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Abstract
Quotation detection is the task of locating
spans of quoted speech in text. The state
of the art treats this problem as a sequence
labeling task and employs linear-chain con-
ditional random fields. We question the ef-
ficacy of this choice: The Markov assump-
tion in the model prohibits it from making
joint decisions about the begin, end, and
internal context of a quotation. We per-
form an extensive analysis with two new
model architectures. We find that (a), sim-
ple boundary classification combined with
a greedy prediction strategy is competitive
with the state of the art; (b), a semi-Markov
model significantly outperforms all others,
by relaxing the Markov assumption.

1 Introduction

Quotations are occurrences of reported speech,
thought, and writing in text. They play an impor-
tant role in computational linguistics and digital
humanities, providing evidence for, e.g., speaker
relationships (Elson et al., 2010), inter-speaker sen-
timent (Nalisnick and Baird, 2013) or politeness
(Faruqui and Pado, 2012). Due to a lack of general-
purpose automatic systems, such information is
often obtained through manual annotation (e.g.,
Agarwal et al. (2012)), which is labor-intensive and
costly. Thus, models for automatic quotation detec-
tion form a growing research area (e.g., Pouliquen
et al. (2007); Pareti et al. (2013)).

Quotation detection looks deceptively simple,
but is challenging, as the following example shows:

[The pipeline], the company said, [would
be built by a proposed joint venture . . . ,
and Trunkline . . . will “build and operate”
the system . . . ].1

1Penn Attributions Relation Corpus (PARC), wsj 0260

Note that quotations can (i) be signalled by lexi-
cal cues (e.g., communication verbs) without quota-
tion marks, (ii) contain misleading quotation marks;
(iii) be discontinuous, and (iv) be arbitrarily long.

Early approaches to quotation detection use
hand-crafted rules based on syntactic mark-
ers (Pouliquen et al., 2007; Krestel et al., 2008).
While yielding high precision, they suffered from
low recall. The state of the art (Pareti et al., 2013;
Pareti, 2015) treats the task as a sequence classifi-
cation problem and uses a linear-chain conditional
random field (CRF). This approach works well for
the prediction of the approximate location of quo-
tations, but yields a lower performance detecting
their exact span.

In this paper, we show that linear-chain sequence
models are a sub-optimal choice for this task. The
main reason is their length, as remarked above:
Most sequence labeling tasks in NLP (such as most
cases of named entity recognition) deal with spans
of a few tokens. In contrast, the median quotation
length on the Penn Attributions Relation Corpus
(PARC, Pareti et al. (2013)) is 16 tokens and the
longest span has over 100 tokens. As a result of the
strong Markov assumptions that linear-chain CRFs
make to ensure tractability, they cannot capture
“global” properties of (almost all) quotations and
are unable to make joint decisions about the begin
point, end point, and content of quotations.

As our first main contribution in this paper, we
propose two novel model architectures designed
to investigate this claim. The first is simpler than
the CRF. It uses token-level classifiers to predict
quotation boundaries and combines the boundaries
greedily to predict spans. The second model is
more expressive. It is a semi-Markov sequence
model which relaxes the Markov assumption, en-
abling it to consider global features of quotation
spans. In our second main contribution, an analysis
of the models’ performances, we find that the sim-
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pler model is competitive with the state-of-the-art
CRF. The semi-Markov model outperforms both of
them significantly by 3 % F1. This demonstrates
that the relaxed Markov assumptions help improve
performance. Our final contribution is to make
implementations of all models publicly available.2

2 The Task: Quotation Detection

Problem Definition Following the terminology
established by Pareti et al. (2013), we deal with the
detection of content spans, the parts of the text that
are being quoted. To locate such spans, it is helpful
to first detect cues which often mark the begin-
ning or end of a quotation. The following example
shows an annotated sentence from the PARC cor-
pus; each content span (CONT) is associated with
exactly one cue span (CUE):

Mr. Kaye [denies]CUE [the suit’s
charges]CONT and [says]CUE [his only
mistake was taking on Sony in the
marketplace]CONT.3

Pareti et al. (2013) distinguish three types of quo-
tations. Direct quotations are fully enclosed in
quotation marks and are a verbatim reproduction
of the original utterance. Indirect quotations para-
phrase the original utterance and have no quotation
marks. Mixed quotations contain both verbatim
and paraphrase content and may thus contain quo-
tation marks. Note that the type of a content span
is assigned automatically based on its surface form
using the definitions just given.

Quotation Detection as Sequence Modeling In
this paper, we compare our new model architec-
tures to the state-of-the-art approach by Pareti
(2015), an extension of Pareti et al. (2013). Their
system is a pipeline: Its first component is the cue
model, a token-level k-NN classifier applied to the
syntactic heads of all verb groups. After cues are
detected, content spans are localized using the con-
tent model, a linear-chain conditional random field
(CRF) which makes use of the location of cues in
the document through features.

As their system is not publicly available, we re-
implement it. Our cue classifier is an averaged
perceptron (Collins, 2002) which we describe in
more detail in the following section. It uses the

2http://www.ims.uni-stuttgart.de/data/qsample
3PARC, wsj 2418

C1. Surface form, lemma, and PoS tag for all tokens within a
window of ±5.

C2. Bigrams of surface form, lemma, and PoS tag
C3. Shape of ti

C4. Is any token in a window of ±5 a named entity?
C5. Does a quotation mark open or close at ti (determined by

counting)? Is ti within quotation marks?
C6. Is ti in the list of reporting verbs, noun cue verbs, titles,

WordNet persons or organizations, and its VerbNet class
C7. Do a sentence, paragraph, or the document begin or end

at ti, ti−1, or ti+1?
C8. Distance to sentence begin and end; sentence length
C9. Does the sentence contain ti a pronoun/named en-

tity/quotation mark?
C10. Does a syntactic constituent starts or ends at ti?
C11. Level of ti in the constituent tree
C12. Label and level of the highest constituent in the tree

starting at ti; label of ti’s the parent node
C13. Dependency relation with parent or any child of ti (with

and without parent surface form)
C14. Any conjunction of C5, C9, C10

Table 1: Cue detection features for a token ti at
position i, mostly derived from Pareti (2015)

S1. Is a direct or indirect dependency parent of ti classified
as a cue, in the cue list, or the phrase “according to”?

S2. Was any token in a window of ±5 classified as a cue?
S3. Distance to the previous and next cue
S4. Does the sentence containing ti have a cue?
S5. Conjunction of S4 and all features from C14

Table 2: Additional features for content span detec-
tion, mostly derived from Pareti (2015)

features in Table 1.4 Our content model is a CRF
with BIOE labels. It uses all features from Table 1
plus features that build on the output of the cue
classifier, shown in Table 2.

3 New Model Architectures

While Pareti (2015) apply sequence modeling for
quotation detection, they do not provide an analysis
what the model learns. In this paper, we follow
the intuition that a linear-chain CRF mostly makes
local decisions about spans, while ignoring their
global structure, such as joint information about
the context of the begin and end points. If this is
true, then (a) a model might work as well as the
CRF without learning from label sequences, and (b)
a model which makes joint decisions with global
information might improve over the CRF.

This motivates our two new model architectures
for the task. We illustrate the way the different
architectures make use of information in Figure 1.
Our simpler model (GREEDY) makes strictly lo-
cal classification decisions, completely ignoring

4For replicability, we give more detailed definitions of the
features in the supplementary notes.
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tiCRF:

GREEDY:

SEMIMARKOV:

ti+1 ti+2 ti+3 ti+4 ti+5 ti+6

ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6

ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6

Figure 1: Information usage by model architecture.
Frames indicate joint decisions on token labels.
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Figure 2: Information flow in all three models

those around it. The CRF is able to coordinate
decisions within a window, which is propagated
through Viterbi decoding. The more powerful
model (SEMIMARKOV) takes the full span into
account and makes a joint decision about the begin
and end points.

Our intuition about the shortcomings of the CRF
is based on an empirical analysis. However, to sim-
plify the presentation, we postpone the presentation
of this analysis to Section 6 where we can discuss
and compare the results of all three models.

3.1 Model Decomposition and Formalization

We first introduce a common formalization for our
model descriptions. Our problem of interest is con-
tent span detection, the task of predicting a set S of
content spans (tb, te) delimited by their begin and
end tokens. The CRF solves this task by classifying
tokens as begin/end/inside/outside tokens and thus
solves a proxy problem. The problem is difficult
because corresponding begin and end points need
to be matched up over long distances, a challenge
for probabilistic finite state automata such as CRFs.

In our model, cue detection, the task of detect-
ing cue tokens tc (cf. Section 2), remains the first
step. However, we then decompose the content
span problem solved by the CRF by introducing
the intermediary task of boundary detection. As
illustrated in Figure 2, this means identifying the
sets of all begin and end tokens, tb and te, ignoring
their interdependencies. We then recombine these

Algorithm 1 GREEDY content span algorithm
Input: List of documents D; feature functions fx for cue,

begin, and end (x ∈ c, b, e); distance parameter dmax;
length parameter `max

Output: Content span labeling S
1: θc,θb,θe ← TRAINCLASSIFIERS(D,fc,f b,fe)
2: for d in D do
3: S ← ∅
4: for token t in d do
5: if θc ·fc(t) > 0 then
6: tb ← next token right of t . next begin

where θb ·f b(t) > 0
7: te ← next token right of tb . next end

where θe ·fe(t) > 0
8: if |tb − tc| ≤ dmax

and |te − tb| ≤ `max

and OVERLAPPING(tb, te) = ∅
then

9: S ← S ∪{(tb, te)} . add span

predictions with two different strategies, as detailed
in Section 3.2 and Section 3.3. This decomposition
has two advantages: (a), we expect that boundary
detection is easier than content span detection, as
we remove the combinatorial complexity of match-
ing begin and end tokens; (b), begin, end, and cue
detection are now three identical classification tasks
that can be solved by the same machinery.

We model each of the three tasks (cue/begin/end
detection) with a linear classifier of the form

scorex(t) = θx ·fx(t) (1)

for a token t, a class x ∈ {c, b, e} (for cue, begin,
and end), a feature extraction function fx(t), and a
weight vector θx. We re-use the feature templates
from Section 2 to remain comparable to the CRF.

We estimate all parameters θx with the per-
ceptron algorithm, and use parameter averaging
(Collins, 2002). Since class imbalances, which
occur in the boundary detection tasks, can have
strong effects (Barandela et al., 2003), we train the
perceptron with uneven margins (Li et al., 2002).
This variant introduces two learning margins: τ−1

for the negative class and τ+1 for the positive class.
Increasing τ+1 at a constant τ−1 increases recall
(as failure to predict this class is punished more),
potentially at the loss of precision, and vice versa.

3.2 Greedy Span Detection
Our first new model, GREEDY (Figure 2, bottom
center), builds on the assumption that the model-
ing of sequence properties in a linear-chain CRF
is weak enough that sequence learning can be re-
placed by a greedy procedure. Algorithm 1 shows
how we generate a span labeling based on the out-
put of the boundary classifiers. Starting at each cue,
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we add all spans within a given distance dmax from
the cue whose length is below a given maximum
`max. If the candidate span is OVERLAPPING with
any existing spans, we discard it. Analogously, we
search for spans to the left of the cue. The algo-
rithm is motivated by the structure of attribution
relations: each content span has one associated cue.

3.3 Semi-Markov Span Detection

Our second model extends the CRF into a
semi-Markov architecture which is able to han-
dle global features of quotation span candidates
(SEMIMARKOV, Figure 2 bottom right). Follow-
ing previous work (Sarawagi and Cohen, 2004), we
relax the Markov assumption inside spans. This al-
lows for extracting arbitrary features on each span,
such as conjunctions of features on the begin and
end tokens or occurrence counts within the span.

Unfortunately, the more powerful model archi-
tecture comes at the cost of a more difficult predic-
tion problem. Sarawagi and Cohen (2004) propose
a variant of the Viterbi algorithm. This however
does not scale to our application, since the maxi-
mum length of a span factors into the prediction
runtime, and quotations can be arbitrarily long. As
an alternative, we propose a sampling-based ap-
proach: we draw candidate spans (proposals) from
an informed, non-uniform distribution of spans. We
score these spans to decide whether they should be
added to the document (accepted) or not (rejected).
This way, we efficiently traverse the space of po-
tential span assignments while still being able to
make informed decisions (cf. Wick et al. (2011)).

To obtain a distribution over spans, we adapt the
approach by Zhang et al. (2015). We introduce
two independent probability distributions: Pb is
the distribution of probabilities of a token being a
begin token; Pe is the distribution of probabilities
of a token being an end token. We sample a single
content span proposal (DRAWPROPOSAL) by first
sampling the order in which the boundaries are to
be determined (begin token or end token first) by
sampling a binary variable d ∼ Bernoulli(0.5). If
the begin token is to be sampled first, we continue
by drawing a begin token tb ∼ Pb and finally draw
an end token te ∼ Pe within a window of up to
`max tokens to the right of tb. If the end token is to
be sampled first, we proceed conversely. We also
propose empty spans, i.e., the removal of existing
spans without an replacement.

For the distributions Pb and Pe, we reuse our

Algorithm 2 SEMIMARKOV inference algorithm
Input: Document d; probability distributions for begin and

end (Pb, Pe); feature function for spans g; maximum span
length `max; number of proposals N

Output: Set of content spans S
1: S ← ∅
2: θ ← 0
3: for n = 1 to N do
4: (tb, te)← DRAWPROPOSAL(Pb, Pe)
5: score← θ · g(tb, te)
6: O ← OVERLAPPING(tb, te)
7: scoreO ←∑

(t′
b
,t′e)∈O θ · g(t′b, t′e)

8: if score > scoreO then
9: S ← S \O . remove overlapping

10: S ← S ∪{(tb, te)} . accept proposal
11: if ISTRAINING and ¬CORRECT(tb, te) then
12: PERCEPTRONUPDATE . wrongly accepted
13: else
14: REJECT(tb, te)
15: if ISTRAINING and CORRECT(tb, te) then
16: PERCEPTRONUPDATE . wrongly rejected

boundary detection models from Section 3.1. For
each class x ∈ {b, e} we form a distribution

Px(t) ∝ exp(scorex(t)/Tx) (2)

over the tokens t of a document using the scores
from Equation 1. Tx is a temperature hyperparam-
eter. Temperature controls the pronouncedness of
peaks in the distribution. Higher temperature flat-
tens the distribution and encourages the selection
of tokens with lower scores. This is useful when
exploration of the sample space is desired.

The proposed candidates enter into the decision
algorithm shown in Algorithm 2. As shown, the
candidates are scored using a linear model (again
as defined in Equation 1). We use the features of
the previous models (Table 1 and 2) on the begin
and end tokens. As we now judge complete span
assignments rather than local label assignments
to tokens, we can add a new span-global feature
function g(tb, te). We introduce the features shown
in Table 3. If the candidate’s score is higher than
the sum of scores of all spans overlapping with it,
we accept it and remove all overlapping ones.

This model architecture can be seen as a mod-
ification of the pipeline of the GREEDY model
(cf. Figure 2). We again detect cues and boundaries,
but then make an informed decision for combining
begin and end candidates. In addition, the sampler
makes “soft” selections of begin and end tokens
based on the model scores rather than simply ac-
cepting the classifier decisions.

For training, we again use perceptron updates
(cf. Section 3.2). If the model accepts a wrong
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Setting Direct Indirect Mixed Overall

P R F P R F P R F P R F
st

ri
ct

Pareti (2015) as reported therein 94 88 91 78 56 65 67 60 63 80 63 71
CRF (own re-implementation) 94 93 94 73 58 64 81 68 74 79g 67 72

GREEDY 92 91 91 69 59 64 72 64 68 75 67 71
SEMIMARKOV 93 94 94 73 65 69 81 66 73 79g 71c

g 75c
g

Combination: CRF+SEMIMARKOV 94 93 94 73 64 69 81 68 74 79g 71c
g 75c

g

pa
rt

ia
l

Pareti (2015) as reported therein 99 93 96 91 66 77 91 81 86 93 73 82
CRF (own re-implementation) 98 96 97 87 70 77 94 83 88 90g 77 83

GREEDY 97 95 96 83 76 79 93 85 89 88 81c 84
SEMIMARKOV 97 95 96 83 75 79 92 81 86 88 80 84
Combination: CRF+SEMIMARKOV 98 96 97 83 75 79 94 83 88 88 81c 84c

Table 4: Results on the test set of PARC3. Best overall strict results in bold. Models as in Figure 2.
g: significantly better than GREEDY; c: significantly better than CRF (both with α = 0.05).

G1. Numbers of named entities, lowercased tokens, commas,
and pronouns inside the span

G2. Binned percentage of tokens that depend on a cue
G3. Location of the closest cue (left/right?), percentage of

dependents on that cue
G4. Number of cues overlapped by the span
G5. Is there a cue before the first token and/or after the last

token of the span (within the same sentence)? first or
after the last token of the span?, and their conjunction

G6. Do both the first and the last token depend on a cue?
G7. Binned length of the span
G8. Does the span match a sentence exactly/off by one token?
G9. Number of sentences covered by the span
G10. Does the span match one or more constituents exactly?
G11. Is the span direct, indirect, or mixed?
G12. Is the # of quotation marks in the span odd or even?
G13. Is the span is direct and does it contain more than two

quotation marks?

Table 3: Global features for content span detection

span, we perform a negative update (Line 12 in
Algorithm 2). If a correct span is rejected, we
make a positive update (Line 16). We iterate over
the documents in random order for a fixed number
E of epochs. As the sampling procedure takes long
to fully label documents, we employ GREEDY to
make initial assignments. This does not constitute
additional supervision, as the sampler can remove
any initial span and thus refute the initialization.
This reduces runtime without affecting the result in
practice.

4 Experimental Setup

Data We use the Penn Attribution Relations Cor-
pus, version 3 (henceforth PARC3), by Pareti
(2015).5 It contains AR annotations on the Wall
Street Journal part of the Penn Treebank (2,294

5Note that the data and thus the results differ from those
previously published in (Pareti et al., 2013).

news documents). As in related work, we use sec-
tions 1–22 as training set, section 23 as test set,
and section 24 as development set. We perform
the same preprocessing as Pareti: We use gold
tokenization, lemmatization, part-of-speech tags,
constituency parses, gold named entity annotations
(Weischedel and Brunstein, 2005), and Stanford
parser dependency analyses (Manning et al., 2014).

Evaluation We report precision, recall, and
micro-averaged F1, adopting the two metrics in-
troduced by Pareti et al. (2013): Strict match con-
siders cases as correct where the boundaries of the
spans match exactly. Partial match measures cor-
rectness as the ratio of overlap of the predicted
and true spans. In both cases, we report numbers
for each of the three quotation types (direct, indi-
rect, mixed) and their micro averages. Like Pareti
(2015), we exclude single-token content spans from
the evaluation. To test for statistical significance
of differences, we use the approximate randomiza-
tion test (Noreen, 1989) at a significance level of
α = 0.05.

Implementation and Hyperparameters We
use the CRF implementation in MALLET (Mc-
Callum, 2002). We optimize all hyperparameters
of the models on the development set. Our best
models use positive margins of τ+ = 25 for the
boundary and τ+ = 15 for the span models, fa-
voring recall. The SEMIMARKOV sampler uses a
temperature of Tx = 10 for all classes. We per-
form 15 epochs of training after which the models
have converged, and draw 1,000 samples for each
document. For the GREEDY model, we obtain the
best results with dmax = 30 and `max = 55. For
the SEMIMARKOV sampler, `max = 75 is optimal.
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The high values mirror the presence of very long
spans in the data.

5 Results

Cue We first evaluate the cue classifier. We ob-
tain an F1 of 86 %, with both precision and recall at
86 %, which is very close to the 85 % F1 of Pareti.

CRF Table 4 summarizes the content span re-
sults. First, we compare Pareti’s results to our reim-
plementation (the rows denoted with Pareti (2015)
and CRF). There are some differences in how well
the model performs on certain types of spans: while
our precision is lower for indirect spans, it is higher
on mixed spans. Additionally, our implementa-
tion generally has higher recall than Pareti’s. Her
system includes several features using proprietary
lists (such as a manually curated list of titles) we
were unable to obtain, and complex feature tem-
plates that we may interpret differently. We suspect
that these differences are due to the typical replica-
tion problems in NLP (cf. Fokkens et al. (2013)).
Overall, however, our model performs quite simi-
larly to Pareti’s, with our model scoring an overall
F1 of 72 % (vs. Pareti’s 71 %) and a partial F1 of
83 % (vs. 82 %).

GREEDY Next, we compare the GREEDY model
to the CRF. We find its overall performance to be
comparable to the CRF, confirming our expecta-
tions. While strict precision is statistically signif-
icantly lower for GREEDY (75 % vs. 79 %), strict
recall is not significantly different (bot at 67 %).
Considering partial matches, GREEDY has signif-
icantly higher recall (81 % vs. 77 %) but signifi-
cantly lower precision (88 % vs. 90 %) than the
CRF, with an overall comparable F1. This result
bolsters our hypothesis that the CRF learn only a
small amount of useful sequence information. Al-
though GREEDY ignores label sequences in train-
ing completely, it is able to compete with the CRF.
Furthermore, the partial match result that GREEDY

is a particularly good choice if the main interest
is the approximate location of content spans in a
document: The simpler model architecture makes
it easier and more efficient to train and apply. The
caveat is that GREEDY is particularly bad at locat-
ing mixed spans (as indicated by a precision of only
72 %): Quotation marks are generally good indica-
tors for span boundaries and are often returned as
false positives by the boundary detection models,
so GREEDY tends to incorrectly pick them.

SEMIMARKOV Overall, the SEMIMARKOV

model outperforms the CRF significantly in terms
of strict recall (71 % vs. 67 %) and F1 (75 %
vs. 72 %), while precision remains unaffected (at
79 %). The model performs particularly well on
indirect quotations (increasing F1 by 5 points to
69 %), the most difficult category, where local con-
text is insufficient. Meanwhile, on partial match,
the SEMIMARKOV model has a comparable re-
call (80 vs. 77 %), but significantly lower precision
(88 % vs. 90 %). The overall partial F1 results are
not significantly different. The improvement on
the strict measures supports our intuition that better
features help in particular in identifying the exact
boundaries of quotations, a task that evidently prof-
its from global information.

Model Combination The complementary
strengths of the CRF and SEMIMARKOV (CRF
detects direct quotations well, SEMIMARKOV

indirect quotations) suggest a simple model
combination algorithm based on the surface form
of the spans: First take all direct and mixed spans
predicted by the CRF; then add all indirect spans
from the SEMIMARKOV model (except for those
which would overlap). This result is our overall
best model under strict evaluation, although it is
not significantly better than the SEMIMARKOV

model. Considering partial match, its results are
essentially identical to the SEMIMARKOV model.

6 Analysis

We now proceed to a more detailed analysis of the
performance of the three models (CRF, GREEDY,
and SEMIMARKOV) and their differences in order
to gain insights into the nature of the quotation
detection task. In the interest of readability, we
organize this section by major findings instead of
the actual analyses that we have performed, and
adduce for each finding all relevant analysis results.

Finding 1: Variation in length does not explain
the differences in model performance. A pos-
sible intuition about our models it that the improve-
ment of SEMIMARKOV over CRF is due to a better
handling of longer quotations. However, this is not
the case. Figure 3 shows the recall of the three
models for quotations binned by lengths. The main
patterns hold across all three models: Medium-
length spans are the easiest to detect. Short spans
are difficult to detect as they are often part of dis-
continuous content spans. Long spans are also
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Figure 3: Strict recall by span length for CRF (left), GREEDY (center), and SEMIMARKOV model (right)

Category
Count

B I E

looking left 27 14 7
looking right 1 13 30

cue 11 10 7
other lexical 31 21 22
structural/syntactic 27 44 35
punctuation 31 25 36

Table 5: Categories of top positive and negative
CRF features for begin (B), inside (I), and end (E)

difficult since any wrong intermediary decision can
falsify the prediction. In fact, the CRF model is
even the best model among the three for very long
spans (which are rare). Those spans exceed the
55 and 75 token limits `max of the GREEDY and
SEMIMARKOV models. Intuitively, for the CRF,
most spans are long: even spans which are short
in comparison to other quotations are longer than
the window within which the CRF operates. This
is why span length does not have an influence.

Finding 2: Quotations are mostly defined by
their immediate external context. A feature
analysis of the CRF model reveals that many impor-
tant features refer to material outside the quotation
itself. For each label (B, I, E), we collect the 50
features with the highest positive and negative val-
ues, respectively. We first identify the subset of
those features that looks look left or right. As the
upper part of Table 5 shows, a substantial number
of B (begin) features look to the left, and a number
of E (end) features look to the right. Thus, these
features do not look at the quotation itself, but at
its immediate external context.

We next divide the features into four broad cate-
gories (cues, other lexical information, structural
and syntactic features, and punctuation including

quotation marks). The results in the lower part of
Table 5 show that the begin and end classes rely
on a range of categories, including lexical, cue and
punctuation outside the quotation. The situation is
different for inside tokens (I), where most features
express structural and syntactic properties of the
quotation such as the length of a sentence and its
syntactic relation to a cue. Together, these observa-
tions suggest that one crucial piece of information
about quotations is their lexical and orthographic
context: the factors that mark a quotation as a quo-
tation. Another crucial piece are internal structural
properties of the quotation, while lexical proper-
ties of the quotation are not very important: which
makes sense, since almost anything can be quoted.

The feature analysis is bolstered by an error anal-
ysis of the false negatives in the high-precision
low-recall CRF. The first reason for false nega-
tives is indeed the occurrence of infrequent cues
which the cue model fails to identify (e.g., read or
acknowledge). The second one is that the model
does attempt to learn syntactic features, but that
the structural features that can be learned by the
CRF (such as C7, C10 or S4) can model only local
windows of the quality of the quotation, but not its
global quality. This leads us to our third finding.

Finding 3: Simple models cannot capture de-
pendencies between begin and end boundaries
well. Given the importance of cues, as evidenced
by our Finding 2, we can ask whether the boundary
of the quotation that is adjacent to its associated
cue (“cue-near”) is easier to identify than the other
boundary (“cue-far”) whose context is less informa-
tive. To assess this question, we evaluate the recall
of individual boundary detection at the token level.
For the CRF, “cue-far” boundaries of spans indeed
tend to be more difficult to detect than “cue-near”
ones. The results in Table 6 show that both the
GREEDY and the CRF model show a marked asym-
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GREEDY CRF SEMIMARKOV

cue-near 76 74 76
cue-far 72 71 75

Table 6: Recall on boundaries by cue position

metry and perform considerably worse (3 % and
4 %, respectively) on the cue-far boundary. This
asymmetry is considerably weaker for the SEMI-
MARKOV model, where both boundary types are
recognized almost on par. The reason behind this
finding is that neither the GREEDY model nor the
CRF can condition the choice of the cue-far bound-
ary on the cue-near boundary or on global proper-
ties of the quotation – the GREEDY model, because
its choices are completely independent, and the
CRF model, because its choices are largely inde-
pendent due to the Markov assumption.

Finding 4: The SEMIMARKOV model benefits
the most from its ability to handle global fea-
tures about content spans. This leads us to our
final finding about why the SEMIMARKOV model
outperforms the CRF – whether it is the model ar-
chitecture itself, or the new global features that it
allows us to formulate. We perform an ablation
study whose results are shown in Figure 4. We be-
gin with only the token-level features on the begin,
end, and interior tokens of the span, as introduced
in Section 2, i.e., the features that the CRF has at
its disposal. We find that this model performs on
par with the CRF, thus the model architecture on
its own does not help. We then incrementally add
the feature templates containing count statistics of
the internal tokens (Template G1 in Table 3) and
advanced cue information (G2–G6). Both give the
model incremental boosts. Adding syntactic coher-
ence features (G7–G13) completes our full feature
set and yields the best results.

Thus, the difference comes from features that
describe global properties of the quotation. One
of the most informative (negative) features is the
conjunction from G6. It enforces the constraint
that each content span is associated with a single
cue. As in the CRF, the actual content of a content
span does not play a large role. The only semantic
features the model considers concern the presence
of named entities within the span.

These observations are completed by analysis
of the quotation spans that were correctly detected
by the SEMIMARKOV model, but not the CRF (in

token +internal +cue +structural
Feature set

F
0.

60
0.

65
0.

70
0.

75

*
*

Figure 4: Strict F1 for different feature sets in the
SEMIMARKOV model. *: Difference statistically
significant. Dashed line: CRF result.

terms of strict recall). We find a large amount of
spans with highly ambiguous cue-near tokens such
as to (10 % of the cases) that (16 %). We find that
often the errors are also related to the frequency or
location of cues. As an example, in the sentence

[...] he has said [that when he was on the
winning side in the 1960s, he knew that
the tables might turn in the future]CONT.6

the CRF model incorrectly splits the content span at
the second cue candidate knew. This is, however, an
embedded quotation that the model should ignore.
In contrast, the SEMIMARKOV model makes use
of the fact the tokens of the span depend on the
same cue, and predicts the span correctly. For these
tokens, the distinction between reported speech and
factual descriptions is difficult. Arguably, it is the
global features that help the model make its call.

7 Related Work

Quotation detection has been tackled with a number
of different strategies. Pouliquen et al. (2007) use a
small set of rules which has high precision but low
recall on multilingual text. Krestel et al. (2008) also
pursue a rule-based approach, focusing on the roles
of cue verbs and syntactic markers. They evaluate
on a small set of annotated WSJ documents and
again report high precision but low recall. Pareti
et al. (2013) develop the state-of-the-art sequence
labeling approach discussed in this paper.

Our sampling approach builds on that of Zhang
et al. (2015), who pursue a similar strategy for pars-
ing, PoS tagging, and sentence segmentation. Simi-
lar semi-Markov model approaches have been used
for other applications, e.g. by Yang and Cardie

6PARC, wsj 2347
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(2012) and Klinger and Cimiano (2013) for sen-
timent analysis. They also predict spans by sam-
pling, but they draw proposals based on the token
or syntactic level. This is not suitable for quotation
detection as we deal with much longer spans.

8 Conclusion

We have considered the task of quotation detection,
starting from the hypothesis that linear-chain CRFs
cannot take advantage of all available sequence in-
formation due to its Markov assumptions. Indeed,
our analyses find that the features most important
to recognize a quotation consider its direct con-
text of orthographic evidence (such as quotation
marks) and lexical evidence (such as cue words).
A simple, greedy algorithm using non-sequential
models of quotation boundaries rivals the CRF’s
performance. For further improvements, we in-
troduce a semi-Markov model capable of taking
into account global information about the complete
span not available to a linear-chain CRF, such as
the presence of cues on both sides of the quotation
candidate. This leads to a significant improvement
of 3 points F1 over the state of the art.

On a more general level, we believe that quota-
tion detection is interesting as a representative of
tasks involving long sequences, where Markov as-
sumptions become inappropriate. Other examples
of such tasks include the identification of chemical
compound names (Krallinger et al., 2015) and the
detection of annotator rationales (Zaidan and Eis-
ner, 2008). We have shown that a more expressive
semi-Markov model which avoids these assump-
tions can improve performance. More expressive
models however come with harder inference prob-
lems which are compounded when applied to long-
sequence tasks. The informed sampling algorithm
we have described performs such efficient inference
for our semi-Markov quotation detection model.
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