial component in
the overall task of event extraction. The goal of ED
is to identify event triggers and their correspond-
ing event types from the given documents.
FrameNet (FN) (Baker et al., 1998; Fillmore
et al., 2003) is a linguistic resource storing con-
siderable information about lexical and predicate-
argument semantics. In FN, a frame is defined as
a composition of a Lexical Unit (LU) and a set
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of Frame Elements (FE). Most frames contain a
set of exemplars with annotated LUs and FEs (see
Figure 2 and Section 2.2 for details).

From the above definitions of events and
frames, it is not hard to find that the frames defined
in FN share highly similar structures as the events
defined in ACE. Firstly, the LU of a Frame plays
a similar role as the trigger of an event. ACE de-
fines the trigger of an event as the word or phrase
which most clearly expresses an event occurrence.
For example, the following sentence “He died in
the hospital.” expresses a Die event, whose trig-
ger is the word died. Analogously, the LU of a
frame is also the word or phrase which is capa-
ble of indicating the occurrence of the expressed
semantic frame. For example, the sentence “Aero-
planes bombed London.” expresses an Attack!
frame, whose LU is the word bombed. Secondly,
the FEs of a frame also play similar roles as argu-
ments of an event. Both of them indicate the par-
ticipants involved in the corresponding frame or
event. For example, in the first sentence, He and
hospital are the arguments, and in the second sen-
tence, Aeroplanes and London are the FEs.

Besides having similar structure as events,
many frames in FN actually express certain type-
s of events defined in ACE. Table 1 shows some
examples of frames which also express events.

Frame Event Sample in FN

Attack Attack | Aeroplanes bombed London.
Invading Attack Hitler invaded Austria .

Fining Fine The court fined her $40.
Execution | Execute | He was executed yesterday.

Table 1: Examples of frames expressing events.

The aforementioned observations motivate us to

!The notation of frames distinguishes from that of events
by the italic decoration.
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explore: (1) whether there exists a good mapping
from frames to event-types, and (2) whether it is
possible to improve ED by using FN.
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Figure 1: Our framework for detecting events in
FN (including training and detecting processes).

For the first issue, we investigate whether a
frame could be mapped to an event-type based on
events expressed by exemplars annotated for that
frame. Therefore the key is to detect events from
the given exemplar sentences in FN. To achieve
this goal, we propose a global inference approach
(see figure 1). We firstly learn a basic ED model
based on the ACE labeled corpus and employ it to
yield initial judgements for each sentence in FN.
Then, we apply a set of soft constraints for global
inference based on the following hypotheses: 1).
Sentences belonging to the same LU tend to ex-
press events of the same type; 2). Sentences be-
longing to related frames tend to express events of
the same type; 3). Sentences belonging to the same
frame tend to express events of the same type. All
of the above constraints and initial judgments are
formalized as first-order logic formulas and mod-
eled by Probabilistic Soft Logic (PSL) (Kimmig
et al., 2012; Bach et al., 2013). Finally, we obtain
the final results via PSL-based global inference.
We conduct both manual and automatic evalua-
tions for the detected results.

For the second issue, ED generally suffer-
s from data sparseness due to lack of labeled
samples. Some types, such as Nominate and
Extradite, contain even less than 10 labeled
samples. Apparently, from such a small scale of
training data is difficult to yield a satisfying perfor-
mance. We notice that ACE corpus only contains
about 6,000 labeled instances, while FN contains
more than 150,000 exemplars. Thus, a straightfor-
ward solution to alleviate the data sparseness prob-
lem is to expand the ACE training data by using
events detected from FN. The experimental result-
s show that events from FN significantly improve
the performance of the event detection task.
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S1: Indeed , three months later H\t\erJnvaded Ausma —Frame:Invading

FE FE U FE
s2: Atthe time in 1990, Iraq was invading Kuwait. —— Frame:Invading
FE___FE U FE

Figure 2: The hierarchy of FN corpus, where each
Sk under a LU is a exemplar annotated for that
LU. Inheritance is a semantic relation between the
frames Tnvading and Attack.

To sum up, our main contributions are: (1) To
our knowledge, this is the first work perform-
ing event detection over ACE and FN to explore
the relationships between frames and events. (2)
We propose a global inference approach to detect
events in FN, which is demonstrated very effective
by our experiments. Moreover, based on the de-
tected results, we analyze possible mappings from
frames to event-types (all the detecting and map-
ping results are released for further use by the NLP
community?). (3) We improve the performance of
event detection significantly and achieve a new
state-of-the-art result by using events automatical-
ly detected from FN as extra training data.

2 Background
2.1 ACE Event Extraction

In ACE evaluations, an event is defined as a specif-
ic occurrence involving several participants. ACE
event evaluation includes 8 types of events, with
33 subtypes. Following previous work, we treat
them simply as 33 separate event types and ignore
the hierarchical structure among them. In this pa-
per, we use the ACE 2005 corpus® in our experi-
ments. It contains 599 documents, which include
about 6,000 labeled events.

2.2 FrameNet

The FrameNet is a taxonomy of manually identi-
fied semantic frames for English*. Figure 2 shows

2 Available at https://github.com/subacl/acl16

3htps://catalog.ldc.upenn.edu/LDC2006T06

“We use the latest released version, FrameNet 1.5 in this
work (http:/framenet.icsi.berkeley.edu).
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the hierarchy of FN corpus. Listed in the FN
with each frame are a set of lemmas with part of
speech (i.e “invade.v”) that can evoke the frame,
which are called lexical units (LUs). Accompany-
ing most LUs in the FN is a set of exemplars anno-
tated for them. Moreover, there are a set of labeled
relations between frames, such as Inheritance.
FN contains more than 1,000 various frames
and 10,000 LUs with 150,000 annotated exem-
plars. Eight relations are defined between frames
in FN, but in this paper we only use the following
three of them because the others do not satisfy our
hypotheses (see section 4.2):
Inheritance: A inherited from B indicates that A
must correspond to an equally or more specific
fact about B. It is a directional relation.
See_also: A and B connected by this relation indi-
cates that they are similar frames.
Perspective_on: A and B connected by this relation
means that they are different points-of-view about
the same fact (i.e. Receiving vs. Transfer).

2.3 Related Work

Event extraction is an increasingly hot and chal-
lenging research topic in NLP. Many approaches
have been proposed for this task. Nearly all the ex-
isting methods on ACE event task use supervised
paradigm. We further divide them into feature-
based methods and representation-based methods.

In feature-based methods, a diverse set of s-
trategies has been exploited to convert classifica-
tion clues into feature vectors. Ahn (2006) us-
es the lexical features(e.g., full word), syntactic
features (e.g., dependency features) and external-
knowledge features(WordNet (Miller, 1995)) to
extract the event. Inspired by the hypothesis of
One Sense Per Discourse (Yarowsky, 1995), Ji
and Grishman (2008) combined global evidence
from related documents with local decisions for
the event extraction. To capture more clues from
the texts, Gupta and Ji (2009), Liao and Grishman
(2010) and Hong et al. (2011) proposed the cross-
event and cross-entity inference for the ACE even-
t task. Li et al. (2013) proposed a joint model to
capture the combinational features of triggers and
arguments. Liu et al. (2016) proposed a global in-
ference approach to employ both latent local and
global information for event detection.

In representation-based methods, candidate
event mentions are represented by embedding,
which typically are fed into neural networks. T-
wo similarly related work has been proposed on

event detection (Chen et al., 2015; Nguyen and Gr-
ishman, 2015). Nguyen and Grishman (2015) em-
ployed Convolutional Neural Networks (CNNs) to
automatically extract sentence-level features for
event detection. Chen et al. (2015) proposed dy-
namic multi-pooling operation on CNNs to cap-
ture better sentence-level features.

FrameNet is a typical resource for frame-
semantic parsing, which consists of the resolution
of predicate sense into a frame, and the analy-
sis of the frame’s participants (Thompson et al.,
2003; Giuglea and Moschitti, 2006; Hermann et
al., 2014; Das et al., 2014). Other tasks which have
been studied based on FN include question an-
swering (Narayanan and Harabagiu, 2004; Shen
and Lapata, 2007), textual entailment (Burchardt
et al., 2009) and paraphrase recognition (Padé and
Lapata, 2005). This is the first work to explore the
application of FN to event detection.

3 Basic Event Detection Model

Alike to existing work, we model event detection
(ED) as a word classification task. In the ED task,
each word in the given sentence is treated as a can-
didate trigger and the goal is to classify each of
these candidates into one of 34 classes (33 event
types plus a NA class). However, in this work, as
we assumed that the LU of a frame is analogical to
the trigger of an event, we only treat the LU anno-
tated in the given sentence as a trigger candidate.
Each sentence in FN only contains one candidate
trigger, thus “the candidate” denotes both the can-
didate trigger of a sentence and the sentence itself
for FN in the remainder of this paper. Another no-
table difference is that we train the detection mod-
el on one corpus (ACE) but apply it on another
(FN). That means our task is also a cross-domain
problem. To tackle with it, our basic ED approach
follows representation-based paradigm, which has
been demonstrated effective in the cross-domain
situation (Nguyen and Grishman, 2015).

3.1 Model

We employ a simple three-layer (a input layer, a
hidden layer and a soft-max output layer) Artificial
Neural Networks (ANNs) (Hagan et al., 1996) to
model the ED task. In our model, adjacent layers
are fully connected.

Word embeddings learned from large amount of
unlabeled data have been shown to be able to cap-
ture the meaningful semantic regularities of words
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(Bengio et al., 2003; Erhan et al., 2010). This pa-
per uses unsupervised learned word embeddings
as the source of base features. We use the Skip-
gram model (Mikolov et al., 2013) to learn word
embeddings on the NYT corpus>.

Given a sentence, we concatenate the embed-
ding vector of the candidate trigger and the aver-
age embedding vector of the words in the sentence
as the input to our model. We train the model using
a simple optimization technique called stochastic
gradient descent (SGD) over shuffled mini-batches
with the Adadelta update rule (Zeiler, 2012). Reg-
ularization is implemented by a dropout (Kim,
2014; Hinton et al., 2012). The experiments show
that this simple model is surprisingly effective for
event detection.

4 Event Detection in FrameNet

To detect events in FN, we first learned the basic
ED model based on ACE labeled corpus and then
employ it to generate initial judgements (possible
event types with confidence values) for each sen-
tence in FN. Then, we apply a set of constraints
for global inference based on the PSL model.

4.1 Probabilistic Soft Logic

PSL is a framework for collective, probabilistic
reasoning in relational domains (Kimmig et al.,
2012; Bach et al., 2013). Similar to Markov Log-
ic Networks (MLNs) (Richardson and Domingos,
2006), it uses weighted first-order logic formulas
to compactly encode complex undirected proba-
bilistic graphical models. However, PSL brings t-
wo remarkable advantages compared with MLNGs.
First, PSL relaxes the boolean truth values of
MLNSs to continuous, soft truth values. This allows
for easy integration of continuous values, such as
similarity scores. Second, PSL restricts the syntax
of first order formulas to that of rules with con-
junctive bodies. Together with the soft truth values
constraint, the inference in PSL is a convex op-
timization problem in continuous space and thus
can be solved using efficient inference approach-
es. For further details, see the references (Kimmig
et al., 2012; Bach et al., 2013).

4.2 Global Constraints

Our global inference approach is based on the
following three hypotheses.

>https://catalog.ldc.upenn.edu/LDC2008T19

H1: Same Frame Same Event

This hypothesis indicates that sentences under the
same frame tend to express events of the same
type. For example, all exemplars annotated for the
frame Rape express events of type Attack, and
all sentences under the frame CI1othing express
NA (none) events. With this hypothesis, sentences
annotated for the same frame help each other to
infer their event types during global inference.
H2: Related Frame Same Event

This hypothesis is an extension of HI, which
relaxes “the same frame” constraint to “related
frames”. In this paper, frames are considered to
be related if and only if they are connected by
one of the following three relations: Inheritance,
See_also and Perspective_on (see section 2.2).
For example, the frame Invading is inherited
from At tack, and they actually express the same
type of event, Attack. With this hypothesis,
sentences under related frames help each other to
infer their event types during global inference.

The previous two hypotheses are basically true
for most frames but not perfect. For example, for
the frame Dead or_alive, only a few of the
sentences under it express Die events while the
remainder do not. To amend the this flaw, we in-
troduce the third hypothesis.

H3: Same LU Same Event

This hypothesis indicates that sentences under the
same LU tend to express events of the same type
(as a remind, LUs are under frames). It is loos-
er than the previous two hypotheses thus hold-
s true in more situations. For example, H3 holds
true for the frame Dead or_alive which vio-
lates HI and H2. In FN, LUs annotated for that
frame are alive.a, dead.a, deceased.a, lifeless.a,
living.n, undead.a and undead.n. All exemplars
under dead.a, deceased.a and lifeless.a express
Die events. Therefore, this hypothesis amends the
flaws of the former two hypotheses.

On the other hand, the first two hypotheses al-
so help H3 in some cases. For example, most of
the sentences belonging to the LU suit.n under the
frame C1othing are misidentified as Sue events
due to the ambiguity of the word “suit”. However,
in this situation, H/ can help to rectify it because
the majority of LUs under C1othing are not am-
biguous words. Thus, under the first hypothesis,
the misidentified results are expected to be correct-
ed by the the results of other exemplars belonging
to Clothing.
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4.3 Inference

To model the above hypotheses as logic formulas
in PSL, we introduce a set of predicates (see Ta-
ble 2), which are grouped into two categories: ob-
served predicates and target predicates. Observed
predicates are used to encode evidences, which are
always assumed to be known during the inference,
while target predicates are unknown and thus need
to be predicted.

CandEwvt(c,t) is introduced to represen-
t conf(c,t), which is the confidence value gener-
ated by the basic ED model for classifying the can-
didate c as an event of the type t. SameFr(cy1, c2)
indicates whether the candidates ¢; and cz belong
to the same frame. It is initialized by the indicator
function I, (c1, c2), which is defined as follows:

1 ¢, ¢9 from the same frame

Isf(ci,c2) = { , (D

0 otherwise

SameLU (c1, c2) is similar, but applies for candi-
dates under the same LU. The last three observed
predicates in Table 2 are used to encode the afore-
mentioned semantic relations between frames. For
example, Inherit(ci,cy) indicates whether the
frame of c¢; is inherited from that of ¢y, and it
is initialized by the indicator function I;;(c1, ¢2),
which is set to 1 if and only if the frame of ¢; is
inherited from that of ¢, otherwise 0. Evt(c,t) is
the only target predicate, which indicates that the
candidate c triggers an event of type .

Type Predicate Assignment

CandEvt(c,t) conf(c,t)
SameFr(cy,ca) Isf(01,02)
Observed SameL'U(cl7 c2) | Ig(er,c2)
Inherit(cy, co) Iin(c1,¢2)
SeeAlso(cy, co) Isa(c1,c2)
Perspect(ci,c2) | Ipe(ci,c2)

Target Evt(c,t) —

Table 2: Predicates and their initial assignments.

Putting all the predicates together, we design a
set of formulas to apply the aforementioned hy-
potheses in PSL (see Table 3). Formula f; con-
nects the target predicate with the initial judge-
ments from the basic ED model. Formulas f, and
f3 respectively encode H1 and H3. Finally, the re-
maining formulas are designed for various rela-
tions between frames in H2. We tune the formu-
las’s weights via grid search (see Section 5.4). The
inference results provide us with the most likely

Formulas
f1 CandEvt(c,t) — Evt(c,t)
fa | SameFr(ci,co) A Evt(cy,t) — Evt(co,t)
f3 | SameLU(c1,c0) A Evt(cy,t) — Evt(co,t)
fa | Inherit(ci,ca) A Evt(cy,t) — Evt(ca,t)
f5 | SeeAlso(cy,ca) A Evt(cq,t) — Euvt(ca,t)
fo | Perspect(ci,ca) A Evt(cy,t) — Evt(ca,t)

Table 3: Formulas in the PSL model

interpretation, that is, the soft-truth values of the
predicate E'vt. The final detected event type ¢ of
candidate c is decided by the the equation:

t = argmax Evt(c,t') (2)
t/

5 Evaluations

In this section, we present the experiments and
the results achieved. We first manually evaluate
our novel PSL-based ED model on the FN corpus.
Then, we also conduct automatic evaluations for
the events detected from FN based on ACE cor-
pus. Finally, we analyze possible mappings from
frames/LUs to event types.

5.1 Data

We learned the basic ED model on ACE2005
dataset. In order to evaluate the learned model, we
followed the evaluation of (Li et al., 2013): ran-
domly selected 30 articles from different genres
as the development set, and we subsequently con-
ducted a test on a separate set of 40 ACE 2005
newswire documents. We used the remaining 529
articles as the training data set.

We apply our proposed PSL-based approach
to detect events in FrameNet. Via collecting al-
I exemplars annotated in FN, we totally obtain
154,484 sentences for detection.

5.2 Setup and Performance of Basic Model

We have presented the basic ED model in Section
3. Hyperparameters were tuned by grid search on
the development data set. In our experiments, we
set the size of the hidden layer to 300, the size of
word embedding to 200, the batch size to 100 and
the dropout rate to 0.5.

Table 4 shows the experimental results, from
which we can see that the three-layer ANN model
is surprisingly effective for event detection, which
even yields competitive results compared with N-
guyen’s CNN and Chen’s DMCNN. We believe the
reason is that, compared with CNN and DMCNN,
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Methods Pre Rec Fl1
Nguyen’s CNN (2015) | 71.8 66.4 69.0
Chen’s DMCNN (2015) | 75.6  63.6  69.1
Liu’s Approach (2016) | 75.3 644 694
ANN (ours) 79.5 60.7 68.8
ANN-Random (ours) 81.0 495 615

Table 4: Performance of the basic ED model. AN-
N uses pre-trained word embeddings while ANN-
Random uses randomly initialized embeddings.

ANN focuses on capturing lexical features which
have been proved much more important than sen-
tence features for the ED task by (Chen et al.,
2015). Moreover, our basic model achieves much
higher precision than state-of-the-art approaches
(79.5% vs. 75.6%).

We also investigate the performance of the basic
ED model without pre-trained word embeddings®
(denoted by ANN-Random). The result shows that
randomly initialized word embeddings decrease
the F) score by 7.3 (61.5 vs. 68.8). The main
reasons are: 1). ACE corpus only contains 599
articles, which are far insufficient to train good
embeddings. 2). Words only existing in the test
dataset always retain random embeddings.

5.3 Baselines

For comparison, we designed four baseline sys-
tems that utilize different hypotheses to detec-
t events in FN.

(1) ANN is the first baseline, which directly uses
a basic ED model learned on ACE training corpus
to detect events in FN. This system does not apply
any hypotheses between frames and events.

(2) SameFrame (SF) is the second baseline sys-
tem, which applies HI over the results from AN-
N. For each frame, we introduce a score function
o(f,t) to estimate the probability that the frame f
could be mapped to the event type ¢ as follows:

o) = =S Iet) B
1i1l 25,

where S is the set of sentences under the frame
f5 I(e,t) is an indicator function which is true if
and only if ANN predicts the candidate ¢ as an
event of type ¢. Then for each frame f satisfying
o(f,t) > «, we mapped it to event type ¢, where
« is a hyperparameter. Finally, all sentences under
mapped frames are labeled as events. Note that,

SWe thank the anonymous reviewer for this suggestion.

unlike the PSL-based approach which applies con-
straints as soft rules, this system utilizes HI as a
hard constraint.

(3) RelatedFrame (RF) is the third baseline sys-
tem, which applies H2 over the results from AN-
N. For each frame f, we merge it and its related
frames into a super frame, f/. Similar with SF,
a score function ¢(f ,t), which shares the same
expression to equation 3, is introduced. For the
merged frame satisfying (f ' t) > [3, we mapped
it to the event type t. Finally, all sentences under
f " are labeled as events.

(4) SameLU (SL) is the last baseline, which ap-
plies the hypothesis H3 over the results from ANN.
Also, a score function (I, t) is introduced:

() = |;l” S 1o t) @

ceS;

where 9] is the set of sentences under the LU /. For
each LU satisfying ¥ (l,¢) > -, we mapped it to
the event type t. Finally, all sentences under [ are
labeled as events.

5.4 Manual Evaluations

In this section, we manually evaluate the precision
of the baseline systems and our proposed PSL-
based approach. For fair comparison, we set «, 0
and v to 0.32, 0.29 and 0.42 respectively to en-
sure they yield approximately the same amount of
events as the first baseline system ANN. We tune
the weights of formulas in PSL via grid search
by using ACE development dataset. In details, we
firstly detect events in FN under different config-
urations of formulas’ weights and add them to
ACE training dataset, respectively. Consequent-
ly, we obtain several different expanded training
datasets. Then, we separately train a set of basic
ED models based on each of these training dataset-
s and evaluate them over the development corpus.
Finally, the best weights are selected according
to their performances on the development dataset.
The weights of f; ~ f5 used in this work are 100,
10, 100, 5, 5 and 1, respectively.

Manual Annotations

Firstly, we randomly select 200 samples from the
results of each system. Each selected sample is a
sentence with a highlighted trigger and a predicted
event type. Figure 3 illustrates three samples. The
first line of each sample is a sentence labeled with
the trigger. The next line is the predicted event
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type of that sentence. Annotators are asked to as-
sign one of two labels to each sample (annotating
in the third line):

Y: the word highlighted in the given sentence
indeed triggers an event of the predicted type.

N: the word highlighted in the given sentence
does not trigger any event of the predicted type.
We can see that, it is very easy to annotate a sam-
ple for annotators, thus the annotated results are
expected to be of high quality.

##001 Grandad was [dead] by then and so were the two great-uncles .
Event Type: Die
MannalAnnotate[Y/N]:

##002 I [divorced] my wife for smoking in the toilet !
Event Type: Divorce
MannalAnnotate[Y/N]:

#4#003 He was [executed] yesterday.
Event Type: Execute
MannalAnnotate[Y/N]:

Figure 3: Examples of manual annotations.

To make the annotation more credible, each
sample is independently annotated by three anno-
tators’ (including one of the authors and two of
our colleagues who are familiar with ACE event
task) and the final decision is made by voting.

Results

Table 5 shows the results of manual evaluations.
Through the comparison of ANN and SF, we can
see that the application of H/ caused a loss of 5.5
point. It happens mainly because the performance
of SF is very sensitive to the wrongly mapped
frames. That is, if a frame is mismapped, then all
sentences under it would be mislabeled as events.
Thus, even a single mismapped frame could sig-
nificantly hurt the performance. This result also
proves that H/ is inappropriate to be used as a hard
constraint. As H2 is only an extension of H/, RF
performs similarly with SF. Moreover, SL obtains
a gain of 2.0% improvement compared with ANN,
which demonstrates that the ”same LU” hypoth-
esis is very useful. Finally, with all the hypothe-
ses, the PSL-based approach achieves the best per-
formance, which demonstrates that our hypotheses
are useful and it is an effective way to jointly uti-
lize them as soft constraints through PSL for event
detection in FN.

5.5 Automatic Evaluations

To prepare for automatic evaluations, we respec-
tively add the events detected from FN by each
of the aforementioned five systems to ACE train-
ing corpus. Consequently, we obtain five ex-

"The inter-agreement rate is 86.1%

Methods Precision (%)
ANN 77.5
Baselines SE 72.0
RF 71.0
SL 79.5
PSL-based Approach 81.0

Table 5: Results of manual evaluations.

panded training datasets: ACE-ANN-FN, ACE-SF-
FN, ACE-RF-FN, ACE-SL-FN and ACE-PSL-FN.
Then, we separately train five basic ED models on
each of these corpus and evaluate them on the ACE
testing data set. This experiment is an indirect e-
valuation of the events detected from FN, which is
based on the intuition that events with higher ac-
curacy are expected to bring more improvements
to the basic model.

Training Corpus | Pre Rec F
ACE-ANN-FN 772 635 69.7
ACE-SF-FN 732 641 684
ACE-RF-FN 72.6 639 68.0
ACE-SL-FN 715 643 703
ACE-PSL-FN | 77.6 65.2 70.7

Table 6: Automatic evaluations of events from FN.

Table 6 presents the results where we measure
precision, recall and Fj. Compared with ACE-
ANN-FN, events from SF and RF hurt the perfor-
mance. As analyzed in previous section, SF and R-
F yield quite a few false events, which dramatical-
ly hurt the accuracy. Moreover, ACE-SL-FN ob-
tains a score of 70.3% in F; measure, which out-
performs ACE-ANN-FN. This result illustrates the
effectiveness of our “same LU” hypothesis. Final-
ly and most importantly, consistent with the results
of manual evaluations, ACE-PSL-FN performs the
best, which further proves the effectiveness of our
proposed approach for event detection in FN.

5.6 Improving Event Detection Using FN

Event detection generally suffers from data sparse-
ness due to lack of labeled samples. In this section,
we investigate the effects of alleviating the afore-
mentioned problem by using the events detected
from FN as extra training data. Our investigation
is conducted by the comparison of two basic ED
models, ANN and ANN-FN: the former is trained
on ACE training corpus and the latter is trained on
the new training corpus ACE-PSL-FN (introduced
in the previous section), which contains 3,816 ex-
tra events detected from FN.
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Methods Pre Rec F Frame Event NJ||Sel| | @
Nguyen’s CNN(2015) | 71.8 66.4 69.0 Hit_target Attack 2/2 1.0
Chen’s DMCNN(2015) | 75.6 63.6 69.1 Relational

Liu's Approach(2016) | 753 644 694 nat features Meet i 1.0

ANN (Ours) 795 607 68.8 Invading Attack 120/121 | 0.99

ANN-FN (Ours) 776 652 170.7 Fining Fine 26/27 | 0.96

Being_born Be-Born 32/36 0.88

Table 7: Effects of expanding training data using Rape Attack 104/125 | 0.83

events automatically detected from FN. Sentencing Sentence 57/70 | 0.81

Attack Attack 99/129 | 0.77

Table 7 presents the experimental results. Com- Quitting End-Position | 102/137 | 0.74
pared with ANN, ANN-FN achieves a significant Notification ]

improvement of 1.9% in F; measure. It happens of_charges Charge-Indict | 73/103 | 0.71

mainly because that the high accurate extra train-
ing data makes the model obtain a higher recall
(from 60.7% to 65.2%) with less decrease of pre-
cision (from 79.5% to 77.6%). The result demon-
strates the effectiveness of alleviating the data s-
parseness problem of ED by using events detect-
ed from FN. Moreover, compared with state-of-
the-art methods, ANN-FN outperforms all of them
with remarkable improvements (more than 1.3%).

5.7 Analysis of Frame-Event Mapping

In this section, we illustrate the details of map-
pings from frames to event types. The mapping
pairs are obtained by computing the function ¢
(see Section 5.3) for each (frame, event-type) pair
(f, t) based on the events detected by the PSL-
based approach. Table 8 presents the top 10 map-
pings. We manually evaluate their quality by in-
vestigating: (1) whether the definition of each
frame is compatible with its mapped event type;
(2) whether exemplars annotated for each frame
actually express events of its mapped event type.
For the first issue, we manually compare
the definitions of each mapped pair. Excep-
t Relational_nat_features®, definitions of
all the mapped pairs are compatible. For the sec-
ond issue, we randomly sample 20 exemplars (if
possible) from each frame and manually annotate
them. Except the above frame and Invading,
exemplars of the remaining frames all express the
right events. The only exemplar of Invading
failing to express its mapped event is as follows:
“Theinvasion of China by western culture has had
a number of far-reaching effects on Confucianis-
m.” ACE requires an Attack event to be a phys-
ical act, while the invasion of culture is unphysi-
cal. Thus, the above sentence does not express an

8The full name is Relational_natural_relations in FN.

Table 8: Top 10 mappings from frames to even-
t types. N, is the number of exemplars detected
as events; ||S¢|| and ¢ hold the same meanings as
mentioned in Section 5.3.

Attack event. To sum up, the quality of our map-
pings is good, which demonstrates that the hypoth-
esis HI is basically true.

5.8 Analysis of LU-Event Mapping

This section illustrates the details of mappings
from LUs to event types. The mapping pairs are
obtained by computing the function 1) (see Section
5.3). Table 9 presents the top 10 mappings. In FN,
each LU belongs to a frame. In table 9, we omit the
frame of each LU because of space limitation®.

LU Event NJ||ISi|| | @
gunfight.n Attack 14/14 1.0
injure.v Injure 14/14 1.0
divorce.n Divorce 11/11 1.0
decapitation.n Die 5/5 1.0
trial.n Trial-Hearing | 25/25 1.0
assault.v Attack 21/21 1.0
fight.v Attack 12/12 1.0
arrest.n Arrest-Jail 38/38 1.0
divorce.v Divorce 35/35 1.0
shoot.v Attack 2/2 1.0

Table 9: Top 10 mappings from LUs to even-
t types. N, is the number of exemplars detected
as events; ||.S;|| and ¢ hold the same meanings as
mentioned in Section 5.3.

To investigate the mapping quality, we manu-

"Their frames separately are Hostile_encounter,
Cause_harm, Forming_relationships, Killing, Trial, Attack,
Quarreling, Arrest, Forming_relationships and Hit_target.
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ally annotate the exemplars under these LUs. The
result shows that all exemplars are rightly mapped.
These mappings are quite good. We believe the
reason is that an LU is hardly ambiguous due to
its high specificity, which is not only specified by
a lemma but also by a frame and a part of speech
tag. Table 9 only presents the top 10 mappings. In
fact, we obtain 54 mappings in total with ¢ = 1.0.
We released all the detected events and mapping
results for further use by the NLP community.

6 Conclusions and Future Work

Motivated by the high similarity between frames
and events, we conduct this work to study their
relations. The key of this research is to detec-
t events in FN. To solve this problem, we proposed
a PSL-based global inference approach based on
three hypotheses between frames and events. For
evaluation, we first conduct manual evaluations on
events detected from FN. The results reveal that
our hypotheses are very useful and it is an effective
way to jointly utilize them as soft rules through P-
SL. In addition, we also perform automatic evalu-
ations. The results further demonstrate the effec-
tiveness of our proposed approach for detecting
events in FN. Furthermore, based on the detected
results, we analyze the mappings from frames/LUs
to event types. Finally, we alleviate the data s-
parseness problem of ED by using events detected
from FN as extra training data. Consequently, we
obtain a remarkable improvement and achieve a
new state-of-the-art result for the ED task.

Event detection is only a component of the over-
all task of event extraction, which also includes
event role detection. In the future, we will ex-
tend this work to the complete event extraction
task. Furthermore, event schemas in ACE are quite
coarse. For example, all kinds of violent acts, such
as street fights and wars, are treated as a single
event type Attack. We plan to refine the event
schemas by the finer-grained frames defined in FN
(i.e. Attack may be divided into Terrorism,
Invading, etc.).
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