
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1944–1953,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

N -gram language models for massively parallel devices

Nikolay Bogoychev and Adam Lopez
University of Edinburgh

Edinburgh, United Kingdom

Abstract

For many applications, the query speed of
N -gram language models is a computa-
tional bottleneck. Although massively par-
allel hardware like GPUs offer a poten-
tial solution to this bottleneck, exploiting
this hardware requires a careful rethink-
ing of basic algorithms and data structures.
We present the first language model de-
signed for such hardware, using B-trees to
maximize data parallelism and minimize
memory footprint and latency. Compared
with a single-threaded instance of KenLM
(Heafield, 2011), a highly optimized CPU-
based language model, our GPU imple-
mentation produces identical results with
a smaller memory footprint and a sixfold
increase in throughput on a batch query
task. When we saturate both devices, the
GPU delivers nearly twice the throughput
per hardware dollar even when the CPU
implementation uses faster data structures.

Our implementation is freely available at
https://github.com/XapaJIaMnu/gLM

1 Introduction

N -gram language models are ubiquitous in speech
and language processing applications such as ma-
chine translation, speech recognition, optical char-
acter recognition, and predictive text. Because
they operate over large vocabularies, they are often
a computational bottleneck. For example, in ma-
chine translation, Heafield (2013) estimates that
decoding a single sentence requires a million lan-
guage model queries, and Green et al. (2014) esti-
mate that this accounts for more than 50% of de-
coding CPU time.

To address this problem, we turn to mas-
sively parallel hardware architectures, exempli-

Figure 1: Theoretical floating point performance
of CPU and GPU hardware over time (Nvidia Cor-
poration, 2015).

fied by general purpose graphics processing units
(GPUs), whose memory bandwidth and compu-
tational throughput has rapidly outpaced that of
CPUs over the last decade (Figure 1). Exploiting
this increased power is a tantalizing prospect for
any computation-bound problem, so GPUs have
begun to attract attention in natural language pro-
cessing, in problems such as parsing (Canny et
al., 2013; Hall et al., 2014), speech recognition
(Chong et al., 2009; Chong et al., 2008), and
phrase extraction for machine translation (He et
al., 2015). As these efforts have shown, it is
not trivial to exploit this computational power, be-
cause the GPU computational model rewards data
parallelism, minimal branching, and minimal ac-
cess to global memory, patterns ignored by many
classic NLP algorithms (Section 2).

We present the first language model data struc-
ture designed for this computational model. Our
data structure is a trie in which individual nodes
are represented by B-trees, which are searched
in parallel (Section 3) and arranged compactly in

1944

memory (Section 4). Our experiments across a
range of parameters in a batch query setting show
that this design achieves a throughput six times
higher than KenLM (Heafield, 2011), a highly effi-
cient CPU implementation (Section 5). They also
show the effects of device saturation and of data
structure design decisions.

2 GPU computational model

GPUs and other parallel hardware devices have a
different computational profile from widely-used
x86 CPUs, so data structures designed for serial
models of computation are not appropriate. To
produce efficient software for a GPU we must be
familiar with its design (Figure 2).

2.1 GPU design

A GPU consists of many simple computational
cores, which have neither complex caches nor
branch predictors to hide latencies. Because they
have far fewer circuits than CPU cores, GPU cores
are much smaller, and many more of them can fit
on a device. So the higher throughput of a GPU is
due to the sheer number of cores, each executing a
single thread of computation (Figure 2). Each core
belongs to a Streaming Multiprocessor (SM), and
all cores belonging to a SM must execute the same
instruction at each time step, with exceptions for
branching described below. This execution model
is very similar to single instruction, multiple data
(SIMD) parallelism.1

Computation on a GPU is performed by an in-
herently parallel function or kernel, which defines
a grid of data elements to which it will be applied,
each processed by a block of parallel threads.
Once scheduled, the kernel executes in parallel on
all cores allocated to blocks in the grid. At min-
imum, it is allocated to a single warp—32 cores
on our experimental GPU. If fewer cores are re-
quested, a full warp is still allocated, and the un-
used cores idle.

A GPU offers several memory types, which dif-
fer in size and latency (Table 1). Unlike a CPU
program, which can treat memory abstractly, a
GPU program must explicitly specify in which
physical memory each data element resides. This
choice has important implications for efficiency
that entail design tradeoffs, since memory closer

1Due to differences in register usage and exceptions for
branching, this model is not pure SIMD. Nvidia calls it
SIMT (single instruction, multiple threads).

Figure 2: GPU memory hierarchy and computa-
tional model (Nvidia Corporation, 2015).

Memory type Latency Size
Register 0 4B
Shared 4–8 16KB–96KB
Global GPU 200–800 2GB–12GB
CPU 10K+ 16GB–1TB

Table 1: Latency (in clock cycles) and size of dif-
ferent GPU memory types. Estimates are adapted
from Nvidia Corporation (2015) and depend on
several aspects of hardware configuration.

to a core is small and fast, while memory further
away is large and slow (Table 1).

2.2 Designing efficient GPU algorithms

To design an efficient GPU application we must
observe the constraints imposed by the hardware,
which dictate several important design principles.

Avoid branching instructions. If a branching
instruction occurs, threads that meet the branch
condition run while the remainder idle (a warp di-
vergence). When the branch completes, threads
that don’t meet the condition run while the first
group idles. So, to maximize performance, code
must be designed with little or no branching.

Use small data structures. Total memory on a
state-of-the-art GPU is 12GB, expected to rise to
24GB in the next generation. Language models
that run on CPU frequently exceed these sizes, so
our data structures must have the smallest possible
memory footprint.

Minimize global memory accesses. Data in
the CPU memory must first be transferred to the
device. This is very slow, so data structures must
reside in GPU memory. But even when they

1945

Data structure Size Query Ease of Construction Lossless
speed backoff time

Trie (Heafield, 2011) Small Fast Yes Fast Yes
Probing hash table (Heafield, 2011) Larger Faster Yes Fast Yes
Double array (Yasuhara et al., 2013) Larger Fastest Yes Very slow Yes
Bloom filter (Talbot and Osborne, 2007) Small Slow No Fast No

Table 2: A survey of language model data structures and their computational properties.

reside in global GPU memory, latency is high, so
wherever possible, data should be accessed from
shared or register memory.

Access memory with coalesced reads. When
a thread requests a byte from global memory,
it is copied to shared memory along with many
surrounding bytes (between 32 and 128 depending
on the architecture). So, if consecutive threads
request consecutive data elements, the data is
copied in a single operation (a coalesced read),
and the delay due to latency is incurred only once
for all threads, increasing throughput.

3 A massively parallel language model

Let w be a sentence, wi its ith word, and N the
order of our model. An N -gram language model
defines the probability of w as:

P (w) =
|w|∏
i=1

P (wi|wi−1...wi−N+1) (1)

A backoff language model (Chen and Goodman,
1999) is defined in terms of n-gram probabil-
ities P (wi|wi−1...wi−n+1) for all n from 1 to
N , which are in turn defined by n-gram pa-
rameters P̂ (wi...wi−n+1) and backoff parameters
β(wi−1...wi−n+1). Usually P̂ (wi...wi−n+1) and
β(wi−1...wi−n+1) are probabilities conditioned
on wi−1...wi−n+1, but to simplify the following
exposition, we will simply treat them as numeric
parameters, each indexed by a reversed n-gram. If
parameter P̂ (wi...wi−n+1) is nonzero, then:

P (wi|wi−1...wi−n+1) = P̂ (wi...wi−n+1)

Otherwise:

P (wi|wi−1...wi−n+1) =
P (wi|wi−1...wi−n+2)× β(wi−1...wi−n+1)

This recursive definition means that the probabil-
ity P (wi|wi−1...wi−N+1) required for Equation 1
may depend on multiple parameters. If r (< N) is

the largest value for which P̂ (wi|wi−1...wi−r+1)
is nonzero, then we have:

P (wi|wi−1...wi−N+1) = (2)

P̂ (wi...wi−r+1)
N∏

n=r+1

β(wi−1...wi−n+1)

Our data structure must be able to efficiently ac-
cess these parameters.

3.1 Trie language models

With this computation in mind, we surveyed sev-
eral popular data structures that have been used
to implement N -gram language models on CPU,
considering their suitability for adaptation to GPU
(Table 2). Since a small memory footprint is cru-
cial, we implemented a variant of the trie data
structure of Heafield (2011). We hypothesized that
its slower query speed compared to a probing hash
table would be compensated for by the throughput
of the GPU, a question we return to in Section 5.

A trie language model exploits two impor-
tant guarantees of backoff estimators: first, if
P̂ (wi...wi−n+1) is nonzero, then P̂ (wi...wi−m+1)
is also nonzero, for all m < n; second, if
β(wi−1...wi−n+1) is one, then β(wi−1...wi−p+1)
is one, for all p > n. Zero-valued n-
gram parameters and one-valued backoff pa-
rameters are not explicitly stored. To com-
pute P (wi|wi−1...wi−N+1), we iteratively retrieve
P̂ (wi...wi−m+1) for increasing values of m un-
til we fail to find a match, with the final nonzero
value becoming P̂ (wi...wi−r+1) in Equation 2.
We then iteratively retrieve β(wi−1...wi−n+1) for
increasing values of n starting from r + 1 and
continuing until n = N or we fail to find a
match, multiplying all retrieved terms to compute
P (wi|wi−1...wi−N+1) (Equation 2). The trie is
designed to execute these iterative parameter re-
trievals efficiently.

Let Σ be a our vocabulary, Σn the set of
all n-grams over the vocabulary, and Σ[N] the

1946

Australia
is
of

one

many
one

human
Poland

are
is

are
is

exist
is

Figure 3: Fragment of a trie showing the path of
N -gram is one of in bold. A query for theN -gram
every one of traverses the same path, but since ev-
ery is not among the keys in the final node, it re-
turns the n-gram parameter P̂ (of|one) and returns
to the root to seek the backoff parameter β(every
one). Based on image from Federico et al. (2008).

set Σ1 ∪ ... ∪ ΣN . Given an n-gram key
wi...wi−n+1 ∈ Σ[N], our goal is to retrieve value
〈P̂ (wi...wi−n+1), β(wi...wi−n+1)〉. We assume a
bijection from Σ to integers in the range 1, ..., |Σ|,
so in practice all keys are sequences of integers.

When n = 1, the set of all possible keys is just
Σ. For this case, we can store keys with nontriv-
ial values in a sorted array A and their associated
values in an array V of equal length so that V [j] is
the value associated with key A[j]. To retrieve the
value associated with key k, we seek j for which
A[j] = k and return V [j]. Since A is sorted, j
can be found efficiently with binary or interpolated
search (Figure 4).

When n > 1, queries are recursive. For
n < N , for every wi...wi−n+1 for which
P̂ (wi...wi−n+1) > 0 or β(wi...wi−n+1) <
1, our data structure contains associated arrays
Kwi...wi−n+1 and Vwi...wi−n+1 . When key k
is located in Awi...wi−n+1 [j], the value stored
at Vwi...wi−n+1 [j] includes the address of arrays
Awi...wi−n+1k and Vwi...wi−n+1k. To find the values
associated with an n-gram wi...wi−n+1, we first
search the root arrayA for j1 such thatA[j1] = wi.
We retrieve the address ofAwi from V [j1], and we
then search for j2 such that Awi [j2] = wi−1. We
continue to iterate this process until we find the
value associated with the longest suffix of our n-
gram stored in the trie. We therefore iteratively
retrieve the parameters needed to compute Equa-
tion 2, returning to the root exactly once if backoff
parameters are required.

3.1.1 K-ary search and B-trees

On a GPU, the trie search algorithm described
above is not efficient because it makes extensive
use of binary search, an inherently serial algo-
rithm. However, there is a natural extension of
binary search that is well-suited to GPU: K-ary
search (Hwu, 2011). Rather than divide an array
in two as in binary search, K-ary search divides it
into K equal parts and performs K − 1 compar-
isons simultaneously (Figure 5).

To accommodate large language models, the
complete trie must reside in global memory, and
in this setting, K-ary search on an array is inef-
ficient, since the parallel threads will access non-
consecutive memory locations. To avoid this, we
require a data structure that places the K elements
compared byK-ary search in consecutive memory
locations so that they can be copied from global to
shared memory with a coalesced read. This data
structure is a B-tree (Bayer and McCreight, 1970),
which is widely used in databases, filesystems and
information retrieval.

Informally, a B-tree generalizes binary trees in
exactly the same way that K-ary search general-
izes binary search (Figure 6). More formally, a
B-tree is a recursive data structure that replaces
arrays A and V at each node of the trie. A B-
tree node of size K consists of three arrays: a 1-
indexed array B of K − 1 keys; a 1-indexed array
V of K − 1 associated values so that V [j] is the
value associated with key B[j]; and, if the node is
not a leaf, a 0-indexed array C of K addresses to
child B-trees. The keys in B are sorted, and the
subtree at address pointed to by child C[j] repre-
sents only key-value pairs for keys between B[j]
and B[j + 1] when 1 ≤ j < K, keys less than
B[1] when j = 0, or keys greater than B[K] when
j = K.

To find a key k in a B-tree, we start at the
root node, and we seek j such that B[j] ≤ k <
B[j + 1]. If B[j] = k we return V [j], otherwise if
the node is not a leaf node we return the result of
recursively querying the B-tree node at the address
C[j] (C[0] if k < B[1] or C[K] if k > B[K]). If
the key is not found in array B of a leaf, the query
fails.

Our complete data structure is a trie in which
each node except the root is a B-tree (Figure 7).
Since the root contains all possible keys, its keys
are simply represented by an array A, which can
be indexed in constant time without any search.

1947

Figure 4: Execution of a binary search for key 15. Each row represents a time step and highlights the
element compared to the key. Finding key 15 requires four time steps and four comparisons.

Figure 5: Execution of K-ary search with the same input as Figure 4, for K = 8. The first time step
executes seven comparisons in parallel, and the query is recovered in two time steps.

Figure 6: In a B-tree, the elements compared in K-ary search are consecutive in memory. We also show
the layout of an individual entry.

4 Memory layout and implementation

Each trie node represents a unique n-gram
wi...wi−n+1, and if a B-tree node within the
trie node contains key wi−n, then it must
also contain the associated values P̂ (wi...wi−n),
β(wi...wi−n), and the address of the trie node rep-
resenting wi...wi−n (Figure 6, Figure 3). The en-
tire language model is laid out in memory as a
single byte array in which trie nodes are visited
in breadth-first order and the B-tree representation
of each node is also visited in breadth-first order
(Figure 7).

Since our device has a 64-bit architecture, point-
ers can address 18.1 exabytes of memory, far more
than available. To save space, our data struc-
ture does not store global addresses; it instead
stores the difference in addresses between the par-
ent node and each child. Since the array is aligned
to four bytes, these relative addresses are divided
by four in the representation, and multiplied by
four at runtime to obtain the true offset. This en-
ables us to encode relative addresses of 16GB, still
larger than the actual device memory. We esti-
mate that relative addresses of this size allow us

to store a model containing around one billion n-
grams.2 Unlike CPU language model implementa-
tions such as those of Heafield (2011) and Watan-
abe et al. (2009), we do not employ further com-
pression techniques such as variable-byte encod-
ing or LOUDS, because their runtime decompres-
sion algorithms require branching code, which our
implementation must avoid.

We optimize the node representation for coa-
lesced reads by storing the keys of each B-tree
consecutively in memory, followed by the corre-
sponding values, also stored consecutively (Figure
6). When the data structure is traversed, only key
arrays are iteratively copied to shared memory un-
til a value array is needed. This design minimizes
the number of reads from global memory.

4.1 Construction

The canonical B-tree construction algorithm (Cor-
men et al., 2009) produces nodes that are not
fully saturated, which is desirable for B-trees that

2We estimate this by observing that a model containing 423M
n-grams takes 3.8Gb of memory, and assuming an approxi-
mately linear scaling, though there is some variance depend-
ing on the distribution of the n-grams.

1948

Figure 7: Illustration of the complete data structure, showing a root trie node as an array representing
unigrams, and nine B-trees, each representing a single trie node. The trie nodes are numbered according
to the order in which they are laid out in memory.

Figure 8: Layout of a single B-tree node for K = 4. Relative addresses of the four child B-tree nodes
(array C) are followed by three keys (array B), and three values (array V), each consisting of an n-gram
probability, backoff, and address of the child trie node.

support insertion. However, our B-trees are im-
mutable, and unsaturated nodes of unpredictable
size lead to underutilization of threads, warp di-
vergence, and deeper trees that require more iter-
ations to query. So, we use a construction algo-
rithm inspired by Cesarini and Soda (1983) and
Rosenberg and Snyder (1981). It is implemented
on CPU, and the resulting array is copied to GPU
memory to perform queries.

Since the entire set of keys and values is known
in advance for each n-gram, our construction al-
gorithm receives them in sorted order as the array
A described in Section 3.1. The procedure then
splits this array into K consecutive subarrays of
equal size, leaving K − 1 individual keys between
each subarray.3 TheseK−1 keys become the keys
of the root B-tree. The procedure is then applied
recursively to each subarray. When applied to an
array whose size is less than K, the algorithm re-
turns a leaf node. When applied to an array whose

3Since the size of the array may not be exactly divisible by
K, some subarrays may differ in length by one.

size is greater than or equal toK but less than 2K,
it splits the array into a node containing the first
K − 1 keys, and a single leaf node containing the
remaining keys, which becomes a child of the first.

4.2 Batch queries

To fully saturate our GPU we execute many
queries simultaneously. A grid receives the com-
plete set of N -gram queries and each block pro-
cesses a single query by performing a sequence of
K-ary searches on B-tree nodes.

5 Experiments

We compared our open-source GPU language
model gLM with the CPU language model
KenLM (Heafield, 2011).45 KenLM can use two
quite different language model data structures:
a fast probing hash table, and a more compact
but slower trie, which inspired our own language
model design. Except where noted, our B-tree

4https://github.com/XapaJIaMnu/gLM
5https://github.com/kpu/kenlm/commit/9495443

1949

node size K = 31, and we measure throughput
in terms of query speed, which does not include
the cost of initializing or copying data structures,
or the cost of moving data to or from the GPU.

We performed our GPU experiments on an
Nvidia Geforce GTX, a state-of-the-art GPU, re-
leased in the first quarter of 2015 and costing 1000
USD. Our CPU experiments were performed on
two different devices: one for single-threaded tests
and one for multi-threaded tests. For the single-
threaded CPU tests, we used an Intel Quad Core i7
4720HQ CPU released in the first quarter of 2015,
costing 280 USD, and achieving 85% of the speed
of a state-of-the-art consumer-grade CPU when
single-threaded. For the multi-threaded CPU tests
we used two Intel Xeon E5-2680 CPUs, offering
a combined 16 cores and 32 threads, costing at
the time of their release 3,500 USD together. To-
gether, their performance specifications are sim-
ilar to the recently released Intel Xeon E5-2698
v3 (16 cores, 32 threads, costing 3,500USD). The
different CPU configurations are favorable to the
CPU implementation in their tested condition: the
consumer-grade CPU has higher clock speeds in
single-threaded mode than the professional-grade
CPU; while the professional-grade CPUs provide
many more cores (though at lower clock speeds)
when fully saturated. Except where noted, CPU
throughput is reported for the single-threaded con-
dition.

Except where noted, our language model is
the Moses 3.0 release English 5-gram language
model, containing 88 million n-grams.6 Our
benchmark task computes perplexity on data ex-
tracted from the Common Crawl dataset used
for the 2013 Workshop on Machine Translation,
which contains 74 million words across 3.2 mil-
lion sentences.7 Both gLM and KenLM produce
identical perplexities, so we are certain that our
implementation is correct. Except where noted,
the faster KenLM Probing backend is used. The
perplexity task has been used as a basic test of
other language model implementations (Osborne
et al., 2014; Heafield et al., 2015).

5.1 Query speed

When compared to single-threaded KenLM, our
results (Table 3) show that gLM is just over six

6http://www.statmt.org/moses/RELEASE-3.0/models/fr-
en/lm/europarl.lm.1

7http://www.statmt.org/wmt13/training-parallel-
commoncrawl.tgz

LM (threads) Throughput Size (GB)
KenLM probing (1) 10.3M 1.8
KenLM probing (16) 49.8M 1.8
KenLM probing (32) 120.4M 1.8
KenLM trie (1) 4.5M 0.8
gLM 65.5M 1.2

Table 3: Comparison of gLM and KenLM on
throughput (N -gram queries per second) and data
structure size.

times faster than the fast probing hash table, and
nearly fifteen times faster than the trie data struc-
ture, which is quite similar to our own, though
slightly smaller due to the use of compression.
The raw speed of the GPU is apparent, since we
were able to obtain our results with a relatively
short engineering effort when compared to that of
KenLM, which has been optimized over several
years.

When we fully saturate our professional-grade
CPU, using all sixteen cores and sixteen hyper-
threads, KenLM is about twice as fast as gLM.
However, our CPU costs nearly four times as much
as our GPU, so economically, this comparison fa-
vors the GPU.

On first glance, the scaling from one to six-
teen threads is surprisingly sublinear. This is not
due to vastly different computational power of the
individual cores, which are actually very simi-
lar. It is instead due to scheduling, cache con-
tention, and—most importantly—the fact that our
CPUs implement dynamic overclocking: the base
clock rate of 2.7 GHz at full saturation increases
to 3.5 GHz when the professional CPU is under-
utilized, as when single-threaded; the rates for the
consumer-grade CPU similarly increase from 2.6
to 3.6 GHz.8

5.2 Effect of B-tree node size

What is the optimal K for our B-tree node size?
We hypothesized that the optimal size would be
one that approaches the size of a coalesced mem-
ory read, which should allow us to maximize
parallelism while minimizing global memory ac-
cesses and B-tree depth. Since the size of a coa-
lesced read is 128 bytes and keys are four bytes,
we hypothesized that the optimal node size would
be around K = 32, which is also the size of
a warp. We tested this by running experiments

8Intel calls this Intel Turbo Boost.

1950

Figure 9: Effect of BTree node size on throughput
(ngram queries per second)

that varied K from 5 to 59, and the results (Fig-
ure 9) confirmed our hypothesis. As the node size
increases, throughput increases until we reach a
node size of 33, where it steeply drops. This re-
sult highlights the importance of designing data
structures that minimize global memory access
and maximize parallelism.

We were curious about what effect this node
size had on the depth of the B-trees representing
each trie node. Measuring this, we discovered that
for bigrams, 88% of the trie nodes have a depth of
one—we call these B-stumps, and they can be ex-
haustively searched in a single parallel operation.
For trigrams, 97% of trie nodes are B-stumps, and
for higher order n-grams the percentage exceeds
99%.

5.3 Saturating the GPU

A limitation of our approach is that it is only ef-
fective in high-throughput situations that continu-
ally saturate the GPU. In situations where a lan-
guage model is queried only intermittently or only
in short bursts, a GPU implementation may not
be useful. We wanted to understand the point
at which this saturation occurs, so we ran ex-
periments varying the batch size sent to our lan-
guage model, comparing its behavior with that
of KenLM. To understand situations in which the
GPU hosts the language model for query by an
external GPU, we measure query speed with and
without the cost of copying queries to the device.

Our results (Figure 10) suggest that the device
is nearly saturated once the batch size reaches a
thousand queries, and fully saturated by ten thou-
sand queries. Throughput remains steady as batch
size increases beyond this point. Even with the
cost of copying batch queries to GPU memory,

Figure 10: Throughput (N -gram queries per sec-
ond) vs. batch size for gLM, KenLM probing, and
KenLM trie.

Regular LM Big LM
KenLM 10.2M 8.2M
KenLM Trie 4.5M 3.0M
gLM 65.5M 55M

Table 4: Throughput comparison (ngram queries
per second) between gLM and KenLM with a 5
times larger model and a regular language model.

throughput is more than three times higher than
that of single threaded KenLM. We have not in-
cluded results of multi-threaded KenLM scaling
on Figure 10 but they are similar to the single-
threaded case: throughput (as shown on Table
3) plateaus at around one hundred sentences per
thread.

5.4 Effect of model size

To understand the effect of model size on query
speed, we built a language model with 423 million
n-grams, five times larger than our basic model.
The results (Table 4) show an 18% slowdown for
gLM and 20% slowdown for KenLM, showing
that model size affects both implementations sim-
ilarly.

5.5 Effect of N -gram order on performance

All experiments so far use an N -gram order of
five. We hypothesized that lowering the ngram or-
der of the model would lead to faster query time
(Table 5). We observe that N -gram order af-
fects throughput of the GPU language model much
more than the CPU one. This is likely due to ef-
fects of backoff queries, which are more optimized
in KenLM. At higher orders, more backoff queries
occur, which reduces throughput for gLM.

1951

5-gram 4-gram 3-gram
KenLM 10.2M 9.8M 11.5M
KenLM Trie 4.5M 4.5M 5.2M
gLM 65.5M 71.9M 93.7M

Table 5: Throughput comparison (ngram queries
per second) achieved using lower order ngram
models.

5.6 Effect of templated code

Our implementation initially relied on hard-coded
values for parameters such as B-tree node size
and N -gram order, which we later replaced with
parameters. Surprisingly, we observed that this
led to a reduction in throughput from 65.6 mil-
lion queries per second to 59.0 million, which we
traced back to the use of dynamically allocated
shared memory, as well as compiler optimizations
that only apply to compile-time constants. To re-
move this effect, we heavily templated our code,
using as many compile-time constants as possi-
ble, which improves throughput but enables us to
change parameters through recompilation.

5.7 Bottlenecks: computation or memory?

On CPU, language models are typically memory-
bound: most cycles are spent in random mem-
ory accesses, with little computation between ac-
cesses. To see if this is true in gLM we exper-
imented with two variants of the benchmark in
Figure 3: one in which the GPU core was under-
clocked, and one in which the memory was un-
derclocked. This effectively simulates two varia-
tions in our hardware: A GPU with slower cores
but identical memory, and one with slower mem-
ory, but identical processing speed. We found that
throughput decreases by about 10% when under-
clocking the cores by 10%. On the other hand,
underclocking memory by 25% reduced through-
put by 1%. We therefore conclude that gLM is
computation-bound. We expect that gLM will
continue to improve on parallel devices offering
higher theoretical floating point performance.

6 Conclusion

Our language model is implemented on a GPU,
but its general design (and much of the actual
code) is likely to be useful to other hardware
that supports SIMD parallelism, such as the Xeon
Phi. Because it uses batch processing, our on-chip
language model could be integrated into a ma-

chine translation decoder using strategies similar
to those used to integrate an on-network language
model nearly a decade ago (Brants et al., 2007).
An alternative method of integration would be to
move the decoder itself to GPU. For phrase-based
translation, this would require a translation model
and dynamic programming search algorithm on
GPU. Translation models have been implemented
on GPU by He et al. (2015), while related search
algorithms for (Chong et al., 2009; Chong et al.,
2008) and parsing (Canny et al., 2013; Hall et al.,
2014) have been developed for GPU. We intend to
explore these possibilities in future work.

Acknowledgements

This work was conducted within the
scope of the Horizon 2020 Innovation Ac-

tion Modern MT, which has received funding from
the European Unions Horizon 2020 research and
innovation programme under grant agreement No
645487.

We thank Kenneth Heafield, Ulrich Germann,
Rico Sennrich, Hieu Hoang, Federico Fancellu,
Nathan Schneider, Naomi Saphra, Sorcha Gilroy,
Clara Vania and the anonymous reviewers for pro-
ductive discussion of this work and helpful com-
ments on previous drafts of the paper. Any errors
are our own.

References
R. Bayer and E. McCreight. 1970. Organization and

maintenance of large ordered indices. In Proceed-
ings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control,
SIGFIDET ’70, pages 107–141.

T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean.
2007. Large language models in machine transla-
tion. In In Proceedings of EMNLP-CoNLL.

J. Canny, D. Hall, and D. Klein. 2013. A multi-teraflop
constituency parser using GPUs. In Proceedings of
EMNLP.

F. Cesarini and G. Soda. 1983. An algorithm to con-
struct a compact B-tree in case of ordered keys. In-
formation Processing Letters, 17(1):13–16.

S. F. Chen and J. Goodman. 1999. An empirical
study of smoothing techniques for language model-
ing. Computer Speech & Language, 13(4):359–393.

J. Chong, Y. Yi, A. Faria, N. R. Satish, and K. Keutzer.
2008. Data-parallel large vocabulary continuous

1952

speech recognition on graphics processors. Techni-
cal Report UCB/EECS-2008-69, EECS Department,
University of California, Berkeley, May.

J. Chong, E. Gonina, Y. Yi, and K. Keutzer. 2009.
A fully data parallel WFST-based large vocabulary
continuous speech recognition on a graphics pro-
cessing unit. In Proceedings of Interspeech.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. 2009. Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edition.

M. Federico, N. Bertoldi, and M. Cettolo. 2008.
IRSTLM: an open source toolkit for handling large
scale language models. In Proceedings of Inter-
speech, pages 1618–1621. ISCA.

S. Green, D. Cer, and C. Manning. 2014. Phrasal:
A toolkit for new directions in statistical machine
translation. In Proceedings of WMT.

D. Hall, T. Berg-Kirkpatrick, and D. Klein. 2014.
Sparser, better, faster GPU parsing. In Proceedings
of ACL.

H. He, J. Lin, and A. Lopez. 2015. Gappy pattern
matching on GPUs for on-demand extraction of hi-
erarchical translation grammars. TACL, 3:87–100.

K. Heafield, R. Kshirsagar, and S. Barona. 2015.
Language identification and modeling in specialized
hardware. In Proceedings of ACL-IJCNLP, July.

K. Heafield. 2011. KenLM: faster and smaller lan-
guage model queries. In Proceedings of WMT,
pages 187–197, July.

K. Heafield. 2013. Efficient Language Modeling Al-
gorithms with Applications to Statistical Machine
Translation. Ph.D. thesis, Carnegie Mellon Univer-
sity, September.

W.-m. W. Hwu. 2011. GPU Computing Gems Emer-
ald Edition. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition.

Nvidia Corporation. 2015. Nvidia CUDA
Compute Unified Device Architecture Pro-
gramming Guide. Nvidia Corporation.
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/.

M. Osborne, A. Lall, and B. V. Durme. 2014. Ex-
ponential reservoir sampling for streaming language
models. In Proceedings of ACL, pages 687–692.

A. L. Rosenberg and L. Snyder. 1981. Time- and
space-optimality in B-trees. ACM Trans. Database
Syst., 6(1):174–193, Mar.

D. Talbot and M. Osborne. 2007. Smoothed Bloom fil-
ter language models: Tera-scale LMs on the cheap.
In Proceedings of EMNLP-CoNLL, pages 468–476.

T. Watanabe, H. Tsukada, and H. Isozaki. 2009. A
succinct N-gram language model. In Proc. of ACL-
IJCNLP.

M. Yasuhara, T. Tanaka, J. ya Norimatsu, and M. Ya-
mamoto. 2013. An efficient language model using
double-array structures. In EMNLP, pages 222–232.

1953

