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Abstract

We present a pairwise context-sensitive
Autoencoder for computing text pair sim-
ilarity. Our model encodes input text
into context-sensitive representations and
uses them to compute similarity between
text pairs. Our model outperforms the
state-of-the-art models in two semantic re-
trieval tasks and a contextual word simi-
larity task. For retrieval, our unsupervised
approach that merely ranks inputs with re-
spect to the cosine similarity between their
hidden representations shows comparable
performance with the state-of-the-art su-
pervised models and in some cases outper-
forms them.

1 Introduction

Representation learning algorithms learn repre-
sentations that reveal intrinsic low-dimensional
structure in data (Bengio et al., 2013). Such rep-
resentations can be used to induce similarity be-
tween textual contents by computing similarity be-
tween their respective vectors (Huang et al., 2012;
Silberer and Lapata, 2014).

Recent research has made substantial
progress on semantic similarity using neural
networks (Rothe and Schütze, 2015; Dos Santos
et al., 2015; Severyn and Moschitti, 2015).
In this work, we focus our attention on deep
autoencoders and extend these models to integrate
sentential or document context information about
their inputs. We represent context information as
low dimensional vectors that will be injected to
deep autoencoders. To the best of our knowledge,
this is the first work that enables integrating
context into autoencoders.

In representation learning, context may appear
in various forms. For example, the context of

a current sentence in a document could be ei-
ther its neighboring sentences (Lin et al., 2015;
Wang and Cho, 2015), topics associated with
the sentence (Mikolov and Zweig, 2012; Le and
Mikolov, 2014), the document that contains the
sentence (Huang et al., 2012), as well as their com-
binations (Ji et al., 2016). It is important to inte-
grate context into neural networks because these
models are often trained with only local informa-
tion about their individual inputs. For example,
recurrent and recursive neural networks only use
local information about previously seen words in a
sentence to predict the next word or composition.1

On the other hand, context information (such as
topical information) often capture global informa-
tion that can guide neural networks to generate
more accurate representations.

We investigate the utility of context informa-
tion in three semantic similarity tasks: contextual
word sense similarity in which we aim to predict
semantic similarity between given word pairs in
their sentential context (Huang et al., 2012; Rothe
and Schütze, 2015), question ranking in which we
aim to retrieve semantically equivalent questions
with respect to a given test question (Dos Santos
et al., 2015), and answer ranking in which we aim
to rank single-sentence answers with respect to a
given question (Severyn and Moschitti, 2015).

The contributions of this paper are as follows:
(1) integrating context information into deep au-
toencoders and (2) showing that such integra-
tion improves the representation performance of
deep autoencoders across several different seman-
tic similarity tasks.

Our model outperforms the state-of-the-art su-

1For example, RNNs can predict the word “sky” given
the sentence “clouds are in the ,” but they are less accurate
when longer history or global context is required, e.g. pre-
dicting the word “french” given the paragraph “I grew up in
France. . . . I speak fluent .”
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pervised baselines in three semantic similarity
tasks. Furthermore, the unsupervised version of
our autoencoder show comparable performance
with the supervised baseline models and in some
cases outperforms them.

2 Context-sensitive Autoencoders

2.1 Basic Autoencoders
We first provide a brief description of basic au-
toencoders and extend them to context-sensitive
ones in the next Section. Autoencoders are trained
using a local unsupervised criterion (Vincent et al.,
2010; Hinton and Salakhutdinov, 2006; Vincent et
al., 2008). Specifically, the basic autoencoder in
Figure 1(a) locally optimizes the hidden represen-
tation h of its input x such that h can be used to
accurately reconstruct x,

h = g(Wx + bh) (1)

x̂ = g(W′h + bx̂), (2)

where x̂ is the reconstruction of x, the learning pa-
rameters W ∈ Rd′×d and W′ ∈ Rd×d′

are weight
matrices, bh ∈ Rd′

and bx̂ ∈ Rd are bias vectors
for the hidden and output layers respectively, and
g is a nonlinear function such as tanh(.).2 Equa-
tion (1) encodes the input into an intermediate rep-
resentation and Equation (2) decodes the resulting
representation.

Training a single-layer autoencoder corre-
sponds to optimizing the learning parameters to
minimize the overall loss between inputs and their
reconstructions. For real-valued x, squared loss
is often used, l(x) = ||x − x̂||2, (Vincent et al.,
2010):

min
Θ

n∑
i=1

l(x(i))

Θ = {W,W′,bh,bx̂}.
(3)

This can be achieved using mini-batch stochastic
gradient descent (Zeiler, 2012).

2.2 Integrating Context into Autoencoders
We extend the above basic autoencoder to inte-
grate context information about inputs. We as-
sume that—for each training example x ∈ Rd—
we have a context vector cx ∈ Rk that contains
contextual information about the input.3 The na-

2If the squared loss is used for optimization, as in Equa-
tion (3), nonlinearity is often not used in Equation (2) (Vin-
cent et al., 2010).

3We slightly abuse the notation throughout this paper by
referring to cx or hi as vectors, not elements of vectors.
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Figure 1: Schematic representation of basic and
context-sensitive autoencoders: (a) Basic autoen-
coder maps its input x into the representation h
such that it can reconstruct x with minimum loss,
and (b) Context-sensitive autoencoder maps its in-
puts x and hc into a context-sensitive representa-
tion h (hc is the representation of the context in-
formation associated to x).

ture of this context vector depends on the input and
target task. For example, neighboring words can
be considered as the context of a target word in
contextual word similarity task.

We first learn the hidden representation hc ∈
Rd′

for the given context vector cx. For this, we
use the same process as discussed above for the
basic autoencoder where we use cx as the input
in Equations (1) and (2) to obtain hc. We then use
hc to develop our context-sensitive autoencoder as
depicted in Figure 1(b). This autoencoder maps its
inputs x and hc into a context-sensitive represen-
tation h as follows:

h = g(Wx + Vhc + bh) (4)

x̂ = g(W′h + bx̂) (5)

ĥc = g(V′h + bĥc
). (6)

Our intuition is that if h leads to a good recon-
struction of its inputs, it has retained information
available in the input. Therefore, it is a context-
sensitive representation.

The loss function must then compute the loss
between the input pair (x, hc) and its reconstruc-
tion (x̂, ĥc). For optimization, we can still use
squared loss with a different set of parameters to
minimize the overall loss on the training examples:

l(x,hc) = ||x− x̂||2 + λ||hc − ĥc||2

min
Θ

n∑
i=1

l(x(i),h(i)
c )

Θ = {W,W′,V,V′,bh,bx̂,bĥc
},

(7)
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(c) Unrolling and Fine-tuning

Figure 2: Proposed framework for integrating context into deep autoencoders. Context layer (cx and hc)
and context-sensitive representation of input (hn) are shown in light red and gray respectively. (a) Pre-
training properly initializes a stack of context-sensitive denoising autoencoders (DAE), (b) A context-
sensitive deep autoencoder is created from properly initialized DAEs, (c) The network in (b) is unrolled
and its parameters are fine-tuned for optimal reconstruction.

where λ ∈ [0, 1] is a weight parameter that con-
trols the effect of context information in the re-
construction process.

2.2.1 Denoising
Denoising autoencoders (DAEs) reconstruct an in-
put from a corrupted version of it for more effec-
tive learning (Vincent et al., 2010). The corrupted
input is then mapped to a hidden representation
from which we obtain the reconstruction. How-
ever, the reconstruction loss is still computed with
respect to the uncorrupted version of the input as
before. Denoising autoencoders effectively learn
representations by reversing the effect of the cor-
ruption process. We use masking noise to corrupt
the inputs where a fraction η of input units are
randomly selected and set to zero (Vincent et al.,
2008).

2.2.2 Deep Context-Sensitive Autoencoders
Autoencoders can be stacked to create deep net-
works. A deep autoencoder is composed of mul-
tiple hidden layers that are stacked together. The
initial weights in such networks need to be prop-
erly initialized through a greedy layer-wise train-
ing approach. Random initialization does not
work because deep autoencoders converge to poor
local minima with large initial weights and result
in tiny gradients in the early layers with small ini-
tial weights (Hinton and Salakhutdinov, 2006).

Our deep context-sensitive autoencoder is com-
posed of a stacked set of DAEs. As discussed
above, we first need to properly initialize the learn-

ing parameters (weights and biases) associated to
each DAE. As shown in Figure 2(a), we first train
DAE-0, which initializes parameters associated to
the context layer. The training procedure is exactly
the same as training a basic autoencoder (Sec-
tion 2.1 and Figure 1(a)).4 We then treat hc and x
as “inputs” for DAE-1 and use the same approach
as in training a context-sensitive autoencoder to
initialize the parameters of DAE-1 (Section 2.2
and Figure 1(b)). Similarly, the ith DAE is built
on the output of the (i− 1)th DAE and so on until
the desired number of layers (e.g. n layers) are ini-
tialized. For denoising, the corruption is only ap-
plied on “inputs” of individual autoencoders. For
example, when we are training DAE-i, hi−1 and
hc are first obtained from the original inputs of the
network (x and cx) through a single forward pass
and then their corrupted versions are computed to
train DAE-i.

Figure 2(b) shows that the n properly initial-
ized DAEs can be stacked to form a deep context-
sensitive autoencoder. We unroll this network to
fully optimize its weights through gradient descent
and backpropagation (Vincent et al., 2010; Hinton
and Salakhutdinov, 2006) .

2.2.3 Unrolling and Fine-tuning
We optimize the learning parameters of our ini-
tialized context-sensitive deep autoencoder by un-
folding its n layers and making a 2n−1 layer net-

4Figure 2(a) shows compact schematic diagrams of au-
toencoders used in Figures 1(a) and 1(b)

1884



work whose lower layers form an “encoder” net-
work and whose upper layers form a “decoder”
network (Figure 2(c)). A global fine-tuning stage
backpropagates through the entire network to fine-
tune the weights for optimal reconstruction. In
this stage, we update the network parameters again
by training the network to minimize the loss be-
tween original inputs and their actual reconstruc-
tion. We backpropagate the error derivatives first
through the decoder network and then through the
encoder network. Each decoder layer tries to re-
cover the input of its corresponding encoder layer.
As such, the weights are initially symmetric and
the decoder weights do need to be learned.

After the training is complete, the hidden layer
hn contains a context-sensitive representation of
the inputs x and cx.

2.3 Context Information

Context is task and data dependent. For example,
a sentence or document that contains a target word
forms the word’s context.

When context information is not readily avail-
able, we use topic models to determine such con-
text for individual inputs (Blei et al., 2003; Stevens
et al., 2012). In particular, we use Non-Negative
Matrix Factorization (NMF) (Lin, 2007): Given
a training set with n instances, i.e., X ∈ Rv×n,
where v is the size of a global vocabulary and the
scalar k is the number of topics in the dataset, we
learn the topic matrix D ∈ Rv×k and context ma-
trix C ∈ Rk×n using the following sparse coding
algorithm:

min
D,C

‖X−DC‖2F + µ‖C‖1, (8)

s.t. D ≥ 0, C ≥ 0,

where each column in C is a sparse representa-
tion of an input over all topics and will be used
as global context information in our model. We
obtain context vectors for test instances by trans-
forming them according to the fitted NMF model
on training data. We also note that advanced
topic modeling approaches, such as syntactic topic
models (Boyd-Graber and Blei, 2009), can be
more effective here as they generate linguistically
rich context information.

3 Text Pair Similarity

We present unsupervised and supervised ap-
proaches for predicting semantic similarity scores
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Figure 3: Pairwise context-sensitive autoencoder
for computing text pair similarity.

for input texts (e.g., a pair of words) each with its
corresponding context information. These scores
will then be used to rank “documents” against
“queries” (in retrieval tasks) or evaluate how pre-
dictions of a model correlate with human judg-
ments (in contextual word sense similarity task).

In unsupervised settings, given a pair of in-
put texts with their corresponding context vectors,
(x1,cx1) and (x2,cx2), we determine their seman-
tic similarity score by computing the cosine simi-
larity between their hidden representations h1

n and
h2

n respectively.
In supervised settings, we use a copy of our

context-sensitive autoencoder to make a pairwise
architecture as depicted in Figure 3. Given
(x1,cx1), (x2,cx2), and their binary relevance
score, we use h1

n and h2
n as well as additional fea-

tures (see below) to train our pairwise network (i.e.
further fine-tune the weights) to predict a similar-
ity score for the input pair as follows:

rel(x1,x2) = softmax(M0a+M1h1
n+M2h2

n+b)
(9)

where a carries additional features, Ms are weight
matrices, and b is the bias. We use the difference
and similarity between the context-sensitive rep-
resentations of inputs, h1

n and h2
n, as additional

features:

hsub = |h1
n − h2

n|
hdot = h1

n � h2
n,

(10)

where hsub and hdot capture the element-wise dif-
ference and similarity (in terms of the sign of ele-
ments in each dimension) between h1

n and h2
n, re-

spectively. We expect elements in hsub to be small
for semantically similar and relevant inputs and
large otherwise. Similarly, we expect elements in
hdot to be positive for relevant inputs and negative
otherwise.

We can use any task-specific feature as addi-
tional features. This includes features from the
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minimal edit sequences between parse trees of the
input pairs (Heilman and Smith, 2010; Yao et al.,
2013), lexical semantic features extracted from re-
sources such as WordNet (Yih et al., 2013), or
other features such as word overlap features (Sev-
eryn and Moschitti, 2015; Severyn and Moschitti,
2013). We can also use additional features (Equa-
tion 10), computed for BOW representations of
the inputs x1 and x2. Such additional features im-
prove the performance of our and baseline models.

4 Experiments

In this Section, we use t-test for significant test-
ing and asterisk mark (*) to indicate significance
at α = 0.05.

4.1 Data and Context Information

We use three datasets: “SCWS” a word similar-
ity dataset with ground-truth labels on similar-
ity of pairs of target words in sentential context
from Huang et al. (2012); “qAns” a TREC QA
dataset with ground-truth labels for semantically
relevant questions and (single-sentence) answers
from Wang et al. (2007); and “qSim” a commu-
nity QA dataset crawled from Stack Exchange
with ground-truth labels for semantically equiva-
lent questions from Dos Santos et al. (2015). Ta-
ble 1 shows statistics of these datasets. To enable
direct comparison with previous work, we use the
same training, development, and test data provided
by Dos Santos et al. (2015) and Wang et al. (2007)
for qSim and qAns respectively and the entire data
of SCWS (in unsupervised setting).

We consider local and global context for tar-
get words in SCWS. The local context of a target
word is its ten neighboring words (five before and
five after) (Huang et al., 2012), and its global con-
text is a short paragraph that contains the target
word (surrounding sentences). We compute aver-
age word embeddings to create context vectors for
target words.

Also, we consider question title and body and
answer text as input in qSim and qAns and use
NMF to create global context vectors for questions
and answers (Section 2.3).

4.2 Parameter Setting

We use pre-trained word vectors from GloVe (Pen-
nington et al., 2014). However, because qSim
questions are about specific technical topics, we
only use GloVe as initialization.

Data Split #Pairs %Rel
SCWS All data 2003 100.0%

qAns

Train-All 53K 12.00%
Train 4,718 7.400%
Dev 1,148 19.30%
Test 1,517 18.70%

qSim
Train 205K 0.048%
Dev 43M 0.001%
Test 82M 0.001%

Table 1: Data statistics. (#Pairs: number of word-
word pairs in SCWS, question-answer pairs in
qAns, and question-question pairs in qSim; %Rel:
percentage of positive pairs.)

For the unsupervised SCWS task, following
Huang et al. (2012), we use 100-dimensional word
embeddings, d = 100, with hidden layers and con-
text vectors of the same size, d′ = 100, k = 100.
In this unsupervised setting, we set the weight pa-
rameter λ = .5, masking noise η = 0, depth of
our model n = 3. Tuning these parameters will
further improve the performance of our model.

For qSim and qAns, we use 300-dimensional
word embeddings, d = 300, with hidden layers
of size d′ = 200. We set the size of context vec-
tors k (number of topics) using the reconstruction
error of NMF on training data for different values
of k. This leads to k = 200 for qAns and k = 300
for qSim. We tune the other hyper-parameters (η,
n, and λ) using development data.

We set each input x (target words in SCWS,
question titles and bodies in qSim, and question
titles and single-sentence answers in qAns) to the
average of word embeddings in the input. Input
vectors could be initialized through more accurate
approaches (Mikolov et al., 2013b; Li and Hovy,
2014); however, averaging leads to reasonable rep-
resentations and is often used to initialize neural
networks (Clinchant and Perronnin, 2013; Iyyer et
al., 2015).

4.3 Contextual Word Similarity

We first consider the contextual word similarity
task in which a model should predict the semantic
similarity between words in their sentential con-
text. For this evaluation, we compute Spearman’s
ρ correlation (Kokoska and Zwillinger, 2000) be-
tween the “relevance scores” predicted by differ-
ent models and human judgments (Section 3).

The state-of-the-art model for this task is a
semi-supervised approach (Rothe and Schütze,
2015). This model use resources like WordNet
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to compute embeddings for different senses of
words. Given a pair of target words and their
context (neighboring words and sentences), this
model represents each target word as the average
of its sense embeddings weighted by cosine simi-
larity to the context. The cosine similarity between
the representations of words in a pair is then used
to determine their semantic similarity. Also, the
Skip-gram model (Mikolov et al., 2013a) is ex-
tended in (Neelakantan et al., 2014; Chen et al.,
2014) to learn contextual word pair similarity in
an unsupervised way.

Table 2 shows the performance of different
models on the SCWS dataset. SAE, CSAE-LC,
CSAE-LGC show the performance of our pairwise
autoencoders without context, with local context,
and with local and global context, respectively.
In case of CSAE-LGC, we concatenate local and
global context to create context vectors. CSAE-
LGC performs significantly better than the base-
lines, including the semi-supervised approach in
Rothe and Schütze (2015). It is also interesting
that SAE (without any context information) out-
performs the pre-trained word embeddings (Pre-
trained embeds.).

Comparing the performance of CSAE-LC and
CSAE-LGC indicates that global context is use-
ful for accurate prediction of semantic similarity
between word pairs. We further investigate these
models to understand why global context is useful.
Table 3 shows an example in which global con-
text (words in neighboring sentences) effectively
help to judge the semantic similarity between “Air-
port” and “Airfield.” This is while local context
(ten neighboring words) are less effective in help-
ing the models to relate the two words.

Furthermore, we study the effect of global con-
text in different POS tag categories. As Figure 4
shows global context has greater impact on A-A
and N-N categories. We expect high improve-
ment in the N-N category as noun senses are fairly
self-contained and often refer to concrete things.
Thus broader (not only local) context is needed to
judge their semantic similarity. However, we don’t
know the reason for improvement on the A-A cat-
egory as, in context, adjective interpretation is of-
ten affected by local context (e.g., the nouns that
adjectives modify). One reason for improvement
could be because adjectives are often interchange-
able and this characteristic makes their meaning to
be less sensitive to local context.

Model Context ρ×100
Huang et al. (2012) LGC 65.7
Chen et al. (2014) LGC 65.4
Neelakantan et al. (2014) LGC 69.3
Rothe and Schütze (2015) LGC 69.8
Pre-trained embeds. (GloVe) - 60.2
SAE - 61.1
CSAE LC 66.4
CSAE LGC 70.9*

Table 2: Spearman’s ρ correlation between model
predictions and human judgments in contextual
word similarity. (LC: local context only, LGC: lo-
cal and global context.)

. . . No cases in Gibraltar were reported. The airport
is built on the isthmus which the Spanish Government
claim not to have been ceded in the Treaty of Utrecht.
Thus the integration of Gibraltar Airport in the Single
European Sky system has been blocked by Spain. The
1987 agreement for joint control of the airport with. . .
. . . called “Tazi” by the German pilots. On 23 Dec
1942, the Soviet 24th Tank Corps reached nearby Skas-
sirskaya and on 24 Dec, the tanks reached Tatsinskaya.
Without any soldiers to defend the airfield it was aban-
doned under heavy fire. In a little under an hour, 108
Ju-52s and 16 Ju-86s took off for Novocherkassk – leav-
ing 72 Ju-52s and many other aircraft burning on the
ground. A new base was established. . .

Table 3: The importance of global context (neigh-
boring sentences) in predicting the semantically
similar words (Airport, Airfield).

4.4 Answer Ranking Performance

We evaluate the performance of our model in the
answer ranking task in which a model should re-
trieve correct answers from a set of candidates for
test questions. For this evaluation, we rank an-
swers with respect to each test question accord-
ing to the “relevance score” between question and
each answer (Section 3).

The state-of-the-art model for answer ranking
on qAns is a pairwise convolutional neural net-
work (PCNN) presented in (Severyn and Mos-
chitti, 2015). PCNN is a supervised model that
first maps input question-answer pairs to hidden
representations through a standard convolutional
neural network (CNN) and then utilizes these rep-
resentations in a pairwise CNN to compute a rele-
vance score for each pair. This model also utilizes
external word overlap features for each question-
answer pair.5 PCNN outperforms other competing
CNN models (Yu et al., 2014) and models that use

5Word overlap and IDF-weighted word overlap computed
for (a): all words, and (b): only non-stop words for each
question-answer pair (Severyn and Moschitti, 2015).
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Figure 4: Effect of global context on contextual
word similarity in different parts of speech (N:
noun, V: verb, A: adjective). We only consider fre-
quent categories.

syntax and semantic features (Heilman and Smith,
2010; Yao et al., 2013).

Tables 4 and 5 show the performance of dif-
ferent models in terms of Mean Average Preci-
sion (MAP) and Mean Reciprocal Rank (MRR)
in supervised and unsupervised settings. PCNN-
WO and PCNN show the baseline performance
with and without word overlap features. SAE and
CSAE show the performance of our pairwise au-
toencoders without and with context information
respectively. Their “X-DST” versions show their
performance when additional features (Equation
10) are used. These features are computed for
the hidden and BOW representations of question-
answer pairs. We also include word overlap fea-
tures as additional features.

Table 4 shows that SAE and CSAE consistently
outperform PCNN, and SAE-DST and CSAE-
DST outperform PCNN-WO when the models are
trained on the larger training dataset, “Train-All.”
But PCNN shows slightly better performance than
our model on “Train,” the smaller training dataset.
We conjecture this is because PCNN’s convolu-
tion filter is wider (n-grams, n > 2) (Severyn and
Moschitti, 2015).

Table 5 shows that the performance of unsuper-
vised SAE and CSAE are comparable and in some
cases better than the performance of the super-
vised PCNN model. We attribute the high perfor-
mance of our models to context information that
leads to richer representations of inputs.

Furthermore, comparing the performance of
CSAE and SAE in both supervised and unsuper-
vised settings in Tables 4 and 5 shows that context
information consistently improves the MAP and
MRR performance at all settings except for MRR
on “Train” (supervised setting) that leads to a com-

Model Train Train-All
MAP MRR MAP MRR

PCNN 62.58 65.91 67.09 72.80
SAE 65.69* 71.70* 69.54* 75.47*
CSAE 67.02* 70.99* 72.29* 77.29*
PCNN-WO 73.29 79.62 74.59 80.78
SAE-DST 72.53 76.97 76.38* 82.11*
CSAE-DST 71.26 76.88 76.75* 82.90*

Table 4: Answer ranking in supervised setting

Model Train Train-All
MAP MRR MAP MRR

SAE 63.81 69.30 66.37 71.71
CSAE 64.86* 69.93* 66.76* 73.79*

Table 5: Answer ranking in unsupervised setting.

parable performance. Context-sensitive represen-
tations significantly improve the performance of
our model and often lead to higher MAP than the
models that ignore context information.

4.5 Question Ranking Performance

In the question ranking task, given a test ques-
tion, a model should retrieve top-K questions that
are semantically equivalent to the test question for
K = {1, 5, 10}. We use qSim for this evaluation.

We compare our autoencoders against PCNN
and PBOW-PCNN models presented in Dos San-
tos et al. (2015). PCNN is a pairwise convolu-
tional neural network and PBOW-PCNN is a joint
model that combines vector representations ob-
tained from a pairwise bag-of-words (PBOW) net-
work and a pairwise convolutional neural network
(PCNN). Both models are supervised as they re-
quire similarity scores to train the network.

Table 6 shows the performance of differ-
ent models in terms of Precision at Rank K,
P@K. CSAE is more precise than the baseline;
CSAE and CSAE-DST models consistently out-
perform the baselines on P@1, an important met-
ric in search applications (CSAE also outperforms
PCNN on P@5). Although context-sensitive mod-
els are more precise than the baselines at higher
ranks, the PCNN and PBOW-PCNN models re-
main the best model for P@10.

Tables 6 and 7 show that context information
consistently improves the results at all ranks in
both supervised and unsupervised settings. The
performance of the unsupervised SAE and CSAE
models are comparable with the supervised PCNN
model in higher ranks.
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Figure 5: Reconstruction Error and Improvement: (a) and (b) reconstruction error on qSim and qAns
respectively. errNMF shows the reconstruction error of NMF. Smaller error is better, (c) improvement
in reconstruction error vs. topic density: greater improvement is obtained in topics with lower density.

Model P@1 P@5 P@10
PCNN 20.0 33.8 40.4
SAE 16.8 29.4 32.8
CSAE 21.4 34.9 37.2
PBOW-PCNN 22.3 39.7 46.4
SAE-DST 22.2 35.9 42.0
CSAE-DST 24.6 37.9 38.9

Table 6: Question ranking in supervised setting

Model P@1 P@5 P@10
SAE 17.3 32.4 32.8
CSAE 18.6 33.2 34.1

Table 7: Question ranking in unsupervised setting

5 Performance Analysis and Discussion

We investigate the effect of context information
in reconstructing inputs and try to understand rea-
sons for improvement in reconstruction error. We
compute the average reconstruction error of SAE
and CSAE (Equations (3) and (7)). For these ex-
periments, we set λ = 0 in Equation (7) so that
we can directly compare the resulting loss of the
two models. CSAE will still use context informa-
tion with λ = 0 but it does not backpropagate the
reconstruction loss of context information.

Figures 5(a) and 5(b) show the average recon-
struction error of SAE and CSAE on qSim and
qAns datasets. Context information conistently
improves reconstruction. The improvement is
greater on qSim which contains smaller number
of words per question as compared to qAns. Also,
both models generate smaller reconstruction errors
than NMF (Section 2.3). The lower performance
of NMF is because it reconstructs inputs merely
using global topics identified in datasets, while our

models utilize both local and global information to
reconstruct inputs.

5.1 Analysis of Context information

The improvement in reconstruction error mainly
stems from areas in data where “topic density” is
lower. We define topic density for a topic as the
number of documents that are assigned to the topic
by our topic model. We compute the average im-
provement in reconstruction error for each topic Tj
using the loss functions for the basic and context-
sensitive autoencoders:

∆j =
1
|Tj |

∑
x∈Tj

l(x)− l(x,hx)

where we set λ = 0. Figure 5(c) shows improve-
ment of reconstruction error versus topic density
on qSim. Lower topic densities have greater im-
provement. This is because they have insufficient
training data to train the networks. However, in-
jecting context information improves the recon-
struction power of our model by providing more
information. The improvements in denser areas
are smaller because neural networks can train ef-
fectively in these areas.6

5.2 Effect of Depth

The intuition behind deep autoencoders (and, gen-
erally, deep neural networks) is that each layer
learns a more abstract representation of the in-
put than the previous one (Hinton and Salakhut-
dinov, 2006; Bengio et al., 2013). We investigate

6We observed the same pattern in qAns.
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Figure 6: Effect of depth in contextual word simi-
larity. Three hidden layers is optimal for this task.

if adding depth to our context-sensitive autoen-
coder will improve its performance in the contex-
tual word similarity task.

Figure 6 shows that as we increase the depth of
our autoencoders, their performances initially im-
prove. The CSAE-LGC model that uses both lo-
cal and global context benefits more from greater
number of hidden layers than CSAE-LC that only
uses local context. We attribute this to the use of
global context in CSAE-LGC that leads to more
accurate representations of words in their context.
We also note that with just a single hidden layer,
CSAE-LGC largely improves the performance as
compared to CSAE-LC.

6 Related Work

Representation learning models have been ef-
fective in many tasks such as language model-
ing (Bengio et al., 2003; Mikolov et al., 2013b),
topic modeling (Nguyen et al., 2015), paraphrase
detection (Socher et al., 2011), and ranking tasks
(Yih et al., 2013). We briefly review works that
use context information for text representation.

Huang et al. (2012) presented an RNN model
that uses document-level context information to
construct more accurate word representations. In
particular, given a sequence of words, the ap-
proach uses other words in the document as exter-
nal (global) knowledge to predict the next word in
the sequence. Other approaches have also mod-
eled context at the document level (Lin et al.,
2015; Wang and Cho, 2015; Ji et al., 2016).

Ji et al. (2016) presented a context-sensitive
RNN-based language model that integrates repre-
sentations of previous sentences into the language
model of the current sentence. They showed that
this approach outperforms several RNN language
models on a text coherence task.

Liu et al. (2015) proposed a context-sensitive
RNN model that uses Latent Dirichlet Alloca-
tion (Blei et al., 2003) to extract topic-specific
word embeddings. Their best-performing model
regards each topic that is associated to a word in a
sentence as a pseudo word, learns topic and word
embeddings, and then concatenates the embed-
dings to obtain topic-specific word embeddings.

Mikolov and Zweig (2012) extended a basic
RNN language model (Mikolov et al., 2010) by
an additional feature layer to integrate external in-
formation (such as topic information) about inputs
into the model. They showed that such informa-
tion improves the perplexity of language models.

In contrast to previous research, we integrate
context into deep autoencoders. To the best of
our knowledge, this is the first work to do so.
Also, in this paper, we depart from most previ-
ous approaches by demonstrating the value of con-
text information in sentence-level semantic simi-
larity and ranking tasks such as QA ranking tasks.
Our approach to the ranking problems, both for
Answer Ranking and Question Ranking, is dif-
ferent from previous approaches in the sense that
we judge the relevance between inputs based on
their context information. We showed that adding
sentential or document context information about
questions (or answers) leads to better rankings.

7 Conclusion and Future Work

We introduce an effective approach to integrate
sentential or document context into deep autoen-
coders and show that such integration is impor-
tant in semantic similarity tasks. In the future, we
aim to investigate other types of linguistic context
(such as POS tag and word dependency informa-
tion, word sense, and discourse relations) and de-
velop a unified representation learning framework
that integrates such linguistic context with repre-
sentation learning models.
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