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Abstract

Traditional syntax models typically lever-
age part-of-speech (POS) information by
constructing features from hand-tuned
templates. We demonstrate that a better
approach is to utilize POS tags as a reg-
ularizer of learned representations. We
propose a simple method for learning a
stacked pipeline of models which we call
“stack-propagation”. We apply this to de-
pendency parsing and tagging, where we
use the hidden layer of the tagger network
as a representation of the input tokens for
the parser. At test time, our parser does
not require predicted POS tags. On 19 lan-
guages from the Universal Dependencies,
our method is 1.3% (absolute) more accu-
rate than a state-of-the-art graph-based ap-
proach and 2.7% more accurate than the
most comparable greedy model.

1 Introduction

In recent years, transition-based dependency
parsers powered by neural network scoring func-
tions have dramatically increased the state-of-the-
art in terms of both speed and accuracy (Chen and
Manning, 2014; Alberti et al., 2015; Weiss et al.,
2015). Similar approaches also achieve state-of-
the-art in other NLP tasks, such as constituency
parsing (Durrett and Klein, 2015) or semantic
role labeling (FitzGerald et al., 2015). These
approaches all share a common principle: re-
place hand-tuned conjunctions of traditional NLP
feature templates with continuous approximations
learned by the hidden layer of a feed-forward net-
work.
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However, state-of-the-art dependency parsers
depend crucially on the use of predicted part-of-
speech (POS) tags. In the pipeline or stacking
(Wolpert, 1992) method, these are predicted from
an independently trained tagger and used as fea-
tures in the parser. However, there are two main
disadvantages of a pipeline: (1) errors from the
POS tagger cascade into parsing errors, and (2)
POS taggers often make mistakes precisely be-
cause they cannot take into account the syntactic
context of a parse tree. The POS tags may also
contain only coarse information, such as when us-
ing the universal tagset of Petrov et al. (2011).

One approach to solve these issues has been to
avoid using POS tags during parsing, e.g. either
using semi-supervised clustering instead of POS
tags (Koo et al., 2008) or building recurrent repre-
sentations of words using neural networks (Dyer et
al., 2015; Ballesteros et al., 2015). However, the
best accuracy for these approaches is still achieved
by running a POS tagger over the data first and
combining the predicted POS tags with additional
representations. As an alternative, a wide range of
prior work has investigated jointly modeling both
POS and parse trees (Li et al., 2011; Hatori et
al., 2011; Bohnet and Nivre, 2012; Qian and Liu,
2012; Wang and Xue, 2014; Li et al., 2014; Zhang
et al., 2015; Alberti et al., 2015). However, these
approaches typically require sacrificing either ef-
ficiency or accuracy compared to the best pipeline
model, and often they simply re-rank the predic-
tions of a pipelined POS tagger.

In this work, we show how to improve accuracy
for both POS tagging and parsing by incorporat-
ing stacking into the architecture of a feed-forward
network. We propose a continuous form of stack-
ing that allows for easy backpropagation down the
pipeline across multiple tasks, a process we call
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Figure 1: Traditional stacking (left) vs. Stack-propagation
(right). Stacking uses the output of Task A as features in
Task B, and does not allow backpropagation between tasks.
Stack-propagation uses a continuous and differentiable link
between Task A and Task B, allowing for backpropagation
from Task B into Task A’s model. Updates to Task A act as
regularization on the model for Task B, ensuring the shared
component is useful for both tasks.

Backpropagation

“stack-propagation” (Figure 1). At the core of this
idea is that we use POS tags as regularization in-
stead of features.

Our model design for parsing is very simple:
we use the hidden layer of a window-based POS
tagging network as the representation of tokens in
a greedy, transition-based neural network parser.
Both networks are implemented with a refined ver-
sion of the feed-forward network (Figure 3) from
Chen and Manning (2014), as described in Weiss
et al. (2015). We link the tagger network to the
parser by translating traditional feature templates
for parsing into feed-forward connections from the
tagger to the parser (Figure 2). At training time,
we unroll the parser decisions and apply stack-
propagation by alternating between stochastic up-
dates to the parsing or tagging objectives (Figure
4). The parser’s representations of tokens are thus
regularized to be individually predictive of POS
tags, even as they are trained to be useful for pars-
ing when concatenated and fed into the parser net-
work. This model is similar to the multi-task net-
work structure of Collobert et al. (2011), where
Collobert et al. (2011) shares a hidden layer be-
tween multiple tagging tasks. The primary differ-
ence here is that we show how to unroll parser
transitions to apply the same principle to tasks
with fundamentally different structure.

The key advantage of our approach is that at
test time, we do not require predicted POS tags
for parsing. Instead, we run the tagger network up
to the hidden layer over the entire sentence, and
then dynamically connect the parser network to

the tagger network based upon the discrete parser
configurations as parsing unfolds. In this way, we
avoid cascading POS tagging errors to the parser.
As we show in Section 5, our approach can be
used in conjunction with joint transition systems
in the parser to improve both POS tagging as well
as parsing. In addition, because the parser re-uses
the representation from the tagger, we can drop all
lexicalized features from the parser network, lead-
ing to a compact, faster model.

The rest of the paper is organized as follows. In
Section 2, we describe the layout of our combined
architecture. In Section 3, we introduce stack-
propagation and show how we train our model.
We evaluate our approach on 19 languages from
the Universal Dependencies treebank in Section 4.
We observe a >2% absolute gain in labeled ac-
curacy compared to state-of-the-art, LSTM-based
greedy parsers (Ballesteros et al., 2015) and a
>1% gain compared to a state-of-the-art, graph-
based method (Lei et al., 2014). We also evaluate
our method on the Wall Street Journal, where we
find that our architecture outperforms other greedy
models, especially when only coarse POS tags
from the universal tagset are provided during train-
ing. In Section 5, we systematically evaluate the
different components of our approach to demon-
strate the effectiveness of stack-propagation com-
pared to traditional types of joint modeling. We
also show that our approach leads to large reduc-
tions in cascaded errors from the POS tagger.

We hope that this work will motivate fur-
ther research in combining traditional pipelined
structured prediction models with deep neural
architectures that learn intermediate representa-
tions in a task-driven manner. One important
finding of this work is that, even without POS
tags, our architecture outperforms recurrent ap-
proaches that build custom word representations
using character-based LSTMs (Ballesteros et al.,
2015). These results suggest that learning rich
embeddings of words may not be as important as
building an intermediate representation that takes
multiple features of the surrounding context into
account. Our results also suggest that deep mod-
els for dependency parsing may not discover POS
classes when trained solely for parsing, even when
it is fully within the capacity of the model. De-
signing architectures to apply stack-propagation in
other coupled NLP tasks might yield significant
accuracy improvements for deep learning.
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Figure 2: Detailed example of the stacked parsing model. Top: The discrete parser state, consisting of the stack and the buffer,
is updated by the output of the parser network. In turn, the feature templates used by the parser are a function of the state.
In this example, the parser has three templates, stack:0, stack:1, and input :0. Bottom: The feature templates create
many-to-many connections from the hidden layer of the tagger to the input layer of the parser. For example, the predicted
root of the sentence (“‘ate”) is connected to the input of most parse decisions. At test time, the above structure is constructed
dynamically as a function of the parser output. Note also that the predicted POS tags are not directly used by the parser.

2 Continuous Stacking Model

In this section, we introduce a novel neural net-
work model for parsing and tagging that incorpo-
rates POS tags as a regularization of learned im-
plicit representations. The basic unit of our model
(Figure 3) is a simple, feed-forward network that
has been shown to work very well for parsing tasks
(Chen and Manning, 2014; Weiss et al., 2015).
The inputs to this unit are feature matrices which
are embedded and passed as input to a hidden
layer. The final layer is a softmax prediction.

We use two such networks in this work:
a window-based version for tagging and a
transition-based version for dependency parsing.
In a traditional stacking (pipeline) approach, we
would use the discrete predicted POS tags from
the tagger as features in the parser (Chen and
Manning, 2014). In our model, we instead feed
the continuous hidden layer activations of the tag-
ger network as input to the parser. The primary
strength of our approach is that the parser has ac-
cess to all of the features and information used by
the POS tagger during training time, but it is al-
lowed to make its own decisions at test time.

To implement this, we show how we can re-
use feature templates from Chen and Manning
(2014) to specify the feed-forward connections
from the tagger network to the parser network.
An interesting consequence is that because this
structure is a function of the derivation produced
by the parser, the final feed-forward structure of
the stacked model is not known until run-time.

T

Softmax Layer [P(y) x exp{ | ho + by})
Hidden Layer [ho = max{0, WT<X;'—EQ> + bo}}
Embedding Layer

Feature templates

Words Suffixes

Prefixes

Figure 3: Elementary NN unit used in our model. Feature
matrices from multiple channels are embedded, concatenated
together, and fed into a rectified linear hidden layer. In the
parser network, the feature inputs are continuous representa-
tions from the tagger network’s hidden layer.

However, because the connections for any specific
parsing decision are fixed given the derivation, we
can still extract examples for training off-line by
unrolling the network structure from gold deriva-
tions. In other words, we can utilize our approach
with the same simple stochastic optimization tech-
niques used in prior works. Figure 2 shows a fully
unrolled architecture on a simple example.

2.1 The Tagger Network

As described above, our POS tagger follows the
basic structure from prior work with embedding,
hidden, and softmax layers. Like the “window-
approach” network of Collobert et al. (2011), the
tagger is evaluated per-token, with features ex-
tracted from a window of tokens surrounding the
target. The input consists of a rich set of fea-
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stack-propagation update. a: Example
parser configuration ¢ with correspond-
ing stack and buffer. b: Forward and
backward stages for the given single ex-
ample. During the forward phase, the
tagger networks compute hidden acti-
vations for each feature template (e.g.
stacko and bufferg), and activations are
fed as features into the parser network.
For the backward update, we backpropa-
gate training signals from the parser net-
work into each linked tagging example.

tures for POS tagging that are deterministically ex-
tracted from the training data. As in prior work,
the features are divided into groups of different
sizes that share an embedding matrix E. Features
for each group g are represented as a sparse ma-
trix X9 with dimension F9 x V9, where F9 is
the number of feature templates in the group, and
V9 is the vocabulary size of the feature templates.
Each row of XY is a one-hot vector indicating the
appearance of each feature.

The network first looks up the learned embed-
ding vectors for each feature and then concate-
nates them to form the embedding layer. This em-
bedding layer can be written as:

hg = [X9E7 | Vg (D

where E7 is a learned V9 x D9 embedding ma-
trix for feature group. Thus, the final size |hy| =
Zg F9DY is the sum of all embedded feature
sizes. The specific features and their dimensions
used in the tagger are listed in Table 1. Note that
for all features, we create additional null value
that triggers when features are extracted outside
the scope of the sentence. We use a single hidden
layer in our model and apply rectified linear unit
(ReLU) activation function over the hidden layer
outputs. A final softmax layer reads in the acti-
vations and outputs probabilities for each possible
POS tag.

2.2 The Parser Network

The parser component follows the same design
as the POS tagger with the exception of the fea-
tures and the output space. Instead of a window-
based classifier, features are extracted from an arc-
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(b) Forward and backward schema for (a).

Features (g) Window D
Symbols 1 8
Capitalization +/-1 4
Prefixes/Suffixes (n = 2, 3) +/-1 16
Words +/-3 64

Table 1: Window-based tagger feature spaces. “Symbols”
indicates whether the word contains a hyphen, a digit or a
punctuation.

standard parser configuration' ¢ consisting of the
stack s, the buffer b and the so far constructed de-
pendencies (Nivre, 2004). Prior implementations
of this model used up to four groups of discrete
features: words, labels (from previous decisions),
POS tags, and morphological attributes (Chen and
Manning, 2014; Weiss et al., 2015; Alberti et al.,
2015).

In this work, we apply the same design princi-
ple but we use an implicitly learned intermediate
representation in the parser to replace traditional
discrete features. We only retain discrete features
over the labels in the incrementally constructed
tree (Figure 4). Specifically, for any token of inter-
est, we feed the hidden layer of the tagger network
evaluated for that token as input to the parser. We
implement this idea by re-using the feature tem-
plates from prior work as indexing functions.

We define this process formally as follows. Let
fi(c) be a function mapping from parser config-
urations c¢ to indices in the sentence, where ¢ de-
notes each of our feature templates. For example,
in Figure 4(a), when ¢ =stacky, fi(c) is the in-

"Note that the “stack” in the parse configuration is sepa-
rate from the “stacking” of the POS tagging network and the
parser network (Figure 1).
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dex of “fox” in the sentence. Let h'*99°"(j) be
the hidden layer activation of the tagger network
evaluated at token j. We define the input X #mplicit
by concatenating these tagger activations accord-
ing to our feature templates:

XZmplicit 2 hiiaggﬂ" (fz (C)) . (2)

Thus, the feature group X™Plicit g the row-
concatenation of the hidden layer activations of
the tagger, as indexed by the feature templates.
We have that F#mPlicit jg the number of feature
templates, and V¥mPlicit —  [ytagger  the num-
ber of possible values is the number of hidden
units in the tagger. Just as for other features,
we learn an embedding matrix E?Plicit of size
Himplicit o pimplicit Note that as in the POS tag-
ger network, we reserve an additional null value
for out of scope feature templates. A full exam-
ple of this lookup process, and the resulting feed-
forward network connections created, is shown for
a simple three-feature template consisting of the
top two tokens on the stack and the first on the
buffer in Figure 2. See Table 1 for the full list of
20 tokens that we extract for each state.

3 Learning with Stack-propagation

In this section we describe how we train our stack-
ing architecture. At a high level, we simply apply
backpropagation to our proposed continuous form
of stacking (hence “stack-propagation.”) There are
two major issues to address: (1) how to handle
the dynamic many-to-many connections between
the tagger network and the parser network, and (2)
how to incorporate the POS tag labels during train-
ing.

Addressing the first point turns out to be fairly
easy in practice: we simply unroll the gold trees
into a derivation of (state, action) pairs that pro-
duce the tree. The key property of our pars-
ing model is that the connections of the feed-
forward network are constructed incrementally as
the parser state is updated. This is different than a
generic recurrent model such as an LSTM, which
passes activation vectors from one step to the next.
The important implication at training time is that,
unlike a recurrent network, the parser decisions
are conditionally independent given a fixed his-
tory. In other words, if we unroll the network
structure ahead of time given the gold derivation,
we do not need to perform inference when training
with respect to these examples. Thus, the overall

training procedure is similar to that introduced in
Chen and Manning (2014).

To incorporate the POS tags as a regularization
during learning, we take a fairly standard approach
from multi-task learning. The objective of learn-
ing is to find parameters © that maximize the data
log-likelihood with a regularization on © for both
parsing and tagging:

max Ay log(Po(y | x))+
x,yeT

> log(Pe(alc), ()

c,a€P

where {x,y} are POS tagging examples extracted
from individual tokens and {c, a} are parser (con-
figuration, action) pairs extracted from the un-
rolled gold parse tree derivations, and A is a trade-
off parameter.

We optimize this objective stochastically by al-
ternating between two updates:

* TAGGER: Pick a POS tagging example and
update the tagger network with backpropaga-
tion.

* PARSER: (Figure 4) Given a parser con-
figuration ¢ from the set of gold contexts,
compute both tagger and parser activations.
Backpropagate the parsing loss through the
stacked architecture to update both parser and
tagger, ignoring the tagger’s softmax layer
parameters.

While the learning procedure is inspired from
multi-task learning—we only update each step
with regards one of the two likelihoods—there are
subtle differences that are important. While a tra-
ditional multi-task learning approach would use
the final layer of the parser network to predict both
POS tags and parse trees, we predict POS tags
from the first hidden layer of our model (the “tag-
ger” network) only. We treat the POS labels as
regularization of our parser and simply discard the
softmax layer of the tagger network at test time.
As we will show in Section 4, this regularization
leads to dramatic gains in parsing accuracy. Note
that in Section 5, we also show experimentally
that stack-propagation is more powerful than the
traditional multi-task approach, and by combining
them together, we can achieve better accuracy on
both POS and parsing tasks.
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Method ar bg da de en e e fa fi fr hi id it iw nl no pl pt sl AVG
NO TAGS
B’15LSTM  75.6 83.1 69.6 72.4 77.9 78.5 67.5 74.7 73.2 77.4 859 72.3 84.1 73.1 69.5 82.4 78.0 79.9 80.1 76.6

Ours (window) 76.1 82.9 70.9 71.7 79.2 79.3 69.1 77.5 72.5 78.2 87.1 71.8 83.6 76.2 72.3 83.2 77.8 79.0 79.8 77.3

UNIVERSAL TAGSET

B’15LSTM  74.6 82.4 68.1 73.0 77.9 77.8 66.0 75.0 73.6 78.0 86.8 72.2 84.2 74.5 68.4 83.3 74.5 80.4 78.1 76.2
Pipeline P,y 73.7 83.6 72.0 73.0 79.3 79.5 63.0 78.0 66.9 78.5 87.8 73.5 84.2 75.4 70.3 83.6 73.4 79.5 79.4 76.6
RBGParser 75.8 83.6 73.9 73.5 79.9 79.6 68.0 78.5 65.4 78.9 87.7 74.2 84.7 77.6 72.4 83.9 75.4 81.3 80.7 77.6
Stackprop 77.0 84.3 73.8 74.2 80.7 80.7 70.1 78.5 74.5 80.0 88.9 74.1 85.8 77.5 73.6 84.7 79.2 80.4 81.8 78.9

Table 2: Labeled Attachment Score (LAS) on Universal Dependencies Treebank. Top: Results without any POS tag observa-
tions. “B’15 LSTM” is the character-based LSTM model (Ballesteros et al., 2015), while “Ours (window)” is our window-based
architecture variant without stackprop. Botfom: Comparison against state-of-the-art baselines utilizing the POS tags. Paired
t-tests show that the gain of Stackprop over all other approaches is significant (p < 107° for all but RBGParser, which is

p < 0.02).

3.1 Implementation details

Following Weiss et al. (2015), we use mini-
batched averaged stochastic gradient descent
(ASGD) (Bottou, 2010) with momentum (Hinton,
2012) to learn the parameters © of the network.
We use a separate learning rate, moving average,
and velocity for the tagger network and the parser;
the PARSER updates all averages, velocities, and
learning rates, while the TAGGER updates only the
tagging factors. We tuned the hyperparameters of
momentum rate 4, the initial learning rate 7y and
the learning rate decay step -y using held-out data.
The training data for parsing and tagging can be
extracted from either the same corpus or different
corpora; in our experiments they were always the
same.

To trade-off the two objectives, we used a ran-
dom sampling scheme to perform 10 epochs of
PARSER updates and 5 epochs of TAGGER up-
dates. In our experiments, we found that pre-
training with TAGGER updates for one epoch be-
fore interleaving PARSER updates yielded faster
training with better results. We also experimented
using the TAGGER updates solely for initializing
the parser and found that interleaving updates was
crucial to obtain improvements over the baseline.

4 Experiments

In this section, we evaluate our approach on sev-
eral dependency parsing tasks across a wide vari-
ety of languages.

4.1 Experimental Setup

We first investigated our model on 19 lan-
guages from the Universal Dependencies Tree-
banks v1.2.2  We selected the 19 largest cur-

“http://universaldependencies.org

rently spoken languages for which the full data
was freely available. We used the coarse universal
tagset in our experiments with no explicit morpho-
logical annotations. To measure parsing accuracy,
we report unlabeled attachment score (UAS) and
labeled attachment score (LAS) computed on all
tokens (including punctuation), as is standard for
non-English datasets.

For simplicity, we use the arc-standard (Nivre,
2004) transition system with greedy decoding. Be-
cause this transition system only produces projec-
tive trees, we first apply a projectivization step to
all treebanks before unrolling the gold derivations
during training. We make an exception for Dutch,
where we observed a significant gain on develop-
ment data by introducing the SWAP action (Nivre,
2009) and allowing non-projective trees.

For models that required predicted POS tags,
we trained a window-based tagger using the same
features as the tagger component of our stacking
model. We used 5-fold jackknifing to produce pre-
dicted tags on the training set. We found that the
window-based tagger was comparable to a state-
of-the-art CRF tagger for most languages. For ev-
ery network we trained, we used the development
data to evaluate a small range of hyperparameters,
stopping training early when UAS no longer im-
proved on the held-out data. We use H = 1024
hidden units in the parser, and H = 128 hidden
units in the tagger. The parser embeds the tag-
ger activations with D = 64. Note that following
Ballesteros et al. (2015), we did not use any aux-
iliary data beyond that in the treebanks, such as
pre-trained word embeddings.

For a final set of experiments, we evaluated on
the standard Wall Street Journal (WSJ) part of the
Penn Treebank (Marcus et al., 1993)), dependen-
cies generated from version 3.3.0 of the Stanford
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Method UAS LAS Model Variant UAS LAS POS

NO TAGS Arc-standard transition system
Dyer et al. (2015) 92.70 90.30 Pipeline (Pqq) 81.56 76.55 95.14
Ours (window-based) 92.85 90.77 Ours (window-based) 82.08 77.08 -

UNIVERSAL TAGSET Ours (Stackprop) 83.38 78.78 -
Pipeline (Pqg) 92.52  90.50 Joint parsing & tagging transition system
Stackprop 93.23 91.30 Pipeline (P,q) 81.61 76.57 95.30

FINE TAGSET Ours (Wmiow—based) 22;? ;;Zg 3451‘9‘2
Chen & Manning (2014) 91.80 89.60 Ours (Stackprop) 3. : 43
D_yer _et al. (2015) 93.10 90.90 Table 4: Averaged parsing and POS tagging results on the UD
Pipeline (7, tag) 93.10 91.16 treebanks for joint variants of stackprop. Given the window-
Stackprop 9343 91.41 based architecture, stackprop leads to higher parsing accura-

cies than joint modeling (83.38% vs. 82.58%).
Weiss et al. (2015) 93.99 92.05
Alberti et al. (2015) 9423 92.36

Table 3: WSJ Test set results for greedy and state-of-the-art
methods. For reference, we show the most accurate models
from Alberti et al. (2015) and Weiss et al. (2015), which use
a deeper model and beam search for inference.

converter (De Marneffe et al., 2006). We followed
standard practice and used sections 2-21 for train-
ing, section 22 for development, and section 23
for testing. Following Weiss et al. (2015), we
used section 24 to tune any hyperparameters of the
model to avoid overfitting to the development set.
As is common practice, we use pretrained word
embeddings from the word2vec package when
training on this dataset.

4.2 Results

We present our main results on the Universal Tree-
banks in Table 2. We directly compare our ap-
proach to other baselines in two primary ways.
First, we compare the effectiveness of our learned
continuous representations with those of Alberti et
al. (2015), who use the predicted distribution over
POS tags concatenated with word embeddings as
input to the parser. Because they also incorpo-
rate beam search into training, we re-implement a
greedy version of their method to allow for direct
comparisons of token representations. We refer to
this as the “Pipeline (P,4)” baseline. Second, we
also compare our architecture trained without POS
tags as regularization, which we refer to as “Ours
(window-based)”. This model has the same archi-
tecture as our full model but with no POS supervi-
sion and updates. Since this model never observes
POS tags in any way, we compare against a re-
current character-based parser (Ballesteros et al.,

2015) which is state-of-the-art when no POS tags
are provided.? Finally, we compare to RGBParser
(Lei et al., 2014), a state-of-the art graph-based
(non-greedy) approach.

Our greedy stackprop model outperforms all
other methods, including the graph-based RBG-
Parser, by a significant margin on the test set
(78.9% vs 77.6%). This is despite the limitations
of greedy parsing. Stackprop also yields a 2.3%
absolute improvement in accuracy compared to
using POS tag confidences as features (Pipeline
Pi.4). Finally, we also note that adding stack-
prop to our window-based model improves accu-
racy in every language, while incorporating pre-
dicted POS tags into the LSTM baseline leads to
occasional drops in accuracy (most likely due to
cascaded errors.)

5 Discussion

Stackprop vs. other representations. One un-
expected result was that, even without the POS
tag labels at training time, our stackprop archi-
tecture achieves better accuracy than either the
character-based LSTM or the pipelined baselines
(Table 2). This suggests that adding window-
based representations—which aggregate over many
features of the word and surrounding context—
is more effective than increasing the expressive-
ness of individual word representations by using
character-based recurrent models. In future work
we will explore combining these two complemen-
tary approaches.

We hypothesized that stackprop might provide
larger gains over the pipelined model when the

3We thank Ballesteros et al. (2015) for their assistance
running their code on the treebanks.
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Token married by a judge.

Don’t judge a book by

and walked away satisfied  when I walk in the door

Neighbors  mesmerizing as a rat.  doesn’t change the company’s tried, and tried hard upset when I went to
A staple! won’t charge your phone and incorporated into I mean besides me
day at a bar, then go don’t waste your money and belonged to the I felt as if I
Pattern a [noun] ’nt [verb] and [verb]ed I [verb]

Table 5: Four of examples of tokens in context, along with the three most similar tokens according to the tagger network’s
activations, and the simple pattern exhibited. Note that this model was trained with the Universal tagset which does not

distinguish verb tense.

POS tags are very coarse. We tested this latter hy-
pothesis on the WSJ corpus by training our model
using the coarse universal tagsets instead of the
fine tagset (Table 3). We found that stackprop
achieves similar accuracy using coarse tagsets as
the fine tagset, while the pipelined baseline’s per-
formance drops dramatically. And while stack-
prop doesn’t achieve the highest reported accura-
cies on the WSJ, it does achieve competitive ac-
curacies and outperforms prior state-of-the-art for
greedy methods (Dyer et al., 2015).

Stackprop vs. joint modeling. An alternative
to stackprop would be to train the final layer of
our architecture to predict both POS tags and
dependency arcs. To evaluate this, we trained
our window-based architecture with the integrated
transition system of Bohnet and Nivre (2012),
which augments the SHIFT transition to predict
POS tags. Note that if we also apply stackprop, the
network learns from POS annotations twice: once
in the TAGGER updates, and again the PARSER up-
dates. We therefore evaluated our window-based
model both with and without stack-propagation,
and with and without the joint transition system.

We compare these variants along with our re-
implementation of the pipelined model of Alberti
et al. (2015) in Table 4. We find that stackprop is
always better, even when it leads to “double count-
ing” the POS annotations; in this case, the result is
a model that is significantly better at POS tagging
while marginally worse at parsing than stackprop
alone.

Reducing cascaded errors. As expected, we
observe a significant reduction in cascaded POS
tagging errors. An example from the English UD
treebank is given in Figure 5. Across the 19 lan-
guages in our test set, we observed a 10.9% gain
(34.1% vs. 45.0%) in LAS on tokens where the
pipelined POS tagger makes a mistake, compared
to a 1.8% gain on the rest of the corpora.

root advmod advmod amod dobj
Heterosexuals increasingly back gay marriage
NOUN ADV ADV ADJ NOUN

(a) Tree by a pipeline model.

nsubj advmod root amod dobj
Heterosexuals increasingly back gay marriage
NOUN ADV ADV ADJ NOUN

(b) Tree by Stackprop model.

Figure 5: Example comparison between predictions by a
pipeline model and a joint model. While both models pre-
dict a wrong POS tag for the word “back” (ADV rather than
VERB), the joint model is robust to this POS error and predict
the correct parse tree.

Decreased model size. Previous neural parsers
that use POS tags require learning embeddings for
words and other features on top of the parameters
used in the POS tagger (Chen and Manning, 2014;
Weiss et al., 2015). In contrast, the number of to-
tal parameters for the combined parser and tag-
ger in the Stackprop model is reduced almost by
half compared to the Pipeline model, because the
parser and tagger share parameters. Furthermore,
compared to our implementation of the pipeline
model, we observed that this more compact parser
model was also roughly twice as fast.

Contextual embeddings. Finally, we also ex-
plored the significance of the representations
learned by the tagger. Unlike word embedding
models, the representations used in our parser are
constructed for each token based on its surround-
ing context. We demonstrate a few interesting
trends we observed in Table 5, where we show the
nearest neighbors to sample tokens in this contex-
tual embedding space. These representations tend
to represent syntactic patterns rather than individ-
ual words, distinguishing between the form (e.g.
“judge” as a noun vs. a verb’) and context of to-
kens (e.g. preceded by a personal pronoun).
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6 Conclusions

We present a stacking neural network model for
dependency parsing and tagging. Through a sim-
ple learning method we call “stack-propagation,”
our model learns effective intermediate represen-
tations for parsing by using POS tags as regular-
ization of implicit representations. Our model out-
performs all state-of-the-art parsers when evalu-
ated on 19 languages of the Universal Dependen-
cies treebank and outperforms other greedy mod-
els on the Wall Street Journal.

We observe that the ideas presented in this work
can also be as a principled way to optimize up-
stream NLP components for down-stream appli-
cations. In future work, we will extend this idea
beyond sequence modeling to improve models in
NLP that utilize parse trees as features. The basic
tenet of stack-propagation is that the hidden lay-
ers of neural models used to generate annotations
can be used instead of the annotations themselves.
This suggests a new methodology to building deep
neural models for NLP: we can design them from
the ground up to incorporate multiple sources of
annotation and learn far more effective intermedi-
ate representations.
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