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Abstract

Foreign language learners can acquire new
vocabulary by using cognate and con-
text clues when reading. To measure
such incidental comprehension, we devise
an experimental framework that involves
reading mixed-language “macaronic” sen-
tences. Using data collected via Ama-
zon Mechanical Turk, we train a graphi-
cal model to simulate a human subject’s
comprehension of foreign words, based on
cognate clues (edit distance to an English
word), context clues (pointwise mutual in-
formation), and prior exposure. Our model
does a reasonable job at predicting which
words a user will be able to understand,
which should facilitate the automatic con-
struction of comprehensible text for per-
sonalized foreign language education.

1 Introduction

Second language (L2) learning requires the ac-
quisition of vocabulary as well as knowledge of
the language’s constructions. One of the ways in
which learners become familiar with novel vocab-
ulary and constructions is through reading. Ac-
cording to Krashen’s Input Hypothesis (Krashen,
1989), learners acquire language through inciden-
tal learning, which occurs when learners are ex-
posed to comprehensible input. What constitutes
“comprehensible input” for a learner varies as
their knowledge of the L2 increases. For example,
a student in their first month of German lessons
would be hard-pressed to read German novels or
even front-page news, but they might understand
brief descriptions of daily routines. Comprehen-
sible input need not be completely familiar to the
learner; it could include novel vocabulary items or
structures (whose meanings they can glean from
context). Such input falls in the “zone of proxi-
mal development” (Vygotskii, 2012), just outside
of the learner’s comfort zone. The related con-

cept of “scaffolding” (Wood et al., 1976) consists
of providing assistance to the learner at a level that
is just sufficient for them to complete their task,
which in our case is understanding a sentence.

Automatic selection or construction of
comprehensible input—perhaps online and
personalized—would be a useful educational
technology. However, this requires modeling the
student: what can an L2 learner understand in a
given context? In this paper, we develop a model
and train its parameters on data that we collect.

For the remainder of the paper we focus on
native English speakers learning German. Our
methodology is a novel solution to the problem
of controlling for the learner’s German skill level.
We use subjects with zero previous knowledge of
German, but we translate portions of the sentence
into English. Thus, we can presume that they do
already know the English words and do not al-
ready know the German words (except from see-
ing them in earlier trials within our experiment).
We are interested in whether they can jointly infer
the meanings of the remaining German words in
the sentence, so we ask them to guess.

The resulting stimuli are sentences like “Der
Polizist arrested the Bankrduber.” Even a reader
with no knowledge of German is likely to be able
to understand this sentence reasonably well by us-
ing cognate and context clues. We refer to this
as a macaronic sentence; so-called macaronic lan-
guage is a pastiche of two or more languages (of-
ten intended for humorous effect).

Our experimental subjects are required to guess
what “Polizist” and “Bankriduber” mean in this
sentence. We train a featurized model to pre-
dict these guesses jointly within each sentence and
thereby predict incidental comprehension on any
macaronic sentence. Indeed, we hope our model
design will generalize from predicting incidental
comprehension on macaronic sentences (for our
beginner subjects, who need some context words
to be in English) to predicting incidental compre-
hension on full German sentences (for more ad-
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vanced students, who understand some of the con-
text words as if they were in English). In addition,
we are developing a user interface that uses maca-
ronic sentences directly as a medium of language
instruction: our companion paper (Renduchintala
et al., 2016) gives an overview of that project.

We briefly review previous work, then describe
our data collection setup and the data obtained. Fi-
nally, we discuss our model of learner comprehen-
sion and validate our model’s predictions.

2 Previous Work

Natural language processing (NLP) has long been
applied to education, but the majority of this work
focuses on evaluation and assessment. Promi-
nent recent examples include Heilman and Mad-
nani (2012), Burstein et al. (2013) and Madnani
et al. (2012). Other works fall more along the
lines of intelligent and adaptive tutoring systems
designed to improve learning outcomes. Most of
those are outside of the area of NLP (typically fo-
cusing on math or science). An overview of NLP-
based work in the education sphere can be found
in Litman (2016). There has also been work spe-
cific to second language acquisition, such as Ozbal
et al. (2014), where the focus has been to build
a system to help learners retain new vocabulary.
However, much of the existing work on incidental
learning is found in the education and cognitive
science literature rather than NLP.

Our work is related to Labutov and Lipson
(2014), which also tries to leverage incidental
learning using mixed L1 and L2 language. Where
their work uses surprisal to choose contexts in
which to insert L2 vocabulary, we consider both
context features and other factors such as cognate
features (described in detail in 4.1). We collect
data that gives direct evidence of the user’s un-
derstanding of words (by asking them to provide
English guesses) rather than indirectly (via ques-
tions about sentence validity, which runs the risk
of overestimating their knowledge of a word, if,
for instance, they’ve only learned whether it is an-
imate or inanimate rather than the exact meaning).
Furthermore, we are not only interested in whether
a mixed L1 and L2 sentence is comprehensible;
we are also interested in determining a distribution
over the learner’s belief state for each word in the
sentence. We do this in an engaging, game-like
setting, which provides the user with hints when
the task is too difficult for them to complete.

3 Data Collection Setup

Our method of scaffolding is to replace certain for-
eign words and phrases with their English trans-
lations, yielding a macaronic sentence.! Simply
presenting these to a learner would not give us
feedback on the learner’s belief state for each for-
eign word. Even assessing the learner’s reading
comprehension would give only weak indirect in-
formation about what was understood. Thus, we
collect data where a learner explicitly guesses a
foreign word’s translation when seen in the mac-
aronic context. These guesses are then treated as
supervised labels to train our user model.

We used Amazon Mechanical Turk (MTurk) to
collect data. Users qualified for tasks by complet-
ing a short quiz and survey about their language
knowledge. Only users whose results indicated
no knowledge of German and self-identified as
native speakers of English were allowed to com-
plete tasks. With German as the foreign language,
we generated content by crawling a simplified-
German news website, nachrichtenleicht.
de. We chose simplified German in order to
minimize translation errors and to make the task
more suitable for novice learners. We translated
each German sentence using the Moses Statis-
tical Machine Translation (SMT) toolkit (Koehn
et al., 2007). The SMT system was trained on the
German-English Commoncrawl parallel text used
in WMT 2015 (Bojar et al., 2015).

We used 200 German sentences, presenting
each to 10 different users. In MTurk jargon, this
yielded 2000 Human Intelligence Tasks (HITs).
Each HIT required its user to participate in several
rounds of guessing as the English translation was
incrementally revealed. A user was paid US$0.12
per HIT, with a bonus of US$6 to any user who
accumulated more than 2000 total points.

Our HIT user interface is shown in the video at
https://youtu.be/9PczEcnr4Fs.

3.1 HITs and Submissions

For each HIT, the user first sees a German sen-
tence’ (Figure 1). A text box is presented below
each German word in the sentence, for the user

! Although the language distinction is indicated by italics
and color, users were left to figure this out on their own.

’Except that we first “translate” any German words that
have identical spelling in English (case-insensitive). This in-
cludes most proper names, numerals, and punctuation marks.
Such translated words are displayed in English style (blue
italics), and the user is not asked to guess their meanings.
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Er wohnt in der Stadt Kiln

he | want the stand | | clong|

Points: 0 Effort: 0

Submit Guess

Er wohnt in der city of Kiln

he the

Points: 20 Effort: 2

Submit Guess (enter more guesses)

Figure 1: After a user submits a set of guesses (top), the in-
terface marks the correct guesses in green and also reveals a
set of translation clues (bottom). The user now has the oppor-
tunity to guess again for the remaining German words.

to type in their “best guess” of what each Ger-
man word means. The user must fill in at least
half of the text boxes before submitting this set of
guesses. The resulting submission—i.e., the maca-
ronic sentence together with the set of guesses—is
logged in a database as a single training example,
and the system displays feedback to the user about
which guesses were correct.

After each submission, new clues are revealed
(providing increased scaffolding) and the user is
asked to guess again. The process continues,
yielding multiple submissions, until all German
words in the sentence have been translated. At this
point, the entire HIT is considered completed and
the user moves to a new HIT (i.e., a new sentence).

From our 2000 HITs, we obtained 9392 submis-
sions (4.7 per HIT) from 79 distinct MTurk users.

3.2 Clues

Each update provides new clues to help the user
make further guesses. There are 2 kinds of clues:

Translation Clue (Figure 1): A set of words that
were originally in German are replaced with their
English translations. The text boxes below these
words disappear, since it is no longer necessary to
guess them.

Reordering Clue (Figure 2): A German sub-
string is moved into a more English-like position.
The reordering positions are calculated using the
word and phrase alignments obtained from Moses.

Each time the user submits a set of guesses, we
reveal a sequence of n = max(1, round(N/3))
clues, where NV is the number of German words re-
maining in the sentence. For each clue, we sample
a token that is currently in German. If the token is

it ist in einem Museum in Kairo ausgestellt

museum in case oﬂ

Points: 40 Effort: 2

Submit Guess

it ist exhibited in einem Museum in Kairo

museum in

Points: 40 Effort: 5

Submit Guess (enter more guesses)

Figure 2: In this case, after the user submits a set of guesses
(top), two clues are revealed (bottom): ausgestellt is
moved into English order and then translated.

part of a movable phrase, we move that phrase;
otherwise we translate the minimal phrase con-
taining that token. These moves correspond ex-
actly to clues that a user could request by clicking
on the token in the macaronic reading interface of
Renduchintala et al. (2016)—see that paper for de-
tails of how moves are constructed and animated.
In our present experiments, the system is in control
instead, and grants clues by “randomly clicking”
on n tokens.

The system’s probability of sampling a given to-
ken is proportional to its unigram type probability
in the WMT corpus. Thus, rarer words tend to re-
main in German for longer, allowing the Turker to
attempt more guesses for these difficult words.

3.3 Feedback

When a user submits a set of guesses, the sys-
tem responds with feedback. Each guess is vis-
ibly “marked” in left-to-right order, momentarily
shaded with green (for correct), yellow (for close)
or red (for incorrect). Depending on whether
a guess is correct, close, or wrong, users are
awarded points as discussed below. Yellow and
red shading then fades, to signal to the user that
they may try entering a new guess. Correct
guesses remain on the screen for the entire task.

3.4 Points

Adding points to the process (Figures 1-2) adds
a game-like quality and lets us incentivize users
by paying them for good performance (see sec-
tion 3). We award 10 points for each exactly cor-
rect guess (case-insensitive). We give additional
“effort points” for a guess that is close to the cor-

1861



rect translation, as measured by cosine similarity
in vector space. (We used pre-trained GLoVe word
vectors (Pennington et al., 2014); when the guess
or correct translation has multiple words, we take
the average of the word vectors.) We deduct effort
points for guesses that are careless or very poor.
Our rubric for effort points is as follows:

-1, if é is repeated or nonsense (red)
-1, if sim(é,e*) < 0 (red)

ep =140, if 0 < sim(é,e*) < 0.4 (red)
0, if € is blank

10 x sim(é, e*) otherwise (yellow)

Here sim(é, e*) is cosine similarity between the
vector embeddings of the user’s guess é and our
reference translation e*. A “nonsense” guess con-
tains a word that does not appear in the sentence
bitext nor in the 20,000 most frequent word types
in the GLoVe training corpus. A “repeated” guess
is an incorrect guess that appears more than once
in the set of guesses being submitted.

In some cases, é or e* may itself consist of mul-
tiple words. In this case, our points and feedback
are based on the best match between any word of
é and any word of e*. In alignments where mul-
tiple German words translate as a single phrase,’
we take the phrasal translation to be the correct
answer e* for each of the German words.

3.5 Normalization

After collecting the data, we normalized the user
guesses for further analysis. All guesses were
lowercased. Multi-word guesses were crudely re-
placed by the longest word in the guess (breaking
ties in favor of the earliest word).

The guesses included many spelling errors as
well as some nonsense strings and direct copies
of the input. We defined the dictionary to be the
100,000 most frequent word types (lowercased)
from the WMT English data. If a user’s guess é
does not match e* and is not in the dictionary, we
replace it with

e the special symbol <COPY>, if é appears
to be a copy of the German source word f
(meaning that its Levenshtein distance from
fis < 0.2 max(Jé], | f1));

e clse, the closest word in the dictionary* as
measured by Levenshtein distance (breaking

30ur German-English alignments are constructed as in

Renduchintala et al. (2016).

*Considering only words returned by the Pyenchant ‘sug-
gest’ function (http://pythonhosted.org/pyenchant/).

ties alphabetically), provided the dictionary
has a word at distance < 2;
e clse <BLANK>, as if the user had not guessed.

4 User Model

In each submission, the user jointly guesses sev-

eral English words, given spelling and context
clues. One way that a machine could perform
this task is via probabilistic inference in a factor
graph—and we take this as our model of how the
human user solves the problem.

The user observes a German sentence f =
[fi, fo,.-., fis-.. fn]. The translation of each
word token f; is F;, which is from the user’s
point of view a random variable. Let Obs denote
the set of indices ¢ for which the user also ob-
serves that F; = e, the aligned reference trans-
lation, because e has already been guessed cor-
rectly (green feedback) or shown as a clue. Thus,
the user’s posterior distribution over E is Pyp(E =
e | Eops = €, f, history), where “history” de-
notes the user’s history of past interactions.

We assume that a user’s submission € is derived
from this posterior distribution simply as a ran-
dom sample. We try to fit the parameter vector
0 to maximize the log-probability of the submis-
sion. Note that our model is trained on the user
guesses &, not the reference translations e*. That
is, we seek parameters 0 that would explain why
all users made their guesses.

Although we fit a single 0, this does not mean
that we treat users as interchangeable (since 0
can include user-specific parameters) or unvary-
ing (since our model conditions users’ behavior on
their history, which can capture some learning).

4.1 Factor Graph

We model the posterior distribution as a condi-
tional random field (Figure 3) in which the value
of E; depends on the form of f; as well as on
the meanings e; (which may be either observed or
jointly guessed) of the context words at j £ i:

Po(E = e | Eops = e, £, history) )
o ] @ (ei £3) - [T v (eiresni— 4))
i¢Obs i

We will define the factors v (the potential func-
tions) in such a way that they do not “know Ger-
man” but only have access to information that is
available to an naive English speaker. In brief, the
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wee(el 3 6”)

Figure 3: Model for user understanding of L2 words in sen-
tential context. This figure shows an inference problem in
which all the observed words in the sentence are in German
(that is, Obs = (). As the user observes translations via clues
or correctly-marked guesses, some of the F; become shaded.

factor 1/ (e;, f;) considers whether the hypothe-
sized English word e; “looks like” the observed
German word f;, and whether the user has previ-
ously observed during data collection that ¢; is a
correct or incorrect translation of f;. Meanwhile,
the factor ¢°¢(e;, e;) considers whether e; is com-
monly seen in the context of e; in English text. For
example, the user will elevate the probability that
E; = cake if they are fairly certain that F; is a
related word like eat or chocolate.

The potential functions v are parameterized by
6, a vector of feature weights. For convenience,
we define the features in such a way that we ex-
pect their weights to be positive. We rely on
just 6 features at present (see section 6 for future
work), although each is complex and real-valued.
Thus, the weights @ control the relative influence
of these 6 different types of information on a user’s
guess. Our features broadly fall under the follow-
ing categories: Cognate, History, and Context. We
precomputed cognate and context features, while
history features are computed on-the-fly for each
training instance. All features are case-insensitive.

4.1.1 Cognate and History Features

For each German token f;, the 1! factor can score
each possible guess e; of its translation:

VM (ei, fi) = exp(6°- ¢ (es, fi)) ()

The feature function ¢ returns a vector of 4 real
numbers:

e Orthographic Similarity: The normalized
Levenshtein distance between the 2 strings.

lev(ei, fz)

max(leil, | fi])

(e fi) =1— 3)

The weight on this feature encodes how much
users pay attention to spelling.

o Pronunciation Similarity: This feature is sim-
ilar to the previous one, except that it cal-
culates the normalized distance between the
pronunciations of the two words:

¢g£on(ei7 fz) = ¢<e)£th(prn(ei)7 prn(fi)) “4)

where the function prn(z) maps a string x
to its pronunciation. We obtained pronuncia-
tions for all words in the English and German
vocabularies using the CMU pronunciation
dictionary tool (Weide, 1998). Note that we
use English pronunciation rules even for Ger-
man words. This is because we are modeling
a naive learner who may, in the absence of
intuition about German pronunciation rules,
apply English pronunciation rules to German.

e Positive History Feature: If a user has been
rewarded in a previous HIT for guessing e;
as a translation of f;, then they should be
more likely to guess it again. We define

et .(ei, f;) to be 1 in this case and 0 oth-
erwise. The weight on this feature encodes
whether users learn from positive feedback.

e Negative History Feature: If a user has al-
ready incorrectly guessed e; as a translation
of f; in a previous submission during this
HIT, then they should be less likely to guess it
again. We define @<L, (e;, f;) to be —1 in this
case and O otherwise. The weight on this fea-
ture encodes whether users remember nega-
tive feedback.’

4.1.2 Context Features

In the same way, the ¢° factor can score the com-
patibility of a guess e; with a context word e;,
which may itself be a guess, or may be observed:

55 (eir e5) = exp(0° - ¢%(ei,e5,i — j))  (5)
¢°° returns a vector of 2 real numbers:

PMI(e;, ;) if |i — j| > 1

ee e e;) =
pml( ! ]) 0 otherwise (6)
PMI (e, e;) if |i — j| =1
ee e ei) = =]
d)pmll( 2 0 otherwise )

SAt least in short-term memory—this feature currently
omits to consider any negative feedback from previous HITs.
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where the pointwise mutual information
PMI(x,y) measures the degree to which the
English words x,y tend to occur in the same
English sentence, and PMI; (z, y) measures how
often they tend to occur in adjacent positions.
These measurements are estimated from the
English side of the WMT corpus, with smoothing
performed as in Knowles et al. (2016).

For example, if f; = Suppe, the user’s guess of
E; should be influenced by f; = Brot appearing
in the same sentence, if the user suspects or ob-
serves that its translation is £/; = bread. The
PMI feature knows that soup and bread tend
to appear in the same English sentences, whereas
PMI; knows that they tend not to appear in the bi-
gram soup breadorbread soup.

4.1.3 User-Specific Features

Apart from the basic 6-feature model, we also
trained a version that includes user-specific copies
of each feature (similar to the domain adaptation
technique of Daumé III (2007)). For example,

gfth,32(€iv fi) is defined to equal &L, (e;, f;) for
submissions by user 32, and defined to be O for
submissions by other users.

Thus, with 79 users in our dataset, we learned
6 x 80 feature weights: a local weight vector
for each user and a global vector of “backoff”
weights. The global weight Hgﬁth is large if users
in general reward orthographic similarity, while
03£th,32 (which may be positive or negative) cap-
tures the degree to which user 32 rewards it more
or less than is typical. The user-specific features
are intended to capture individual differences in

incidental comprehension.

4.2 Inference

According to our model, the probability that the
user guesses F; = é; is given by a marginal prob-
ability from the CRF. Computing these marginals
is a combinatorial optimization problem that in-
volves reasoning jointly about the possible values
of each E; (i ¢ Obs), which range over the En-
glish vocabulary V°.

We employ loopy belief propagation (Murphy
et al., 1999) to obtain approximate marginals over
the variables E. A tree-based schedule for mes-
sage passing was used (Dreyer and Eisner, 2009,
footnote 22). We run 3 iterations with a new ran-
dom root for each iteration.

We define the vocabulary V¢ to consist of
all reference translations e} and normalized user

guesses ¢; from our entire dataset (see section 3.5),
about 5K types altogether including <BLANK>
and <COPY>. We define the cognate features to
treat <BLANK> as the empty string and to treat
<COPY> as f;. We define the PMI of these spe-
cial symbols with any e to be the mean PMI with e
of all dictionary words, so that they are essentially
uninformative.

4.3 Parameter Estimation

We learn our parameter vector 6 to approximately
maximize the regularized log-likelihood of the
users’ guesses:

(Z log Po(E = € | Egps = €, f,history))
-AlloI @)

where the summation is over all submissions in
our dataset. The gradient of each summand re-
duces to a difference between observed and ex-
pected values of the feature vector ¢ = (p°F, ¢°),
summed over all factors in (1). The observed fea-
tures are computed directly by setting E = €. The
expected features (which arise from the log of the
normalization constant of (1)) are computed ap-
proximately by loopy belief propagation.

We trained 6 using stochastic gradient descent
(SGD).® with a learning rate of 0.1 and regulariza-
tion parameter of 0.2. The regularization parame-
ter was tuned on our development set.

5 Experimental Results

We divided our data randomly into 5550 training
instances, 1903 development instances, and 1939
test instances. Each instance was a single submis-
sion from one user, consisting of a batch of “si-
multaneous” guesses on a macaronic sentence.
We noted qualitatively that when a large num-
ber of English words have been revealed, particu-
larly content words, the users tend to make better
guesses. Conversely, when most context is Ger-
man, we unsuprisingly see the user leave many
guesses blank and make other guesses based on
string similarity triggers. Such submissions are
difficult to predict as different users will come up
with a wide variety of guesses; our model there-
fore resorts to predicting similar-sounding words.
For detailed examples of this see Appendix A.

%To speed up training, SGD was parallelized using Recht
et al.’s (2011) Hogwild! algorithm. We trained for 8 epochs.
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Recall at k& Recall at &
Model (dev) (test)
1 25 50 1 25 50
Basic 15.24 34.26 38.08 16.14 35.56 40.30
User-Adapted 15.33 34.40 38.67 16.45 35.71 40.57

Table 1: Percentage of foreign words for which the user’s ac-
tual guess appears in our top-k list of predictions, for models
with and without user-specific features (k € {1, 25,50}).

For each foreign word f; in a submission with
i ¢ Obs, our inference method (section 4.2) pre-
dicts a marginal probability distribution over a
user’s guesses é;. Table 1 shows our ability to pre-
dict user guesses.” Recall that this task is essen-
tially a structured prediction task that does joint
4919-way classification of each German word.
Roughly 1/3 of the time, our model’s top 25 words
include the user’s exact guess.

However, the recall reported in Table 1 is too
stringent for our educational application. We
could give the model partial credit for predicting a
synonym of the learner’s guess €. More precisely,
we would like to give the model partial credit for
predicting when the learner will make a poor guess
of the truth e*—even if the model does not predict
the user’s specific incorrect guess é.

To get at this question, we use English word em-
beddings (as in section 3.4) as a proxy for the se-
mantics and morphology of the words. We mea-
sure the actual quality of the learner’s guess é
as its cosine similarity to the truth, sim(é,e*).
While quality of 1 is an exact match, and qual-
ity scores > (.75 are consistently good matches,
we found quality of ~ 0.6 also reasonable. Pairs
such as (mosque, islamic) and (politics,
government) are examples from the collected
data with quality ~ 0.6. As quality becomes
< 0.4, however, the relationship becomes tenuous,
e.g., (refugee, soil).

Similarly, we measure the predicted quality as
sim(e, €*), where e is the model’s 1-best predic-
tion of the user’s guess. Figure 4 plots predicted
vs. actual quality (each point represents one of
the learner’s guesses on development data), ob-
taining a correlation of 0.38, which we call the
“quality correlation” or QC. A clear diagonal band
can be seen, corresponding to the instances where

"Throughout this section, we ignore the 5.2% of tokens on
which the user did not guess (i.e., the guess was <BLANK>
after the normalization of section 3.5). Our present model
simply treats <BLANK> as an ordinary and very bland word
(section 4.2), rather than truly attempting to predict when the
user will not guess. Indeed, the model’s posterior probability
of <BLANK> in these cases is a paltry 0.0000267 on average
(versus 0.0000106 when the user does guess). See section 6.
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Figure 4: Actual quality sim(é, ™) of the learner’s guess € on

development data, versus predicted quality sim(e, e*) where
e is the basic model’s 1-best prediction.
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Figure 5: Actual quality sim(é, e*) of the learner’s guess é
on development data, versus the expectation of the predicted
quality sim(e, e*) where e is distributed according to the ba-
sic model’s posterior.

the model exactly predicts the user’s guess. The
cloud around the diagonal is formed by instances
where the model’s prediction was not identical to
the user’s guess but had similar quality.

We also consider the expected predicted qual-
ity, averaging over the model’s predictions e of
é (for all e € V°®) in proportion to the probabili-
ties that it assigns them. This allows the model to
more smoothly assess whether the learner is likely
to make a high-quality guess. Figure 5 shows this
version, where the points tend to shift upward and
the quality correlation (QC) rises to 0.53.

All QC values are given in Table 2. We used ex-
pected QC on the development set as the criterion
for selecting the regularization coefficient A and as
the early stopping criterion during training.
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Dev Test
Model Exp | 1-Best | Exp | 1-Best
Basic 0.525 | 0379 | 0.543 | 0411
User-Adapted | 0.527 | 0.427 | 0.544 | 0.439

Table 2: Quality correlations: basic and user-adapted models.

QC
Feature Removed Expected | T-Best
None 0.522 0.425
Cognate 0.516 0.366"
Context 0.510 0.366"
History 0.4997 0.259*

Table 3: Impact on quality correlation (QC) of removing
features from the model. Ablated QC values marked with
asterisk™ differ significantly from the full-model QC values
in the first row (p < 0.05, using the test of Preacher (2002)).

5.1 Feature Ablation

To test the usefulness of different features, we
trained our model with various feature categories
disabled. To speed up experimentation, we sam-
pled 1000 instances from the training set and
trained our model on those. The resulting QC val-
ues on dev data are shown in Table 3. We see that
removing history-based features has the most sig-
nificant impact on model performance: both QC
measures drop relative to the full model. For cog-
nate and context features, we see no significant im-
pact on the expected QC, but a significant drop in
the 1-best QC, especially for context features.

5.2 Analysis of User Adaptation

Table 2 shows that the user-specific features sig-
nificantly improve the /-best QC of our model, al-
though the much smaller improvement in expected
QC is insignificant.

User adaptation allows us to discern differ-
ent styles of incidental comprehension. A user-
adapted model makes fine-grained predictions that
could help to construct better macaronic sentences
for a given user. Each user who completed at
least 10 HITs has their user-specific weight vec-
tor shown as a row in Figure 6. Recall that the
user-specific weights are not used in isolation, but
are added to backoff weights shared by all users.

These user-specific weight vectors cluster into
four groups. Furthermore, the average points per
HIT differ by cluster (significantly between each
cluster pair), reflecting the success of different
strategies.® Users in group (a) employ a generalist

8Recall that in our data collection process, we award
points for each HIT (section 3.4). While the points were de-
signed more as a reward than as an evaluation of learner suc-
cess, a higher score does reflect more guesses that were cor-
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Figure 6: The user-specific weight vectors, clustered into
groups. Average points per HIT for the HITs completed by
each group: (a) 45, (b) 48, (c) 50 and (d) 42.

strategy for incidental comprehension. They pay
typical or greater-than-typical attention to all fea-
tures of the current HIT, but many of them have
diminished memory for vocabulary learned dur-
ing past HITs (the hist+ feature). Users in group
(b) seem to use the opposite strategy, deriving
their success from retaining common vocabulary
across HITs (hist+) and falling back on orthogra-
phy for new words. Group (c) users, who earned
the most points per HIT, appear to make heavy
use of context and pronunciation features fogether
with hist+. We also see that pronunciation sim-
ilarity seems to be a stronger feature for group
(c) users, in contrast to the more superficial ortho-
graphic similarity. Group (d), which earned the
fewest points per HIT, appears to be an “extreme”
version of group (b): these users pay unusually lit-
tle attention to any model features other than or-
thographic similarity and hist+. (More precisely,
the model finds group (d)’s guesses harder to pre-
dict on the basis of the available features, and so
gives a more uniform distribution over V°©.)

6 Future Improvements to the Model

Our model’s feature set (section 4.1) could clearly
be refined and extended. Indeed, in a separate pa-
per (Knowles et al., 2016), we use a more tightly
controlled experimental design to explore some
simple feature variants. A cheap way to vet fea-
tures would be to test whether they help on the
task of modeling reference translations, which are

rect or close, while a lower score indicates that some words
were never guessed before the system revealed them as clues.

1866



more plentiful and less noisy than the user guesses.

For Cognate features, there exist many other
good string similarity metrics (including trainable
ones). We could also include ¢°' features that con-
sider whether e;’s part of speech, frequency, and
length are plausible given f;’s burstiness, observed
frequency, and length. (E.g., only short common
words are plausibly translated as determiners.)

For Context features, we could design versions
that are more sensitive to the position and status of
the context word 7. We speculate that the actual in-
fluence of e; on a user’s guess e; is stronger when
ej is observed rather than itself guessed; when
there are fewer intervening tokens (and particu-
larly fewer observed ones); and when j < ¢. Or-
thogonally, ¢'(e;, ¢;) could go beyond PMI and
windowed PMI to also consider cosine similarity,
as well as variants of these metrics that are thresh-
olded or nonlinearly transformed. Finally, we do
not have to treat the context positions j as indepen-
dent multiplicative influences as in equation (1)
(cf. Naive Bayes): we could instead use a topic
model or some form of language model to deter-
mine a conditional probability distribution over F;
given all other words in the context.

An obvious gap in our current feature set is that
we have no ¢° features to capture that some words
e; € V¢ are more likely guesses a priori. By defin-
ing several versions of this feature, based on fre-
quencies in corpora of different reading levels, we
could learn user-specific weights modeling which
users are unlikely to think of an obscure word.
We should also include features that fire specifi-
cally on the reference translation e; and the special
symbols <BLANK> and <COPY>, as each is much
more likely than the other features would suggest.

For History features, we could consider nega-
tive feedback from other HITs (not just the current
HIT), as well as positive information provided by
revealed clues (not just confirmed guesses). We
could also devise non-binary versions in which
more recent or more frequent feedback on a word
has a stronger effect. More ambitiously, we
could model generalization: after being shown
that Kind means child, alearner might increase
the probability that the similar word Kinder
means child or something related (children,
childish, ...), whether because of superficial
orthographic similarity or a deeper understanding
of the morphology. Similarly, a learner might
gradually acquire a model of typical spelling

changes in English-German cognate pairs.

A more significant extension would be to model
a user’s learning process. Instead of represent-
ing each user by a small vector of user-specific
weights, we could recognize that the user’s guess-
ing strategy and knowledge can change over time.

A serious deficiency in our current model (not
to mention our evaluation metrics!) is that we
treat <BLANK> like any other word. A more at-
tractive approach would be to learn a stochastic
link from the posterior distribution to the user’s
guess or non-guess, instead of assuming that the
user simply samples the guess from the poste-
rior. As a simple example, we might say the user
guesses ¢ € V© with probability p(e)’—where
p(e) is the posterior probability and 5 > 1 is a
learned parameter—with the remaining probabil-
ity assigned to <BLANK>. This says that the user
tends to avoid guessing except when there are rel-
atively high-probability words to guess.

7 Conclusion

We have presented a methodology for collecting
data and training a model to estimate a foreign lan-
guage learner’s understanding of L2 vocabulary in
partially understood contexts. Both are novel con-
tributions to the study of L2 acquisition.

Our current model is arguably crude, with only
6 features, yet it can already often do a reason-
able job of predicting what a user might guess and
whether the user’s guess will be roughly correct.
This opens the door to a number of future direc-
tions with applications to language acquisition us-
ing personalized content and learners’ knowledge.

We plan a deeper investigation into how learn-
ers detect and combine cues for incidental com-
prehension. We also leave as future work the in-
tegration of this model into an adaptive system
that tracks learner understanding and creates scaf-
folded content that falls in their zone of prox-
imal development, keeping them engaged while
stretching their understanding.
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Appendices

A Example of Learner Guesses vs. Model Predictions

To give a sense of the problem difficulty, we have hand-picked and presented two training examples
(submissions) along with the predictions of our basic model and their log-probabilities. In Figure 7a a
large portion of the sentence has been revealed to the user in English (blue text) only 2 words are in
German. The text in bold font is the user’s guess. Our model expected both words to be guessed; the
predictions are listed below the German words Verschiedene and Regierungen. The reference
translation for the 2 words are Various and governments. In Figure 7b we see a much harder
context where only one word is shown in English and this word is not particularly helpful as a contextual
anchor.

User's guessi BLANEK countries
Macaronic Werschiledene groups are fighting against the Regilerungen of Afghanistan and Pakistan .
Sentence
different -3.2990 countries -3.9482
together -3.591 border -4.2853
Predictions: decided -6.0850 regions -6.2433
considered -6.2010 legitimate -6.3764
parliament -6.3400 region -6.4340
(@
User's guess: party BLANK BLANK night and day .
Macaronic : Therefore paare durften nur noch ein Kind .
Sentence
farther -3.9933 giving -4.6720 news -2.2157 not -4.423% ein -2.8807 kind -3.1842
are -4.6289 often -5.0708 nor -4.5056 touch -4.4329 in -4.6859 find -3.68%1
R far -4.9615 driven -5.7605 near -4.5816 such —4.47%3 line —4.9601 mind -3.7672
Predictions: K
car -5.1015 eurcpean -5.8506  tour -4.6138 much -4.5182 tine -5.0726 wind -3.9125
bar -5.1958 garden -6.0132 sure -4.9564 watch -4.6984 on -5.0852 bind -4.4%13

;lg!‘.t -5.6%19
(b)

Figure 7: Two examples of the system’s predictions of what the user will guess on a single submission, contrasted with the
user’s actual guess. (The user’s previous submissions on the same task instance are not shown.) In 7a, the model correctly
expects that the substantial context will inform the user’s guess. In 7b, the model predicts that the user will fall back on
string similarity—although we can see that the user’s actual guess of and day was likely informed by their guess of night,
an influence that our CRF did consider. The numbers shown are log-probabilities. Both examples show the sentences in a
macaronic state (after some reordering or translation has occurred). For example, the original text of the German sentence in 7b
reads Deshalb durften die Paare nur noch ein Kind bekommen . The macaronic version has undergone
some reordering, and has also erroneously dropped the verb due to an incorrect alignment.
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