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Abstract

While end-to-end neural machine transla-
tion (NMT) has made remarkable progress
recently, NMT systems only rely on par-
allel corpora for parameter estimation.
Since parallel corpora are usually limited
in quantity, quality, and coverage, espe-
cially for low-resource languages, it is
appealing to exploit monolingual corpora
to improve NMT. We propose a semi-
supervised approach for training NMT
models on the concatenation of labeled
(parallel corpora) and unlabeled (mono-
lingual corpora) data. The central idea is
to reconstruct the monolingual corpora us-
ing an autoencoder, in which the source-
to-target and target-to-source translation
models serve as the encoder and decoder,
respectively. Our approach can not only
exploit the monolingual corpora of the
target language, but also of the source
language. Experiments on the Chinese-
English dataset show that our approach
achieves significant improvements over
state-of-the-art SMT and NMT systems.

1 Introduction

End-to-end neural machine translation (NMT),
which leverages a single, large neural network to
directly transform a source-language sentence into
a target-language sentence, has attracted increas-
ing attention in recent several years (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015). Free of latent structure
design and feature engineering that are critical in
conventional statistical machine translation (SMT)
(Brown et al., 1993; Koehn et al., 2003; Chi-
ang, 2005), NMT has proven to excel in model-
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ing long-distance dependencies by enhancing re-
current neural networks (RNNs) with the gating
(Hochreiter and Schmidhuber, 1993; Cho et al.,
2014; Sutskever et al., 2014) and attention mecha-
nisms (Bahdanau et al., 2015).

However, most existing NMT approaches suf-
fer from a major drawback: they heavily rely
on parallel corpora for training translation mod-
els. This is because NMT directly models the
probability of a target-language sentence given a
source-language sentence and does not have a sep-
arate language model like SMT (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015). Unfortunately, parallel corpora are
usually only available for a handful of research-
rich languages and restricted to limited domains
such as government documents and news reports.
In contrast, SMT is capable of exploiting abundant
target-side monolingual corpora to boost fluency
of translations. Therefore, the unavailability of
large-scale, high-quality, and wide-coverage par-
allel corpora hinders the applicability of NMT.

As a result, several authors have tried to use
abundant monolingual corpora to improve NMT.
Gulccehre et al. (2015) propose two methods,
which are referred to as shallow fusion and deep
fusion, to integrate a language model into NMT.
The basic idea is to use the language model to
score the candidate words proposed by the transla-
tion model at each time step or concatenating the
hidden states of the language model and the de-
coder. Although their approach leads to signifi-
cant improvements, one possible downside is that
the network architecture has to be modified to in-
tegrate the language model.

Alternatively, Sennrich et al. (2015) propose
two approaches to exploiting monolingual corpora
that is transparent to network architectures. The
first approach pairs monolingual sentences with
dummy input. Then, the parameters of encoder
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bushi yu shalong juxing le huitan

bushi yu shalong juxing le huitan

Bush held a talk with Sharon

Bush held a talk with Sharon

Bush held a talk with Sharon

bushi yu shalong juxing le huitan

encoder

decoder

encoder

decoder

(a) (b)

Figure 1: Examples of (a) source autoencoder and (b) target autoencoder on monolingual corpora. Our
idea is to leverage autoencoders to exploit monolingual corpora for NMT. In a source autoencoder, the
source-to-target model P (y|x;−→θ ) serves as an encoder to transform the observed source sentence x
into a latent target sentence y (highlighted in grey), from which the target-to-source model P (x′|y;←−θ )
reconstructs a copy of the observed source sentence x′ from the latent target sentence. As a result,
monolingual corpora can be combined with parallel corpora to train bidirectional NMT models in a
semi-supervised setting.

and attention model are fixed when training on
these pseudo parallel sentence pairs. In the sec-
ond approach, they first train a nerual translation
model on the parallel corpus and then use the
learned model to translate a monolingual corpus.
The monolingual corpus and its translations con-
stitute an additional pseudo parallel corpus. Simi-
lar ideas have also been suggested in conventional
SMT (Ueffing et al., 2007; Bertoldi and Federico,
2009). Sennrich et al. (2015) report that their ap-
proach significantly improves translation quality
across a variety of language pairs.

In this paper, we propose semi-supervised
learning for neural machine translation. Given la-
beled (i.e., parallel corpora) and unlabeled (i.e.,
monolingual corpora) data, our approach jointly
trains source-to-target and target-to-source trans-
lation models. The key idea is to append a re-
construction term to the training objective, which
aims to reconstruct the observed monolingual cor-
pora using an autoencoder. In the autoencoder, the
source-to-target and target-to-source models serve
as the encoder and decoder, respectively. As the
inference is intractable, we propose to sample the
full search space to improve the efficiency. Specif-
ically, our approach has the following advantages:

1. Transparent to network architectures: our ap-
proach does not depend on specific architec-
tures and can be easily applied to arbitrary
end-to-end NMT systems.

2. Both the source and target monolingual cor-
pora can be used: our approach can bene-
fit NMT not only using target monolingual
corpora in a conventional way, but also the
monolingual corpora of the source language.

Experiments on Chinese-English NIST datasets
show that our approach results in significant im-
provements in both directions over state-of-the-art
SMT and NMT systems.

2 Semi-Supervised Learning for Neural
Machine Translation

2.1 Supervised Learning
Given a parallel corpus D = {〈x(n),y(n)〉}Nn=1,
the standard training objective in NMT is to max-
imize the likelihood of the training data:

L(θ) =
N∑

n=1

logP (y(n)|x(n); θ), (1)

where P (y|x; θ) is a neural translation model and
θ is a set of model parameters. D can be seen
as labeled data for the task of predicting a target
sentence y given a source sentence x.

As P (y|x; θ) is modeled by a single, large neu-
ral network, there does not exist a separate target
language model P (y; θ) in NMT. Therefore, par-
allel corpora have been the only resource for pa-
rameter estimation in most existing NMT systems.
Unfortunately, even for a handful of resource-rich
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languages, the available domains are unbalanced
and restricted to government documents and news
reports. Therefore, the availability of large-scale,
high-quality, and wide-coverage parallel corpora
becomes a major obstacle for NMT.

2.2 Autoencoders on Monolingual Corpora

It is appealing to explore the more readily avail-
able, abundant monolingual corpora to improve
NMT. Let us first consider an unsupervised set-
ting: how to train NMT models on a monolingual
corpus T = {y(t)}Tt=1?

Our idea is to leverage autoencoders (Vincent et
al., 2010; Socher et al., 2011): (1) encoding an ob-
served target sentence into a latent source sentence
using a target-to-source translation model and (2)
decoding the source sentence to reconstruct the
observed target sentence using a source-to-target
model. For example, as shown in Figure 1(b),
given an observed English sentence “Bush held
a talk with Sharon”, a target-to-source translation
model (i.e., encoder) transforms it into a Chinese
translation “bushi yu shalong juxing le huitan” that
is unobserved on the training data (highlighted in
grey). Then, a source-to-target translation model
(i.e., decoder) reconstructs the observed English
sentence from the Chinese translation.

More formally, let P (y|x;
−→
θ) and P (x|y;←−θ )

be source-to-target and target-to-source transla-
tion models respectively, where

−→
θ and

←−
θ are cor-

responding model parameters. An autoencoder
aims to reconstruct the observed target sentence
via a latent source sentence:

P (y′|y;−→θ ,←−θ )

=
∑
x

P (y′,x|y;−→θ ,←−θ )

=
∑
x

P (x|y;←−θ )︸ ︷︷ ︸
encoder

P (y′|x;−→θ )︸ ︷︷ ︸
decoder

, (2)

where y is an observed target sentence, y′ is a
copy of y to be reconstructed, and x is a latent
source sentence.

We refer to Eq. (2) as a target autoencoder. 1

Likewise, given a monolingual corpus of source
language S = {x(s)}Ss=1, it is natural to introduce
a source autoencoder that aims at reconstructing

1Our definition of auotoencoders is inspired by Ammar et
al. (2014). Note that our autoencoders inherit the same spirit
from conventional autoencoders (Vincent et al., 2010; Socher
et al., 2011) except that the hidden layer is denoted by a latent
sentence instead of real-valued vectors.

the observed source sentence via a latent target
sentence:

P (x′|x;−→θ ,←−θ )

=
∑
y

P (x′,y|x;←−θ )

=
∑
y

P (y|x;−→θ )︸ ︷︷ ︸
encoder

P (x′|y;←−θ )︸ ︷︷ ︸
decoder

. (3)

Please see Figure 1(a) for illustration.

2.3 Semi-Supervised Learning
As the autoencoders involve both source-to-target
and target-to-source models, it is natural to com-
bine parallel corpora and monolingual corpora to
learn birectional NMT translation models in a
semi-supervised setting.

Formally, given a parallel corpus D =
{〈x(n),y(n)〉}Nn=1 , a monolingual corpus of target
language T = {y(t)}Tt=1, and a monolingual cor-
pus of source language S = {x(s)}Ss=1, we intro-
duce our new semi-supervised training objective
as follows:

J(−→θ ,←−θ )

=
N∑

n=1

logP (y(n)|x(n);−→θ )︸ ︷︷ ︸
source-to-target likelihood

+
N∑

n=1

logP (x(n)|y(n);←−θ )︸ ︷︷ ︸
target-to-source likelihood

+λ1

T∑
t=1

logP (y′|y(t);−→θ ,←−θ )︸ ︷︷ ︸
target autoencoder

+λ2

S∑
s=1

logP (x′|x(s);−→θ ,←−θ )︸ ︷︷ ︸
source autoencoder

, (4)

where λ1 and λ2 are hyper-parameters for balanc-
ing the preference between likelihood and autoen-
coders.

Note that the objective consists of four parts:
source-to-target likelihood, target-to-source likeli-
hood, target autoencoder, and source autoencoder.
In this way, our approach is capable of exploiting
abundant monolingual corpora of both source and
target languages.
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The optimal model parameters are given by

−→
θ
∗

= argmax

{
N∑

n=1

logP (y(n)|x(n);−→θ ) +

λ1

T∑
t=1

logP (y′|y(t);−→θ ,←−θ ) +

λ2

S∑
s=1

logP (x′|x(s);−→θ ,←−θ )

}
(5)

←−
θ
∗

= argmax

{
N∑

n=1

logP (x(n)|y(n);←−θ ) +

λ1

T∑
t=1

logP (y′|y(t);−→θ ,←−θ ) +

λ2

S∑
s=1

logP (x′|x(s);−→θ ,←−θ )

}
(6)

It is clear that the source-to-target and target-to-
source models are connected via the autoencoder
and can hopefully benefit each other in joint train-
ing.

2.4 Training
We use mini-batch stochastic gradient descent to
train our joint model. For each iteration, be-
sides the mini-batch from the parallel corpus, we
also construct two additional mini-batches by ran-
domly selecting sentences from the source and tar-
get monolingual corpora. Then, gradients are col-
lected from these mini-batches to update model
parameters.

The partial derivative of J(−→θ ,←−θ ) with respect
to the source-to-target model

−→
θ is given by

∂J(−→θ ,←−θ )

∂
−→
θ

=
N∑

n=1

∂ logP (y(n)|x(n);−→θ )

∂
−→
θ

+λ1

T∑
t=1

∂ logP (y′|y(t);−→θ ,←−θ )

∂
−→
θ

+λ2

S∑
s=1

∂ logP (x′|x(s);−→θ ,←−θ )

∂
−→
θ

. (7)

The partial derivative with respect to
←−
θ can be cal-

culated similarly.
Unfortunately, the second and third terms in Eq.

(7) are intractable to calculate due to the exponen-
tial search space. For example, the derivative in

Chinese English
# Sent. 2.56M

Parallel # Word 67.54M 74.82M
Vocab. 0.21M 0.16M
# Sent. 18.75M 22.32M

Monolingual # Word 451.94M 399.83M
Vocab. 0.97M 1.34M

Table 1: Characteristics of parallel and monolin-
gual corpora.

the third term in Eq. (7) is given by∑
x∈X (y) P (x|y;←−θ )P (y′|x;−→θ )∂ log P (y′|x;−→θ )

∂−→θ∑
x∈X (y) P (x|y;←−θ )P (y′|x;−→θ )

. (8)

It is prohibitively expensive to compute the sums
due to the exponential search space of X (y).

Alternatively, we propose to use a subset of the
full space X̃ (y) ⊂ X (y) to approximate Eq. (8):

∑
x∈X̃ (y) P (x|y;←−θ )P (y′|x;−→θ )∂ log P (y′|x;−→θ )

∂−→θ∑
x∈X̃ (y) P (x|y;←−θ )P (y′|x;−→θ )

. (9)

In practice, we use the top-k list of candidate
translations of y as X̃ (y). As |X̃ (y)| � X |(y)|,
it is possible to calculate Eq. (9) efficiently by
enumerating all candidates in X̃ (y). In practice,
we find this approximation results in significant
improvements and k = 10 seems to suffice to
keep the balance between efficiency and transla-
tion quality.

3 Experiments

3.1 Setup
We evaluated our approach on the Chinese-
English dataset.

As shown in Table 1, we use both a parallel
corpus and two monolingual corpora as the train-
ing set. The parallel corpus from LDC consists of
2.56M sentence pairs with 67.53M Chinese words
and 74.81M English words. The vocabulary sizes
of Chinese and English are 0.21M and 0.16M, re-
spectively. We use the Chinese and English parts
of the Xinhua portion of the GIGAWORD cor-
pus as the monolingual corpora. The Chinese
monolingual corpus contains 18.75M sentences
with 451.94M words. The English corpus contains
22.32M sentences with 399.83M words. The vo-
cabulary sizes of Chinese and English are 0.97M
and 1.34M, respectively.
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Figure 2: Effect of sample size k on the Chinese-
to-English validation set.
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Figure 3: Effect of sample size k on the English-
to-Chinese validation set.

For Chinese-to-English translation, we use the
NIST 2006 Chinese-English dataset as the vali-
dation set for hyper-parameter optimization and
model selection. The NIST 2002, 2003, 2004,
and 2005 datasets serve as test sets. Each Chi-
nese sentence has four reference translations. For
English-to-Chinese translation, we use the NIST
datasets in a reverse direction: treating the first
English sentence in the four reference transla-
tions as a source sentence and the original input
Chinese sentence as the single reference trans-
lation. The evaluation metric is case-insensitive
BLEU (Papineni et al., 2002) as calculated by the
multi-bleu.perl script.

We compared our approach with two state-of-
the-art SMT and NMT systems:

1. MOSES (Koehn et al., 2007): a phrase-based
SMT system;
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Figure 4: Effect of OOV ratio on the Chinese-to-
English validation set.
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Figure 5: Effect of OOV ratio on the English-to-
Chinese validation set.

2. RNNSEARCH (Bahdanau et al., 2015): an
attention-based NMT system.

For MOSES, we use the default setting to train
the phrase-based translation on the parallel corpus
and optimize the parameters of log-linear models
using the minimum error rate training algorithm
(Och, 2003). We use the SRILM toolkit (Stolcke,
2002) to train 4-gram language models.

For RNNSEARCH, we use the parallel corpus to
train the attention-based neural translation models.
We set the vocabulary size of word embeddings
to 30K for both Chinese and English. We follow
Luong et al. (2015) to address rare words.

On top of RNNSEARCH, our approach is capa-
ble of training bidirectional attention-based neural
translation models on the concatenation of parallel
and monolingual corpora. The sample size k is set
to 10. We set the hyper-parameter λ1 = 0.1 and
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λ2 = 0 when we add the target monolingual cor-
pus, and λ1 = 0 and λ2 = 0.1 for source monolin-
gual corpus incorporation. The threshold of gra-
dient clipping is set to 0.05. The parameters of
our model are initialized by the model trained on
parallel corpus.

3.2 Effect of Sample Size k
As the inference of our approach is intractable, we
propose to approximate the full search space with
the top-k list of candidate translations to improve
efficiency (see Eq. (9)).

Figure 2 shows the BLEU scores of various set-
tings of k over time. Only the English mono-
lingual corpus is appended to the training data.
We observe that increasing the size of the approx-
imate search space generally leads to improved
BLEU scores. There are significant gaps between
k = 1 and k = 5. However, keeping increas-
ing k does not result in significant improvements
and decreases the training efficiency. We find that
k = 10 achieves a balance between training effi-
ciency and translation quality. As shown in Fig-
ure 3, similar findings are also observed on the
English-to-Chinese validation set. Therefore, we
set k = 10 in the following experiments.

3.3 Effect of OOV Ratio
Given a parallel corpus, what kind of monolingual
corpus is most beneficial for improving transla-
tion quality? To answer this question, we investi-
gate the effect of OOV ratio on translation quality,
which is defined as

ratio =

∑
y∈yJy /∈ VDtK
|y| , (10)

where y is a target-language sentence in the mono-
lingual corpus T , y is a target-language word in y,
VDt is the vocabulary of the target side of the par-
allel corpus D.

Intuitively, the OOV ratio indicates how a sen-
tence in the monolingual resembles the parallel
corpus. If the ratio is 0, all words in the mono-
lingual sentence also occur in the parallel corpus.

Figure 4 shows the effect of OOV ratio on
the Chinese-to-English validation set. Only En-
glish monolingual corpus is appended to the par-
allel corpus during training. We constructed four
monolingual corpora of the same size in terms of
sentence pairs. “0% OOV” means the OOV ra-
tio is 0% for all sentences in the monolingual cor-
pus. “10% OOV” suggests that the OOV ratio is

no greater 10% for each sentence in the mono-
lingual corpus. We find that using a monolingual
corpus with a lower OOV ratio generally leads to
higher BLEU scores. One possible reason is that
low-OOV monolingual corpus is relatively easier
to reconstruct than its high-OOV counterpart and
results in better estimation of model parameters.

Figure 5 shows the effect of OOV ratio on the
English-to-Chinese validation set. Only English
monolingual corpus is appended to the parallel
corpus during training. We find that “0% OOV”
still achieves the highest BLEU scores.

3.4 Comparison with SMT

Table 2 shows the comparison between MOSES

and our work. MOSES used the monolingual
corpora as shown in Table 1: 18.75M Chinese
sentences and 22.32M English sentences. We
find that exploiting monolingual corpora dramat-
ically improves translation performance in both
Chinese-to-English and English-to-Chinese direc-
tions.

Relying only on parallel corpus, RNNSEARCH

outperforms MOSES trained also only on par-
allel corpus. But the capability of making
use of abundant monolingual corpora enables
MOSES to achieve much higher BLEU scores than
RNNSEARCH only using parallel corpus.

Instead of using all sentences in the monolin-
gual corpora, we constructed smaller monolingual
corpora with zero OOV ratio: 2.56M Chinese sen-
tences with 47.51M words and 2.56M English
English sentences with 37.47M words. In other
words, the monolingual corpora we used in the
experiments are much smaller than those used by
MOSES.

By adding English monolingual corpus, our
approach achieves substantial improvements over
RNNSEARCH using only parallel corpus (up to
+4.7 BLEU points). In addition, significant im-
provements are also obtained over MOSES using
both parallel and monolingual corpora (up to +3.5
BLEU points).

An interesting finding is that adding English
monolingual corpora helps to improve English-to-
Chinese translation over RNNSEARCH using only
parallel corpus (up to +3.2 BLEU points), sug-
gesting that our approach is capable of improving
NMT using source-side monolingual corpora.

In the English-to-Chinese direction, we ob-
tain similar findings. In particular, adding Chi-
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System Training Data Direction NIST06 NIST02 NIST03 NIST04 NIST05CE C E

MOSES

√ × × C→ E 32.48 32.69 32.39 33.62 30.23
E→ C 14.27 18.28 15.36 13.96 14.11√ × √
C→ E 34.59 35.21 35.71 35.56 33.74√ √ × E→ C 20.69 25.85 19.76 18.77 19.74

RNNSEARCH

√ × × C→E 30.74 35.16 33.75 34.63 31.74
E→C 15.71 20.76 16.56 16.85 15.14

√ × √ C→ E 35.61∗∗++ 38.78∗∗++ 38.32∗∗++ 38.49∗∗++ 36.45∗∗++

E→C 17.59++ 23.99 ++ 18.95++ 18.85++ 17.91++

√ √ × C→E 35.01++ 38.20∗∗++ 37.99∗∗++ 38.16∗∗++ 36.07∗∗++

E→C 21.12∗++ 29.52∗∗++ 20.49∗∗++ 21.59∗∗++ 19.97++

Table 2: Comparison with MOSES and RNNSEARCH. MOSES is a phrase-based statistical machine
translation system (Koehn et al., 2007). RNNSEARCH is an attention-based neural machine translation
system (Bahdanau et al., 2015). “CE” donates Chinese-English parallel corpus, “C” donates Chinese
monolingual corpus, and “E” donates English monolingual corpus. “

√
” means the corpus is included in

the training data and × means not included. “NIST06” is the validation set and “NIST02-05” are test
sets. The BLEU scores are case-insensitive. “*”: significantly better than MOSES (p < 0.05); “**”:
significantly better than MOSES (p < 0.01);“+”: significantly better than RNNSEARCH (p < 0.05);
“++”: significantly better than RNNSEARCH (p < 0.01).

Method Training Data Direction NIST06 NIST02 NIST03 NIST04 NIST05CE C E

Sennrich et al. (2015)
√ × √

C→E 34.10 36.95 36.80 37.99 35.33√ √ × E→C 19.85 28.83 20.61 20.54 19.17

this work

√ × √ C→E 35.61∗∗ 38.78∗∗ 38.32∗∗ 38.49∗ 36.45∗∗

E→C 17.59 23.99 18.95 18.85 17.91
√ √ × C→E 35.01∗∗ 38.20∗∗ 37.99∗∗ 38.16 36.07∗∗

E→C 21.12∗∗ 29.52∗∗ 20.49 21.59∗∗ 19.97∗∗

Table 3: Comparison with Sennrich et al. (2015). Both Sennrich et al. (2015) and our approach build
on top of RNNSEARCH to exploit monolingual corpora. The BLEU scores are case-insensitive. “*”:
significantly better than Sennrich et al. (2015) (p < 0.05); “**”: significantly better than Sennrich et al.
(2015) (p < 0.01).

nese monolingual corpus leads to more benefits
to English-to-Chinese translation than adding En-
glish monolingual corpus. We also tried to use
both Chinese and English monolingual corpora
through simply setting all the λ to 0.1 but failed
to obtain further significant improvements.

Therefore, our findings can be summarized as
follows:

1. Adding target monolingual corpus improves
over using only parallel corpus for source-to-
target translation;

2. Adding source monolingual corpus also im-
proves over using only parallel corpus for
source-to-target translation, but the improve-
ments are smaller than adding target mono-
lingual corpus;

3. Adding both source and target monolingual
corpora does not lead to further significant
improvements.

3.5 Comparison with Previous Work
We re-implemented Sennrich et al. (2015)’s
method on top of RNNSEARCH as follows:

1. Train the target-to-source neural translation
model P (x|y;←−θ ) on the parallel corpusD =
{〈x(n),y(n)〉}Nn=1.

2. The trained target-to-source model
←−
θ
∗

is
used to translate a target monolingual corpus
T = {y(t)}Tt=1 into a source monolingual
corpus S̃ = {x̃(t)}Tt=1.

3. The target monolingual corpus is paired with
its translations to form a pseudo parallel cor-
pus, which is then appended to the original
parallel corpus to obtain a larger parallel cor-
pus: D̃ = D ∪ 〈S̃, T 〉.

4. Re-train the the source-to-target neural trans-
lation model on D̃ to obtain the final model
parameters

−→
θ
∗
.
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Monolingual hongsen shuo , ruguo you na jia famu gongsi dangan yishenshifa , name
tamen jiang zihui qiancheng .

Reference hongsen said, if any logging companies dare to defy the law, then they will
destroy their own future .

Translation hun sen said , if any of those companies dare defy the law , then they will
have their own fate . [iteration 0]
hun sen said if any tree felling company dared to break the law , then they
would kill themselves . [iteration 40K]
hun sen said if any logging companies dare to defy the law , they would
destroy the future themselves . [iteration 240K]

Monolingual dan yidan panjue jieguo zuizhong queding , ze bixu zai 30 tian nei zhixing .
Reference But once the final verdict is confirmed , it must be executed within 30 days

.
Translation however , in the final analysis , it must be carried out within 30 days .

[iteration 0]
however , in the final analysis , the final decision will be carried out within
30 days . [iteration 40K]
however , once the verdict is finally confirmed , it must be carried out within
30 days . [iteration 240K]

Table 4: Example translations of sentences in the monolingual corpus during semi-supervised learning.
We find our approach is capable of generating better translations of the monolingual corpus over time.

Table 3 shows the comparison results. Both the
two approaches use the same parallel and mono-
lingual corpora. Our approach achieves signifi-
cant improvements over Sennrich et al. (2015) in
both Chinese-to-English and English-to-Chinese
directions (up to +1.8 and +1.0 BLEU points).
One possible reason is that Sennrich et al. (2015)
only use the pesudo parallel corpus for parame-
ter estimation for once (see Step 4 above) while
our approach enables source-to-target and target-
to-source models to interact with each other itera-
tively on both parallel and monolingual corpora.

To some extent, our approach can be seen as an
iterative extension of Sennrich et al. (2015)’s ap-
proach: after estimating model parameters on the
pseudo parallel corpus, the learned model param-
eters are used to produce a better pseudo parallel
corpus. Table 4 shows example Viterbi transla-
tions on the Chinese monolingual corpus over it-
erations:

x∗ = argmax
x

{
P (y′|x;−→θ )P (x|y;←−θ )

}
. (11)

We observe that the quality of Viterbi transla-
tions generally improves over time.

4 Related Work

Our work is inspired by two lines of research: (1)
exploiting monolingual corpora for machine trans-
lation and (2) autoencoders in unsupervised and
semi-supervised learning.

4.1 Exploiting Monolingual Corpora for
Machine Translation

Exploiting monolingual corpora for conventional
SMT has attracted intensive attention in recent
years. Several authors have introduced transduc-
tive learning to make full use of monolingual
corpora (Ueffing et al., 2007; Bertoldi and Fed-
erico, 2009). They use an existing translation
model to translate unseen source text, which can
be paired with its translations to form a pseudo
parallel corpus. This process iterates until con-
vergence. While Klementiev et al. (2012) pro-
pose an approach to estimating phrase translation
probabilities from monolingual corpora, Zhang
and Zong (2013) directly extract parallel phrases
from monolingual corpora using retrieval tech-
niques. Another important line of research is to
treat translation on monolingual corpora as a de-
cipherment problem (Ravi and Knight, 2011; Dou
et al., 2014).
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Closely related to Gulccehre et al. (2015) and
Sennrich et al. (2015), our approach focuses on
learning birectional NMT models via autoen-
coders on monolingual corpora. The major ad-
vantages of our approach are the transparency to
network architectures and the capability to exploit
both source and target monolingual corpora.

4.2 Autoencoders in Unsupervised and
Semi-Supervised Learning

Autoencoders and their variants have been widely
used in unsupervised deep learning ((Vincent et
al., 2010; Socher et al., 2011; Ammar et al., 2014),
just to name a few). Among them, Socher et al.
(2011)’s approach bears close resemblance to our
approach as they introduce semi-supervised recur-
sive autoencoders for sentiment analysis. The dif-
ference is that we are interested in making a bet-
ter use of parallel and monolingual corpora while
they concentrate on injecting partial supervision
to conventional unsupervised autoencoders. Dai
and Le (2015) introduce a sequence autoencoder
to reconstruct an observed sequence via RNNs.
Our approach differs from sequence autoencoders
in that we use bidirectional translation models as
encoders and decoders to enable them to interact
within the autoencoders.

5 Conclusion

We have presented a semi-supervised approach to
training bidirectional neural machine translation
models. The central idea is to introduce autoen-
coders on the monolingual corpora with source-to-
target and target-to-source translation models as
encoders and decoders. Experiments on Chinese-
English NIST datasets show that our approach
leads to significant improvements.

As our method is sensitive to the OOVs present
in monolingual corpora, we plan to integrate Jean
et al. (2015)’s technique on using very large vo-
cabulary into our approach. It is also necessary to
further validate the effectiveness of our approach
on more language pairs and NMT architectures.
Another interesting direction is to enhance the
connection between source-to-target and target-to-
source models (e.g., letting the two models share
the same word embeddings) to help them benefit
more from interacting with each other.
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