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Abstract

Linguistics studies have shown that action
verbs often denote some Change of State
(CoS) as the result of an action. However,
the causality of action verbs and its poten-
tial connection with the physical world has
not been systematically explored. To ad-
dress this limitation, this paper presents a
study on physical causality of action verbs
and their implied changes in the physi-
cal world. We first conducted a crowd-
sourcing experiment and identified eigh-
teen categories of physical causality for
action verbs. For a subset of these cat-
egories, we then defined a set of detec-
tors that detect the corresponding change
from visual perception of the physical en-
vironment. We further incorporated phys-
ical causality modeling and state detec-
tion in grounded language understanding.
Our empirical studies have demonstrated
the effectiveness of causality modeling in
grounding language to perception.

1 Introduction

Linguistics studies have shown that action verbs
often denote some change of state (CoS) as the
result of an action, where the change of state of-
ten involves an attribute of the direct object of the
verb (Hovav and Levin, 2010). For example, the
result of “slice a pizza” is that the state of the ob-
ject (pizza) changes from one big piece to several
smaller pieces. This change of state can be per-
ceived from the physical world. In Artificial Intel-
ligence (Russell and Norvig, 2010), decades of re-
search on planning, for example, back to the early
days of the STRIPS planner (Fikes and Nilsson,

∗This work was conducted at Michigan State University
where the author received his MS degree.

1971), have defined action schemas to capture the
change of state caused by a given action. Based
on action schemas, planning algorithms can be ap-
plied to find a sequence of actions to achieve a goal
state (Ghallab et al., 2004). The state of the phys-
ical world is a very important notion and chang-
ing the state becomes a driving force for agents’
actions. Thus, motivated by linguistic literature
on action verbs and AI literature on action repre-
sentations, in our view, modeling change of phys-
ical state for action verbs, in other words, physical
causality, can better connect language to the phys-
ical world.

Although this kind of physical causality has
been described in linguistic studies (Hovav and
Levin, 2010), a detailed account of potential
causality that could be denoted by an action verb is
lacking. For example, in VerbNet (Schuler, 2005)
the semantic representation for various verbs may
indicate that a change of state is involved, but it
does not provide the specifics associated with the
verb’s meaning (e.g., to what attribute of its pa-
tient the changes might occur).

To address this limitation, we have conducted
an empirical investigation on verb semantics from
a new angle of how they may change the state of
the physical world. As the first step in this inves-
tigation, we selected a set of action verbs from a
cooking domain and conducted a crowd-sourcing
study to examine the potential types of causality
associated with these verbs. Motivated by lin-
guistics studies on typology for gradable adjec-
tives, which also have a notion of change along
a scale (Dixon and Aikhenvald, 2006), we devel-
oped a set of eighteen main categories to charac-
terize physical causality. We then defined a set of
change-of-state detectors focusing on visual per-
ception. We further applied two approaches, a
knowledge-driven approach and a learning-based
approach, to incorporate causality modeling in
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grounded language understanding. Our empirical
results have demonstrated that both of these ap-
proaches achieve significantly better performance
in grounding language to perception compared to
previous approaches (Yang et al., 2016).

2 Related Work

The notion of causality or causation has been ex-
plored in psychology, linguistics, and computa-
tional linguistics from a wide range of perspec-
tives. For example, different types of causal re-
lations such as causing, enabling, and prevent-
ing (Goldvarg and Johnson-Laird, 2001; Wolff
and Song, 2003) have been studied extensively as
well as their linguistic expressions (Wolff, 2003;
Song and Wolff, 2003; Neeleman et al., 2012)
and automated extraction of causal relations from
text (Blanco et al., 2008; Mulkar-Mehta et al.,
2011; Radinsky et al., 2012; Riaz and Girju,
2014). Different from these previous works, this
paper focuses on the physical causality of action
verbs, in other words, change of state in the phys-
ical world caused by action verbs as described in
(Hovav and Levin, 2010). This is motivated by
recent advances in computer vision, robotics, and
grounding language to perception and action.

A recent trend in computer vision has started
looking into intermediate representations beyond
lower-level visual features for action recogni-
tion, for example, by incorporating object affor-
dances (Koppula et al., 2013) and causality be-
tween actions and objects (Fathi and Rehg, 2013).
Fathi and Rehg (2013) have borken down detec-
tion of actions to detection of state changes from
video frames. Yang and colleagues (2013; 2014)
have developed an object segmentation and track-
ing method to detect state changes (or, in their
terms, consequences of actions) for action recog-
nition. More recently, Fire and Zhu (2015) have
developed a framework to learn perceptual causal
structures between actions and object statuses in
videos.

In the robotics community, as robots’ low-level
control systems are often pre-programmed to han-
dle (and thus execute) only primitive actions, a
high-level language command will need to be
translated to a sequence of primitive actions in
order for the corresponding action to take place.
To make such translation possible, previous works
(She et al., 2014a; She et al., 2014b; Misra et al.,
2015; She and Chai, 2016) explicitly model verbs

with predicates describing the resulting states of
actions. Their empirical evaluations have demon-
strated how incorporating resulting states into verb
representations can link language with underlying
planning modules for robotic systems. These re-
sults have motivated a systematic investigation on
modeling physical causality for action verbs.

Although recent years have seen an increas-
ing amount of work on grounding language to
perception (Yu and Siskind, 2013; Walter et al.,
2013; Liu et al., 2014; Naim et al., 2015; Liu
and Chai, 2015), no previous work has investi-
gated the link between physical causality denoted
by action verbs and the change of state visually
perceived. Our work here intends to address this
limitation and examine whether the causality de-
noted by action verbs can provide top-down in-
formation to guide visual processing and improve
grounded language understanding.

3 Modeling Physical Causality for Action
Verbs

3.1 Linguistics Background on Action Verbs

Verb semantics have been studied extensively in
linguistics (Pustejovsky, 1991; Levin, 1993; Baker
et al., 1998; Kingsbury and Palmer, 2002). Partic-
ularly, for action verbs (such as run, throw, cook),
Hovav and Levin (Hovav and Levin, 2010) pro-
pose that they can be divided into two types: man-
ner verbs that “specify as part of their meaning
a manner of carrying out an action” (e.g., nibble,
rub, scribble, sweep, flutter, laugh, run, swim), and
result verbs that “specify the coming about of a
result state” (e.g., clean, cover, empty, fill, chop,
cut, melt, open, enter). Result verbs can be further
classified into three categories: Change of State
verbs, which denote a change of state for a prop-
erty of the verb’s object (e.g. “to warm”); Inher-
ently Directed Motion verbs, which denote move-
ment along a path in relation to a landmark object
(e.g. “to arrive”); and Incremental Theme verbs,
which denote the incremental change of volume
or area of the object (e.g. “to eat”) (Levin and Ho-
vav, 2010). In this work, we mainly focus on re-
sult verbs. Unlike Hovav and Levin’s definition of
Change of State verbs, we use the term change of
state in a more general way such that the location,
volume, and area of an object are part of its state.

Previous linguistic studies have also shown
that result verbs often specify movement along
a scale (Hovav and Levin, 2010), i.e., they are
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verbs of scalar change. A scale is “a set of points
on a particular dimension (e.g. height, tempera-
ture, cost)”. In the case of verbs, the dimension
is an attribute of the object of the verb. For ex-
ample, “John cooled the coffee” means that the
temperature attribute of the object coffee has de-
creased. Kennedy and McNally give a very de-
tailed description of scale structure and its vari-
ations (Kennedy and McNally, 2005). Interest-
ingly, gradable adjectives also have their seman-
tics defined in terms of a scale structure. Dixon
and Aikhenvald have defined a typology for adjec-
tives which include categories such as Dimension,
Color, Physical Property, Quantification, and Posi-
tion (Dixon and Aikhenvald, 2006). The connec-
tion between gradable adjectives and result verbs
through scale structure motivates us to use the
Dixon typology as a basis to define our categoriza-
tion of causality for verbs.

In summary, previous linguistic literature has
provided abundant evidence and discussion on
change of state for action verbs. It has also pro-
vided extensive knowledge on potential dimen-
sions that can be used to categorize change of state
as described in this paper.

3.2 A Crowd-sourcing Study

Motivated by the above linguistic insight, we have
conducted a pilot study to examine the feasibility
of causality modeling using a small set of verbs
which appear in the TACoS corpus (Regneri et
al., 2013). This corpus is a collection of natu-
ral language descriptions of actions that occur in
a set of cooking videos. This is an ideal dataset
to start with since it contains mainly descriptions
of physical actions. Possibly because most actions
in the cooking domain are goal-directed, a major-
ity of the verbs in TACoS denote results of actions
(changes of state) which can be observed in the
world.

More specifically, we chose ten verbs (clean,
rinse, wipe, cut, chop, mix, stir, add, open, shake))
based on the criteria that they occur relatively fre-
quently in the corpus and take a variety of different
objects as their patient. We paired each verb with
three different objects in the role of patient. Nouns
(e.g., cutting board, dish, counter, knife, hand, cu-
cumber, beans, leek, eggs, water, break, bowl, etc.)
were chosen based on the criteria that they repre-
sent objects dissimilar to each other, since we hy-
pothesize that the change of state indicated by the

verb will differ depending on the object’s features.
Each verb-noun pair was presented to turkers

via Amazon Mechanical Turk (AMT) and they
were asked to describe (by text) the changes of
state that occur to the object as a result of the
verb. The descriptions were collected under two
conditions: (1) without showing the correspond-
ing video clips (so turkers would have to use
their imagination of the physical situation) and
(2) showing the corresponding video clips. For
each condition and each verb-noun pair, we col-
lected 30 turkers’ responses, which resulted in a
total of 1800 natural language responses describ-
ing change of state.

3.3 Categorization of Change of State

Based on Dixon and Aikhenvald’s typology for ad-
jectives (Dixon and Aikhenvald, 2006) and turk-
ers’ responses, we identified a categorization to
characterize causality, as shown in Table 1. This
categorization is also driven by the expectation
that these attributes can be potentially recognized
from the physical world by artificial agents. The
first column specifies the type of state change and
the second column specifies specific attributes re-
lated to the type. The third column specifies the
particular value associated with the attribute, e.g.,
it could be a binary categorization on whether a
change happens or not (i.e., changes), or a direc-
tion along a scale (i.e., increase/decrease), or a
specific value (i.e., specific such as “five pieces”).
In total, we have identified eighteen causality cat-
egories corresponding to eighteen attributes as
shown in Table 1.

An important motivation of modeling physical
causality is to provide guidance for visual pro-
cessing. Our hypothesis is that once a language
description is given together with its correspond-
ing visual scene, potential causality of verbs or
verb-noun pairs can trigger some visual detectors
associated with the scene. This can potentially
improve grounded language understanding (e.g.,
grounding nouns to objects in the scene). Next we
give a detailed account on these visual detectors
and their role in grounded language understand-
ing.

4 Visual Detectors based on Physical
Causality

The changes of state associated with the eighteen
attributes can be detected from the physical world
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Type Attribute Attribute Value
Dimension Size, length, volume Changes, increases, decreases, specific

Shape Changes, specific (cylindrical, flat, etc.)
Color/Texture Color Appear, disappear, changes, mix, separate, specific (green, red, etc.)

Texture Changes, specific (slippery, frothy, etc.)
Physical Property Weight Increase, decrease

Flavor, smell Changes, intensifies, specific
Solidity Liquefies, solidifies, specific
Wetness Becomes wet(ter), dry(er)
Visibility Appears, disappears
Temperature Increases, decreases
Containment Becomes filled, emptied, hollow
Surface Integrity A hole or opening appears

Quantification Number of pieces Increases, one becomes many, decreases, many become one
Position Location Changes, enter/exit container, specific

Occlusion Becomes covered, uncovered
Attachment Becomes detached
Presence No longer present, becomes present
Orientation Changes, specific

Table 1: Categorization of physical causality.

Attribute Rule-based Detector Refined Rule-based Detector

Attachment / NumberOfPieces Multiple object tracks merge into one,
or one object track breaks into multiple.

Multiple tracks merge into one.
One track breaks into multiple.

Presence / Visibility Object track appears or disappears. Object track appears.
Object track disappears.

Location Object’s final location is different from
the initial location.

Location shifts upwards.
Location shifts downwards.
Location shifts rightwards.
Location shifts leftwards.

Size Object’s x-axis length or y-axis length
is different from the initial values.

Object’s x-axis length increases.
Object’s x-axis length decreases.
Object’s y-axis length increases.
Object’s y-axis length decreases.

Table 2: Causality detectors applied to patient of a verb.

using various sensors. In this paper, we only focus
on attributes that can be detected by visual per-
ception. More specifically, we chose the subset:
Attachment, NumberOfPieces, Presence, Visibil-
ity, Location, Size. They are chosen because: 1)
according to the pilot study, they are highly corre-
lated with our selected verbs; and 2) they are rela-
tively easy to be detected from vision.

Corresponding to these causality attributes, we
defined a set of rule-based detectors as shown in
Table 2. These in fact are very simple detectors,
which consist of four major detectors and a refined
set that distinguishes directions of state change.
These visual detectors are specifically applied to
the potential objects that may serve as patient for
a verb to identify whether certain changes of state
occur to these objects in the visual scene.

5 Verb Causality in Grounded Language
Understanding

In this section, we demonstrate how verb causal-
ity modeling and visual detectors can be used to-

gether for grounded language understanding. As
shown in Figure 1, given a video clip V of hu-
man action and a parallel sentence S describing
the action, our goal is to ground different seman-
tic roles of the verb (e.g., get) to objects in the
video. This is similar to the grounded semantic
role labeling task (Yang et al., 2016). Here, we fo-
cus on a set of four semantic roles {agent, patient,
source, destination}. We also assume that we have
object and hand tracking results from video data.
Each object in the video is represented by a track,
which is a series of bounding boxes across video
frames. Thus, given a video clip and a parallel
sentence, the task is to ground semantic roles of
the verb λ1, λ2, . . . , λk to object (or hand) tracks
γ1, γ2, . . . , γn, in the video.1 We applied two ap-
proaches to this problem.

1For manipulation actions, the agent is almost always one
of the human’s hands (or both hands). So we constrain the
grounding of the agent role to hand tracks, and constrain the
grounding of the other roles to object tracks.
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Language	descrip.on:	The	man	gets	a	knife	from	the	drawer. 

Verb:	“get”	
	

Agent:	ground	to	the	hand	in	the	green	box	
	

Pa.ent:	“knife”,	ground	to	the	object	in	the	red	box	
	

Source:	“drawer”,	ground	to	the	object	in	the	blue	box 

Figure 1: Grounding semantic roles of the verb
get in the sentence: the man gets a knife from the
drawer.

5.1 Knowledge-driven Approach

We intend to establish that the knowledge of phys-
ical causality for action verbs can be acquired di-
rectly from the crowd and such knowledge can be
coupled with visual detectors for grounded lan-
guage understanding.

Acquiring Knowledge. To acquire knowledge
of verb causality, we collected a larger dataset of
causality annotations based on sentences from the
TACoS Multilevel corpus (Rohrbach et al., 2014),
through crowd-sourcing on Amazon Mechanical
Turk. Annotators were shown a sentence contain-
ing a verb-patient pair (e.g., “The person chops
the cucumber into slices on the cutting board”).
And they were asked to annotate the change of
state that occurred to the patient as a result of the
verb by choosing up to three options from the 18
causality attributes. Each sentence was annotated
by three different annotators.

This dataset contains 4391 sentences, with 178
verbs, 260 nouns, and 1624 verb-noun pairs. Af-
ter summarizing the annotations from three differ-
ent annotators, each sentence is represented by a
18-dimension causality vector. In the vector, an
element is 1 if at least two annotators labeled the
corresponding causality attribute as true, 0 other-
wise. For 83% of all the annotated sentences, at
least one causality attribute was agreed on by at
least two people.

From the causality annotation data, we can ex-
tract a verb causality vector c(v) for each verb
by averaging all causality vectors of the sentences

that contain this verb v.

Applying Knowledge. Since the collected causal-
ity knowledge was only for the patient, we first
look at the grounding of patient. Given a sen-
tence containing a verb v and its patient, we want
to ground the patient to one of the object tracks
in the video clip. Suppose we have the causal-
ity knowledge, i.e., c(v), for the verb. For each
candidate track in the video, we can generate a
causality detection vector d(γi), using the pre-
defined causality detectors. A straightforward way
is to ground the patient to the object track whose
causality detection results has the best coherence
with the causality knowledge of the verb. The co-
herence is measured by the cosine similarity be-
tween c(v) and d(γi).2

Since objects in other semantic roles often have
relations with the patient during the action, once
we have grounded the patient, we can use it as an
anchor point to ground the other three semantic
roles. To do this, we define two new detectors for
grounding each role as shown in Table 3. These
detectors are designed using some common sense
knowledge, e.g., source is likely to be the initial
location of the patient; destination is likely to be
the final location of the patient; agent is likely to
be the hand that touches the patient. With these
new detectors, we simply ground a role to the ob-
ject (or hand) track that has the largest number of
positive detections from the corresponding detec-
tors.

It is worth noting that although currently we
only acquired knowledge for verbs that appear in
the cooking domain, the same approach can be ex-
tended to verbs in other domains. The detectors
associated with attributes are expected to remain
the same. The significance of this knowledge-
driven method is that, once you have the causality
knowledge of a verb, it can be directly applied to
any domain without additional training.

5.2 Learning-based Approach

Our second approach is based on learning from
training data. A key requirement for this approach
is the availability of annotated data where the ar-
guments of a verb are already correctly grounded
to the objects in the visual scene. Then we can
learn the association between detected causality

2In the case that not every causality attribute has a corre-
sponding detector, we need to first condense c(v) to the same
dimensionality with d(γi).
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Semantic Role Rule-based Detector

Source

Patient track appears within its
bounding box.
Its track is overlapping with the
patient track at the initial frame.

Destination

Patient track disappears within
its bounding box.
Its track is overlapping with the
patient track at the final frame.

Agent

Its track is overlapping with the
patient track when the patient track
appears or disappears.
Its track is overlapping with the
patient track when the patient track
starts moving or stops moving.

Table 3: Causality detectors for grounding source,
destination, and agent.

attributes and verbs. We use Conditional Random
Field (CRF) to model the semantic role ground-
ing problem. In this approach, causality detection
results are used as features in the model.

An example CRF factor graph is shown in Fig-
ure 2. The structure of CRF graph is created
based on the extracted semantic roles, which al-
ready abstracts away syntactic variations such as
active/passive constructions. This CRF model is
similar to the ones in (Tellex et al., 2011) and
(Yang et al., 2016), where φ1, . . . , φ4 are binary
random variables, indicating whether the ground-
ing is correct. In the learning stage, we use the
following objective function:

p(Φ|λ1, . . . , λk, γ1, . . . , γk, v)

=
1
Z

∏
i

Ψi(φi, λi, γ1, . . . , γk, v) (1)

where Φ is the binary random vector [φ1, . . . , φk],
and v is the verb. Z is the normalization constant.
Ψi is the potential function that takes the following
log-linear form:

Ψi(φi, λi,Γ, v) = exp

(∑
l

wlfl(φi, λi,Γ, v)

)
(2)

where fl is a feature function, wl is feature weight
to be learned, and Γ = [γ1, . . . , γk] are the ground-
ings. In our model, we use the following features:

1. Joint features between a track label of γi and
a word occurrence in λi.

2. Joint features between each of the causality
detection results and a verb v. Causality de-
tection includes all the detectors in Table 2
and Table 3. Note that the causality detectors

Figure 2: The CRF factor graph of the sentence:
the man gets a knife from the drawer.

shown in Table 3 capture relations between
groundings of different semantic roles.

During learning, gradient ascent with L2 regular-
ization is used for parameter learning.

Compared to (Tellex et al., 2011) and (Yang et
al., 2016), a key difference in our model is the in-
corporation of causality detectors. These previous
works (Tellex et al., 2011; Yang et al., 2016) ap-
ply geometric features, for example, to capture re-
lations, distance, and relative directions between
grounding objects. These geometric features can
be noisy. In our model, features based on causal-
ity detectors are motivated and informed by the
underlying causality models for corresponding ac-
tion verbs.

In the inference step, we want to find the most
probable groundings. Given a video clip and its
parallel sentence, we fix the Φ to be true, and
search for groundings γ1, . . . , γk that maximize
the probability as in Equation 1. To reduce the
search space we apply beam search to ground in
the following order: patient, source, destination,
agent.

5.3 Experiments and Results

We conducted our experiments using the dataset
from (Yang et al., 2016). This dataset was devel-
oped from a subset of the TACoS corpus (Reg-
neri et al., 2013). It contains a set of video clips
paired with natural language descriptions related
to two cooking tasks “cutting cucumber” and “cut-
ting bread”. Each task has 5 videos showing how
different people perform the same task, and each
of these videos was split into pairs of video clips
and corresponding sentences. For each video clip,
objects are annotated with bounding boxes, tracks,
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All take put get cut open wash slice rinse place peel remove
# Instances 279 58 15 47 29 6 28 13 29 29 10 15

With Ground-truth Track Labels
Label Matching 67.7 70.7 46.7 72.3 69.0 16.7 85.7 69.2 82.8 37.9 90.0 60.0
Yang et al., 2016 84.6 93.2 91.7 93.6 77.8 80.0 93.5 86.7 90.0 66.7 80.0 38.9
VC-Knowledge 89.6∗ 94.8 73.3 100∗ 93.1 83.3 100 92.3 96.6 58.6 90.0 73.3∗

VC-Learning 90.3∗ 94.8 86.7 100∗ 93.1 83.3 89.3 92.3 96.6 75.9 80.0 66.7∗

Without Track Labels
Label Matching 9.0 12.1 13.3 2.1 10.3 16.7 3.6 7.7 10.3 10.3 20.0 6.7
Yang et al., 2016 24.5 11.9 8.3 17.0 50.0 10.0 29.0 40.0 40.0 0 60.0 11.1
VC-Knowledge 60.2∗ 82.8∗ 60.0∗ 87.2∗ 58.6 50.0 39.3 46.2 41.4 48.3∗ 10.0 40.0
VC-Learning 71.7∗ 91.4∗ 33.3 87.2∗ 72.4 83.3∗ 46.4 84.6∗ 51.7 65.5∗ 80.0 60.0∗

Table 4: Grounding accuracy on patient role

Overall Agent Patient Source Destination
Number of Instances 644 279 279 51 35

With Ground-truth Track Labels
Label Matching 66.3 68.5 67.7 41.2 74.3
Yang et al., 2016 84.2 86.4 84.6 72.6 81.6
VC-Knowledge 86.8 89.3 89.6∗ 60.8 82.9
VC-Learning 88.2∗ 88.2 90.3∗ 76.5 88.6

Without Track Labels
Label Matching 33.5 66.7 9.0 7.8 2.9
Yang et al., 2016 48.2 86.1 24.5 15.7 13.2
VC-Knowledge 69.9∗ 89.6 60.2∗ 45.1∗ 25.7
VC-Learning 75.0∗ 87.1 71.7∗ 41.2∗ 54.3∗

Table 5: Grounding accuracy on four semantic roles

and labels (e.g. “cucumber, cutting board” etc).
For each sentence, the semantic roles of a verb are
extracted using Propbank (Kingsbury and Palmer,
2002) definitions and each of them is annotated
with the ground truth groundings in terms of the
object tracks in the corresponding video clip. We
selected the 11 most frequent verbs (get, take,
wash, cut, rinse, slice, place, peel, put, remove,
open) and the 4 most frequent explicit semantic
roles (agent, patient, source, destination) in this
evaluation. In total, this dataset includes 977 pairs
of video clips and corresponding sentences, and
1096 verb-patient occurrences.

We compare our knowledge-driven approach
(VC-Knowledge) and learning-based approach
(VC-Learning) with the following two baselines.

Label Matching. This method simply grounds
the semantic role to the track whose label matches
the word phrase. If there are multiple matching
tracks, it will randomly choose one of them. If
there is no matching track, it will randomly select
one from all the tracks.

Yang et al., 2016. This work studies grounded
semantic role labeling. The evaluation data from
this work is used in this paper. It is a natural base-
line for comparison.

To evaluate the learning-based approaches such

as VC-Learning and (Yang, et al., 2016), 75%
of video clips with corresponding sentences were
randomly sampled as the training set. The remain-
ing 25% were used as the test set. For approaches
which do not need training such as Label Match-
ing and VC-Knowledge, we used the same test set
to report their results.

The results of the patient role grounding for
each verb are shown in Table 4. The results of
grounding all four semantic roles are shown in Ta-
ble 5. The scores in bold are statistically signifi-
cant (p < 0.05) compared to the Label Matching
method. The scores with an asterisk (∗) are statis-
tically significant (p < 0.05) compared to (Yang et
al., 2016).

As it can be difficult to obtain labels for the
track, especially when the vision system encoun-
ters novel objects, we further conducted several
experiments assuming we do not know the labels
for the object tracks. In this case, only geometric
information of tracked objects is available. Table 4
and Table 5 also include these results.

From the grounding results, we can see that the
causality modeling has shown to be very effec-
tive in grounding semantic roles. First of all, both
the knowledge-driven approach and the learning-
based approach outperform the two baselines. In
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All take put get cut open wash slice rinse place peel remove
VC-Knowledge 89.6 94.8 73.3 100 93.1 83.3 100 92.3 96.6 58.6 90.0 73.3
P-VC-Knowledge 89.9 96.6 73.3 100 96.6 66.7 100 92.3 96.6 65.5 90.0 60.0

Table 6: Grounding accuracy on patient role using predicted causality knowledge.

particular, our knowledge-driven approach (VC-
Knowledge) even outperforms the trained model
(Yang et al., 2016). Our learning-based approach
(VC-Learning) achieves the best overall perfor-
mance. In the learning-based approach, causal-
ity detection results can be seen as a set of in-
termediate visual features. The reason that our
learning-based approach significantly outperforms
the similar model in (Yang et al., 2016) is that the
causality categorization provides a good guideline
for designing intermediate visual features. These
causality detectors focus on the changes of state of
objects, which are more robust than the geometric
features used in (Yang et al., 2016).

In the setting of no object recognition labels,
VC-Knowledge and VC-Learning also generate
significantly better grounding accuracy than the
two baselines. This once again demonstrates the
advantage of using causality detection results as
intermediate visual features. All these results il-
lustrate the potential of causality modeling for
grounded language understanding.

The results in Table 5 also indicate that ground-
ing source or destination is more difficult than
grounding patient or agent. One reason could be
that source and destination do not exhibit obvi-
ous change of state as a result of action, so their
groundings usually depend on the correct ground-
ing of other roles such as patient.

Since automated tracking for this TACoS
dataset is notably difficult due to the complexity
of the scene and the lack of depth information, our
current results are based on annotated tracks. But
object tracking algorithms have made significant
progress in recent years (Yang et al., 2013; Milan
et al., 2014). We intend to apply our algorithms
with automated tracking on real scenes in the fu-
ture.

6 Causality Prediction for New Verbs

While various methods can be used to acquire
causality knowledge for verbs, it may be the case
that during language grounding, we do not know
the causality knowledge for every verb. Further-
more, manual annotation/acquisition of causality
knowledge for all verbs can be time-consuming.

In this section, we demonstrate that the existing
causality knowledge for some seed verbs can be
used to predict causality for new verbs of which
we have no knowledge.

We formulate the problem as follows. Suppose
we have causality knowledge for a set of seed
verbs as training data. Given a new verb, whose
causality knowledge is not known, our goal is to
predict the causality attributes associated with this
new verb. Although the causality knowledge is
unknown, it is easy to compute Distributional Se-
mantic Models (DSM) for this verb. Then our goal
is to find the causality vector c′ that maximizes

arg max
c′

p(c′|v), (3)

where v is the DSM vector for the verb v. The
usage of DSM vectors is based on our hypothe-
sis that the textual context of a verb can reveal its
possible causality information. For example, the
contextual words “pieces” and “halves” may indi-
cate the CoS attribute “NumberOfPieces” for the
verb “cut”.

We simplify the problem by assuming that
the causality vector c′ takes binary values, and
also assuming the independence between different
causality attributes. Thus, we can formulate this
task as a group of binary classification problems:
predicting whether a particular causality attribute
is positive or negative given the DSM vector of a
verb. We apply logistic regression to train a sep-
arate classifier for each attribute. Specifically, for
the features of a verb, we use the Distributional
Memory (typeDM) (Baroni and Lenci, 2010) vec-
tor. The class label indicates whether the corre-
sponding attribute is associated with the verb.

In our experiment we chose six attributes to
study: Attachment, NumberOfPieces, Presence,
Visibility, Location, and Size. For each one of the
eleven verbs in the grounding task, we predict its
causality knowledge using classifiers trained on all
other verbs (i.e., 177 verbs in training set). To
evaluate the predicted causality vectors, we ap-
plied them in the knowledge-driven approach (P-
VC-Knowledge). Grounding results were com-
pared with the same method using the causal-
ity knowledge collected via crowd-sourcing. Ta-
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ble 6 shows the grounding accuracy on the pa-
tient role for each verb. For most verbs, us-
ing the predicted knowledge achieves very simi-
lar performance compared to using the collected
knowledge. The overall grounding accuracy of us-
ing the predicted knowledge on all four semantic
roles is only 0.3% lower than using the collected
knowledge. This result demonstrates that physical
causality of action verbs, as part of verb semantics,
can be learned through Distributional Semantics.

7 Conclusion

This paper presents, to the best of our knowledge,
the first attempt that explicitly models the physical
causality of action verbs. We have applied causal-
ity modeling to the task of grounding semantic
roles to the environment using two approaches: a
knowledge-based approach and a learning-based
approach.

Our empirical evaluations have shown en-
couraging results for both approaches. When
annotated data is available (in which seman-
tic roles of verbs are grounded to physical ob-
jects), the learning-based approach, which learns
the associations between verbs and causality de-
tectors, achieves the best overall performance.
On the other hand, the knowledge-based ap-
proach also achieves competitive performance
(even better than previous learned models), with-
out any training. The most exciting aspect about
the knowledge-based approach is that causality
knowledge for verbs can be acquired from humans
(e.g., through crowd-sourcing) and generalized to
novel verbs about which we have not yet acquired
causality knowledge.

In the future, we plan to build a resource for
modeling physical causality for action verbs. As
object recognition and tracking are undergoing
significant advancements in the computer vision
field, such a resource together with causality de-
tectors can be immediately applied for any ap-
plications that require grounded language under-
standing.
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