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Abstract

There has recently been a lot of interest in
unsupervised methods for learning sense
distributions, particularly in applications
where sense distinctions are needed. This
paper analyses a state-of-the-art method
for sense distribution learning, and op-
timises it for application to the entire
vocabulary of a given language. The
optimised method is then used to pro-
duce LEXSEMTM: a sense frequency and
semantic dataset of unprecedented size,
spanning approximately 88% of polyse-
mous, English simplex lemmas, which is
released as a public resource to the com-
munity. Finally, the quality of this data is
investigated, and the LEXSEMTM sense
distributions are shown to be superior to
those based on the WORDNET first sense
for lemmas missing from SEMCOR, and at
least on par with SEMCOR-based distribu-
tions otherwise.

1 Introduction

Word sense disambiguation (WSD), as well as
more general problems involving word senses,
have been of great interest to the NLP commu-
nity for many years (for a detailed overview, see
Agirre and Edmonds (2007) and Navigli (2009)).
In particular, there has recently been a lot of work
on unsupervised techniques for these problems.
This includes unsupervised methods for perform-
ing WSD (Postma et al., 2015; Chen et al., 2014;
Boyd-Graber et al., 2007; Brody et al., 2006),

as well as complementary problems dealing with
word senses (Jin et al., 2009; Lau et al., 2014).

One such application has been the automatic
learning of sense distributions (McCarthy et al.,
2004b; Lau et al., 2014). A sense distribution
is a probability distribution over the senses of a
given lemma. For example, if the noun crane had
two senses, bird and machine, then a hypo-
thetical sense distribution could indicate that the
noun is expected to take the machine meaning
60% of the time and the bird meaning 40% of
the time in a representative corpus. Sense distribu-
tions (or simple “first sense” information) are used
widely in tasks including information extraction
(Tandon et al., 2015), novel word sense detection
(Lau et al., 2012; Lau et al., 2014), semi-automatic
dictionary construction (Cook et al., 2013), lex-
ical simplification (Biran et al., 2011), and tex-
tual entailment (Shnarch et al., 2011). Automat-
ically acquired sense distributions themselves are
also used to improve unsupervised WSD, for ex-
ample by providing a most frequent sense heuris-
tic (McCarthy et al., 2004b; Jin et al., 2009) or
by improving unsupervised usage sampling strate-
gies (Agirre and Martinez, 2004). Furthermore,
the improvement due to the most frequent sense
heuristic has been particularly strong when used
with domain-specific data (Koeling et al., 2005;
Chan and Ng, 2006; Lau et al., 2014).

In addition, there is great scope to use these
techniques to improve existing sense frequency re-
sources, which are currently limited by the bottle-
neck of requiring manual sense annotation. The
most prominent example of such a resource is
WORDNET (Fellbaum, 1998), where the sense
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frequency data is based on SEMCOR (Miller et
al., 1993), a 220,000 word corpus that has been
manually tagged with WORDNET senses. This
data is full of glaring irregularities due to its age
and the limited size of the corpus; for example,
the word pipe has its most frequent sense listed
as tobacco pipe, whereas one might expect
this to be tube carrying water or gas
in modern English (McCarthy et al., 2004a). This
is likely due to the more common use of the
tobacco pipe sense in mid-20th century liter-
ature. The problem is particularly highlighted by
the fact that out of the approximately 28,000 pol-
ysemous simplex lemmas in WORDNET 3.0, ap-
proximately 61% have no sense annotations at all,
and less than half of the remaining lemmas have at
least 5 sense annotations!

Unfortunately, there has been a lack of work
investigating how to apply sense learning tech-
niques at the scale of a full lexical resource such
as WORDNET. Updating language-wide sense
frequency resources would require learning sense
distributions over the entire vocabularies of lan-
guages, which could be extremely computation-
ally expensive. To make things worse, domain dif-
ferences could require learning numerous distribu-
tions per word. Despite this, though, we would
not want to make these techniques scalable at the
expense of sense distribution quality. Therefore,
we would like to understand the tradeoff between
the accuracy and computation time of these tech-
niques, and optimise this tradeoff. This could be
particularly critical in applying them in an indus-
trial setting.

The current state-of-the-art technique for unsu-
pervised sense distribution learning is HDP-WSI
(Lau et al., 2014). In order to address the above
concerns, we provide a series of investigations ex-
ploring how to best optimise HDP-WSI for large-
scale application. We then use our optimised
technique to produce LEXSEMTM,1 a semantic
and sense frequency dataset of unprecedented size,
spanning the entire vocabulary of English. Finally,
we use crowdsourced data to produce a new set
of gold-standard sense distributions to accompany
LEXSEMTM. We use these to investigate the qual-
ity of the sense frequency data in LEXSEMTM
with respect to SEMCOR.

1LEXSEMTM, as well as code for accessing LEXSEMTM
and reproducing our experiments is available via:
https://github.com/awbennett/LexSemTm

2 Background and Related Work

Given the difficulty and expense of obtaining
large-scale and robust annotated data, unsuper-
vised approaches to problems involving word
learning and recognising word senses have long
been studied in NLP. Perhaps the most fa-
mous such problem is word sense disambiguation
(WSD), for which many unsupervised solutions
have been proposed. Some methods are very com-
plex, performing WSD separately for each word
usage using information such as word embeddings
of surrounding words (Chen et al., 2014) or POS-
tags (Lapata and Brew, 2004). On the other hand,
most approaches make use of the difficult-to-beat
most frequent sense (MFS) heuristic (McCarthy et
al., 2007), which assigns each usage of a given
word-type to its most frequent sense.

Given the popularity of the MFS heuristic,
much of the past work on unsupervised tech-
niques has focused on identifying the most fre-
quent sense. The original method of this kind was
proposed by McCarthy et al. (2004b), which re-
lied on finding distributionally similar words to
the target word, and comparing these to the can-
didate senses. Most subsequent approaches have
followed a similar approach, based on the words
appearing nearby the target word across its to-
ken usages. Boyd-Graber and Blei (2007) for-
malise the method of McCarthy et al. (2004b) with
a probabilistic model, while others take different
approaches, such as adapting existing sense fre-
quency data to specific domains (Chan and Ng,
2005; Chan and Ng, 2006), using coarse grained
thesaurus-like sense inventories (Mohammad and
Hirst, 2006), adapting information retrieval-based
methods (Lapata and Keller, 2007), using ensem-
ble learning (Brody et al., 2006), utilising the net-
work structure of WORDNET (Boyd-Graber et al.,
2007), or making use of word embeddings (Bhin-
gardive et al., 2015). Alternatively, Jin et al.
(2009) focus on how best to use the MFS heuris-
tic, by identifying when best to apply it, based
on sense distribution entropy. Perhaps the most
promising approach is that of Lau et al. (2014),
due to its state-of-the art performance, and the fact
that it can easily by applied to any language and
any sense repository containing sense glosses.

The task we are interested in — namely, sense
distribution learning — is in principle very simi-
lar to identifying the MFS. Indeed, of these meth-
ods for identifying the MFS, some of them are
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explicitly described in terms of sense distribution
learning (Chan and Ng, 2005; Chan and Ng, 2006;
Lau et al., 2014), while the others implicitly learn
sense distributions by calculating some kind of
scores used to rank senses.

The state-of-the-art technique of Lau et al.
(2014) that we are building upon involves
performing unsupervised word sense induction
(WSI), which itself is implemented using non-
parametric HDP (Teh et al., 2006) topic mod-
els, as detailed in Section 3. The WSI compo-
nent, HDP-WSI, is based on the work of Lau et
al. (2012), which at the time was state-of-the-art.
Since then, however, other competitive WSI ap-
proaches have been developed, involving complex
structures such as multi-layer topic models (Chang
et al., 2014), or complex word embedding based
approaches (Neelakantan et al., 2014). We have
not used these approaches in this work on account
of their complexity and likely computational cost,
however we believe they are worth future explo-
ration. On the other hand, because HDP-WSI is
implemented using topic models, it can be cus-
tomised by replacing HDP with newer, more ef-
ficient topic modelling algorithms. Recent work
has produced more advanced topic modelling ap-
proaches, some of which are extensions of existing
approaches using more advanced learning algo-
rithms or expanded models (Buntine and Mishra,
2014), while others are more novel, involving vari-
ations such as neural networks (Larochelle and
Murray, 2011; Cao et al., 2015), or incorporat-
ing distributional similarity of words (Xie et al.,
2015). Of these approaches, we chose to experi-
ment with that of Buntine and Mishra (2014) be-
cause a working implementation was readily avail-
able, it has previously shown very strong perfor-
mance in terms of accuracy and speed, and it is
similar to HDP and thus easy to incorporate into
our work.

3 HDP-WSI Sense Learning

HDP-WSI (Lau et al., 2014) is a state-of-the-
art unsupervised method for learning sense distri-
butions, given a sense repository with per-sense
glosses. It takes as input a collection of exam-
ple usages of the target lemma2 and the glosses

2Except where stated otherwise, a lemma usage includes
the sentence containing the lemma, and the two immediate
neighbouring sentences (if available). It is assumed that each
usage has been normalised via lemmatisation and stopword
removal, and extra local-context tokens are added, as was

for each target sense, and produces a probability
distribution over the target senses.

At the heart of HDP-WSI is HDP (Teh et al.,
2006), a nonparametric topic modelling technique.
It is a generative probabilistic model and uses top-
ics as a latent variable to allow statistical shar-
ing between documents, providing a kind of soft-
clustering mixture model. Each document is as-
sumed to have a corresponding distribution over
these topics, and each topic is assumed to have a
corresponding distribution over words. Accord-
ing to the model, each word for a given docu-
ment is independently generated by first sampling
a topic according to that document’s distribution
over topics, and then sampling a word according
to the topic’s distribution over words. Unlike older
topic modelling methods such as LDA (Blei et al.,
2003), HDP is nonparametric, meaning the num-
ber of topics used by the model is automatically
learnt, and does not need to be set as a hyper-
parameter. In other words, the model automati-
cally learns the “right” number of topics for each
lemma.

HDP-WSI follows a two-step process: word
sense induction (WSI), followed by topic–sense
alignment. WSI is performed using HDP based
on the earlier work of Lau et al. (2012): each us-
age of the target lemma is treated as a document,
and HDP topic modelling is run on this document
collection. This gives a variable number of learnt
topics, which are the senses induced by WSI. A
single topic is then assigned to each document,3

and a distribution over these topics is learnt using
maximum likelihood estimation.

In the second step of HDP-WSI, we align the
distribution over topics from WSI to the provided
sense inventory. We first create a distribution over
words for each sense, from the sense’s gloss.4

Then a prevalence score is calculated for each
sense by taking a weighted sum of the similarity
of that sense with every topic,5 weighting each
similarity score by the topic’s probability. These
prevalence scores are finally normalised to give a
distribution over senses.

Despite state-of-the-art results with HDP-WSI
in past work (Lau et al., 2014), there are some con-

done by Lau et al. (2012).
3The topic with the maximum probability is assigned.
4As with the lemma usages, the text is normalised via lem-

matisation and stopword removal. Then a distribution is cre-
ated using maximum likelihood estimation.

5Defined in terms of Jensen Shannon divergence between
the respective distributions over words.
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cerns in applying it to large-scale learning. Most
importantly, in order to make HDP nonparamet-
ric, it relies on relatively inefficient MCMC sam-
pling techniques, typically based on a hierarchi-
cal Chinese Restaurant Process (“CRP”). On the
other hand, recent work has provided very ef-
ficient topic modelling techniques given a fixed
number of topics. While in previous work it
was assumed that performance benefits of HDP
over other techniques like LDA were based on it
learning the “right” number of topics (Lau et al.,
2012; Lau et al., 2014), more recent work chal-
lenges this assumption. Rather, it is suggested
that it is more important for topic modelling to use
high-performance learning algorithms so that top-
ics are learnt in correct proportions, in which case
“junk” topics can easily be ignored (Buntine and
Mishra, 2014). In other words, it is likely that the
previously-found performance advantage of HDP
over LDA was actually due to properties of their
respective Gibbs sampling algorithms.

Furthermore, in our experience using it for
sense distribution learning, HDP seems to use a
very consistent number of topics. In experiments
we ran on the BNC6 — the same dataset that Lau et
al. (2014) based their experiments on — the num-
ber of topics was between 5 and 10 over 80% of
the time, and over 99% of the time it was below
14. Because the number of topics is so consistent,
it is likely we can safely use a fixed number with
little risk that it will be too low.

In addition, there are some theoretical concerns
with HDP. Firstly, it models topic and word al-
locations using Dirichlet Processes (Teh et al.,
2006). However, previous research has shown
that phenomena such as word and sense frequen-
cies follow power-law distributions according to
Zipf’s law (Piantadosi, 2014), and thus are better
modelled using Pitman-Yor Processes (Pitman and
Yor, 1997). Another weakness is that HDP does
not model burstiness. This is a phenomenon where
words that occur at least once in a given discourse
are disproportionately more likely to occur several
times, even compared with other discourses about
the same topic (Church, 2000; Doyle and Elkan,
2009).

6The British National Corpus (Burnard, 1995), which is a
balanced corpus of English.

4 HCA-WSI Sense Learning

We now present and evaluate HCA-WSI, which
is an alternative to HDP-WSI that addresses the
above concerns. It follows the same process
as HDP-WSI, except that the HDP topic mod-
elling is replaced with HCA7 (Buntine and Mishra,
2014), a more advanced software suite for topic
modelling.8 HCA is based on a similar probabilis-
tic model to HDP, except for a few differences:
(1) it only has a fixed number of topics; (2) it mod-
els word frequencies using a more general Pitman-
Yor Process; and (3) it incorporates an extra com-
ponent to the model to model burstiness (each doc-
ument can individually have an elevated probabil-
ity for some words, regardless of its distribution
over topics). The second and third of these dif-
ferences directly answer our theoretical concerns
about using HDP.

The learning algorithm for HCA is called “table
indicator sampling” (Chen et al., 2011), which is
a collapsed Gibbs sampling algorithm. The over-
all probabilistic model is interpreted as a hierar-
chical CRP, and some extra latent variables called
table indicators are added to the model, which en-
code the decisions made about creating new tables
during the CRP. The use of these latent variables
allows for a very efficient collapsed Gibbs sam-
pling process, which is found to converge more
quickly than competing Gibbs sampling and vari-
ational Bayes techniques. The convergence is also
shown to be more accurate, with topic models of
lower perplexity being produced given the same
underlying stochastic model.

Compared to HDP, HCA has been shown to
be orders of magnitude faster, with similar mem-
ory overhead (Buntine and Mishra, 2014). There-
fore, as long as the quality of the sense distribu-
tions given by HCA-WSI are no worse than those
from HDP-WSI, it should be worthwhile switch-
ing in terms of scalability. This massive reduction
in computation time would be of particular benefit
to our intended large-scale application.

4.1 Evaluation

We evaluate HCA-WSI in comparison to HDP-
WSI using one of the sense tagged datasets of

7Version 0.61, obtained from:
http://www.mloss.org/software/view/527

8For simplicity we use HCA to refer to both the topic
modelling algorithm implemented by Buntine and Mishra
(2014) as well as the corresponding software suite, whereas
elsewhere HCA often only refers to the software.
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Figure 1: Comparison of the time taken to train
the topic models of HDP-WSI and HCA-WSI for
each lemma in the BNC dataset. For each method,
one data point is plotted per lemma.

Koeling et al. (2005),9 which was also used by
Lau et al. (2014). This dataset consists of 40 En-
glish lemmas, and for each lemma it contains a
set of usages of varying size from the BNC and a
gold-standard sense distribution that was created
by hand-annotating a subset of the usages with
WORDNET 1.7 senses.

Using this dataset, we can calculate the qual-
ity of a candidate sense distribution by calculat-
ing its Jensen Shannon divergence (JSD) with re-
spect to the corresponding gold-standard distribu-
tion. JSD is a measure of dissimilarity between
two probability distributions, so a lower JSD score
means the distribution is more similar to the gold-
standard, and is therefore assumed to be of higher
quality.

Given our finding on topic counts in Section 3,
HCA was run using a fixed number of 10 topics.
Other settings were configured as recommended in
the HCA documentation, or according to the HDP
settings used by Lau et al. (2014).10 This setup is
also used in subsequent experiments, except where
stated otherwise.

We proceeded by calculating the JSD scores of
all lemmas in this dataset, using both methods. We
performed a Wilcoxon signed-rank test on the two

9Koeling et al. (2005) also produced domain-specific
datasets for the same lemmas, however in order to keep
our analysis focussed we only use the domain-neutral BNC
dataset.

10Initial values for concentration and discount parameters
for burstiness were set to 100 and 0.5 respectively, and the
number of iterations was set to 300. Other hyperparameters
were left with default values.
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Figure 2: Convergence of log-perplexity of toic
model for BNC dataset lemmas, using HCA-WSI.
One line per lemma.

sequences of JSD scores, in order to test the hy-
pothesis that switching to HCA-WSI has a system-
atic impact on sense distribution quality. We found
that the mean JSD score for HDP-WSI was 0.209
± 0.116, slightly lower than the mean JSD score
for HCA-WSI of 0.211 ± 0.117. However the
two-sided p-value from the test was 0.221, which
is insignificant at any reasonable decision thresh-
old.

In addition, we compared the time taken11 to
run topic modelling for every lemma using both
methods, the results of which are displayed in Fig-
ure 1. These results show that the computation
time of HCA-WSI is consistently lower than that
of HDP-WSI, by over an order of magnitude.

We conclude that HCA-WSI is far more compu-
tationally efficient than HDP-WSI, and there is no
significant evidence that it gives worse sense dis-
tributions. Therefore, HCA-WSI is used instead
of HDP-WSI for the remainder of the paper.

5 Large-Scale Learning with HCA-WSI

In order to apply HCA-WSI sense distribution
learning on a language-wide scale, we need to
understand how to optimise it to achieve a rea-
sonable tradeoff between efficiency and sense dis-
tribution quality. Most pertinently, we need to
know how many lemma usages and iterations of
Gibbs sampling are needed for high-quality re-
sults, and whether this varies for different kinds
of lemmas. To this end, we run experiments ex-

11All benchmarking experiments were run using separate
cores on Intel Xeon CPU E5-4650L processors, on a Dell
R820 server with 503GiB of main memory.
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dataset lemmas, using HCA-WSI. One line plotted
per lemma, one data-point per bin. For each data-
point, the difference between mean JSD within
that bin and within the final bin of the lemma is
plotted.

ploring how HCA-WSI converges over increasing
numbers of lemma usages and topic model itera-
tions. These experiments are all performed using
the BNC dataset (see Section 4.1).

In order to explore the convergence of HCA-
WSI over Gibbs sampling iterations, we trained
HCA topic models for each lemma in the BNC

dataset over a large number of iterations. The re-
sults of this are displayed in Figure 2, which shows
the convergence of log-perplexity for each lemma.
We conclude that around 300 iterations of sam-
pling appears to be sufficient for convergence in
the vast majority of cases.

Next, we explored the convergence of HCA-
WSI over lemma usages by subsampling from our
training data. For each lemma in the BNC dataset,
we created a large number of sense distributions
using random subsets of the lemma’s usages.12

Each distribution was generated by randomly se-
lecting a number of usages between a minimum
of 500 and the maximum available (uniformly),
and randomly sampling that many usages without
replacement. From these usages the sense distri-
bution was created using HCA-WSI, and its JSD
score relative to the gold-standard was calculated
(as in Section 4.1). Finally, the results for each
lemma were partitioned into 40 bins of approxi-
mately equal size, according to the number of us-
ages sampled.

12Approximately 580 random sense distributions were cre-
ated per lemma.

The results of our subsampling experiment are
plotted in Figure 3, which shows the convergence
of mean JSD score for each lemma. We conclude
from this that around 5,000–10,000 usages seem to
be necessary for convergent results, and that this is
fairly consistent across lemmas.13

6 LEXSEMTM Dataset

We now discuss the creation of the LEXSEMTM
(“Lexical Semantic Topic Models”) dataset, which
contains trained topic models for the majority of
simplex English lemmas. These can be aligned
to any sense repository with glosses to produce
sense distributions, or used directly in other ap-
plications. In addition, the dataset contains distri-
butions over WORDNET 3.0 senses.

In order to produce domain-neutral sense dis-
tributions reflecting usage in modern English,
we sampled all lemma usages from English
Wikipedia.14 Our Wikipedia corpus was tokenised
and POS-tagged using OpenNLP and lemmatised
using Morpha (Minnen et al., 2001).

We trained topic models for every simplex
lemma in WORDNET 3.0 with at least 20 us-
ages in our processed Wikipedia corpus. This in-
cluded lemmas for all POS (nouns, verbs, adjec-
tives, and adverbs), and also nonpolysemous lem-
mas. In Section 5, we concluded that approxi-
mately 5,000–10,000 usages were needed for con-
vergent results with the BNC dataset. On the other
hand, given that we are working on a different cor-
pus and with a wider range of lemmas there is
uncertainty in this number, so we conservatively
sampled up to 40,000 usages per lemma, if avail-
able.

These usages were sampled from the corpus
by locating all sentences where either the surface
or lemmatised forms of the sentence contained
the target lemma, along with a matching POS-
tag. Processing of lemma usages was done almost
identically to Lau et al. (2014). However, because
we found the usages contained substantially fewer
tokens on average compared to the BNC dataset,
we included two sentences rather than one on ei-
ther side of the target lemma location where pos-
sible (giving 5 sentences in total), which gave a

13We also ran extensive experiments to test the impact of
training single topic models over multiple lemmas, using a
wide variety of sampling methods, but found the impact to
be neutral at best in terms of both the quality of the learned
sense distributions and the overall computational cost.

14The English Wikipedia dump is dated 2009-11-28.
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better match in usage size.
Topic models were trained using HCA, using al-

most the same setup as described in Section 4.1.
However, since some highly-polysemous lemmas
may require a greater number of topics than the
lemmas in the BNC dataset, we conservatively in-
creased the number of topics used from 10 to 20.
We similarly increased the number of Gibbs sam-
pling iterations from 300 to 1,000.15 Finally, for
each polysemous lemma that we trained a topic
model for, we also produced a sense distribu-
tion over WORDNET 3.0 senses, using the default
topic–sense alignment method discussed in Sec-
tion 3.

In total, 62,721 lemmas were processed, and
8,801 of these had the desired number of at least
5,000 usages. Counting only polysemous lem-
mas for which we also provide sense distribu-
tions, 25,155 were processed in total, and 6,853
of these had at least 5,000 usages. This works
out to approximately 88% coverage of polysemous
WORDNET 3.0 lemmas in total, or 24% coverage
with at least 5,000 usages (as compared to 39%
coverage by lemmas in SEMCOR, or 17% with at
least 5 sense-tagged occurrences in SEMCOR).

7 Evaluation of LEXSEMTM against
SEMCOR

Our final major contribution is an analysis of
how our LEXSEMTM sense distributions compare
with SEMCOR. We produce a new set of gold-
standard sense distributions for a diverse set of
simplex English lemmas tagged with WORDNET

3.0 senses, created using crowdsourced annota-
tions of English Wikipedia usages. We use these
gold-standard distributions to investigate when
LEXSEMTM should be used in place of SEM-
COR, and release them as a public resource, to
facilitate the evaluation of future work involving
LEXSEMTM.

7.1 Gold-Standard Distributions

One of our goals in creating this dataset was to
determine whether there is a SEMCOR frequency
cutoff,16 below which our LEXSEMTM distribu-
tions are clearly more accurate than SEMCOR. In
order to have a diverse set of lemmas and be able

15These changes had a very minor impact on the HCA-
WSI evaluation results obtained in Section 4.1, with an aver-
age increase in JSD of 0.001 ± 0.004.

16The number of sense annotations in SEMCOR.

to address this question, we partitioned the lem-
mas in WORDNET 3.0 based on SEMCOR fre-
quency.

In order to keep analysis simple and consistent
with previous investigations, we first filtered out
multiword lemmas, nonpolysemous lemmas, and
non-nouns.17 Next, since in Section 5 we decided
that at least around 5,000 usages were needed for
stable and converged sense distributions, we fil-
tered out all lemmas without at least 5,000 usages
in our English Wikipedia corpus. The remaining
lemmas were then split into 5 groups of approx-
imately equal size based on SEMCOR frequency.
The SEMCOR frequencies contained in each group
are summarised in Table 1.

From each of the SEMCOR frequency groups,
we randomly sampled 10 lemmas, giving 50 lem-
mas in total. Then for each lemma, we randomly
sampled 100 usages to be annotated from English
Wikipedia. This was done in the same way as the
sampling of lemma usages for LEXSEMTM (see
Section 6).

We obtained crowdsourced sense annotations
for each lemma using Amazon Mechanical Turk
(AMT: Callison-Burch and Dredze (2010)). The
sentences for each lemma were split into 4 batches
(25 sentences per batch). In addition, two con-
trol sentences18 were created for each lemma, and
added to each corresponding batch. Each batch
of 27 items was annotated separately by 10 an-
notators. For each item to be annotated, annota-
tors were provided with the sentence containing
the lemma, the gloss for each sense as listed in
WORDNET 3.019 and a list of hypernyms and syn-
onyms for each sense. Annotators were asked to
assign each item to exactly one sense.

From these crowdsourced annotations, our
gold-standard sense distributions were created us-
ing MACE (Hovy et al., 2013), which is a general-
purpose tool for inferring item labels from multi-
annotator, multi-item tasks. It provides a Bayesian
framework for modelling item annotations, mod-
elling the individual biases of each annotator, and

17We chose to restrict our scope in this evaluation to nouns
because much of the prior work has also focussed on nouns,
and these are the words we would expect others to care the
most about disambiguating, since they are more often context
bearing. Also, introducing other POS would require a greater
quantity of expensive annotated data.

18These were created manually, to be as clear and unam-
biguous as possible.

19Example sentences were removed only if they were for a
different lemma within the corresponding synset.
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supports semi-supervised training. MACE was
run separately on the usage annotations of each
lemma, with the control sentences included to
guide training.

Gold-standard sense distributions were ob-
tained from the output of MACE, which includes
a list containing the mode label of each item. For
each lemma, we removed the control sentence
labels from this list, and constructed the gold-
standard distribution from the remaining labels us-
ing maximum likelihood estimation.

7.2 Evaluation of LEXSEMTM

We now use these gold-standard distributions to
evaluate the sense distributions in LEXSEMTM
relative to SEMCOR. For each of the 50 lemmas
that we created gold-standard distributions for, we
evaluate the corresponding LEXSEMTM distribu-
tion against the gold-standard. In addition, we cre-
ate benchmark sense distributions for each lemma
from SEMCOR counts using maximum likelihood
estimation,20 which we also evaluate against the
gold-standards. Evaluation of sense distribution
quality using gold-standard distributions is done
by calculating JSD, as in Section 4.1.

First, we performed this comparison of
LEXSEMTM to SEMCOR JSD scores for all 50
lemmas at once. As in Section 4.1, we calcu-
lated the JSD scores for every lemma using each
method individually, and compared the difference
in values pairwise for statistical significance us-
ing a Wilcoxon signed-rank test. The results of
this comparison are detailed in Table 1 (final row:
Group = All), which shows that JSD is clearly
lower for LEXSEMTM distributions compared to
SEMCOR, as would be hoped. This difference is
statistically significant at p < 0.05.

We then performed the same comparison sepa-
rately within each SEMCOR frequency group (Ta-
ble 1). First of all, we can see that LEXSEMTM
sense distributions strongly outperform SEMCOR-
based distributions in Group 1 (lemmas missing
from SEMCOR). This is as would be expected,
since the SEMCOR-based distributions for this
group are based on which sense is listed first in
WORDNET, which in the absence of SEMCOR

counts is arbitrary. On the other hand, in all other
groups (lemmas in SEMCOR) the difference be-
tween LEXSEMTM and SEMCOR is not statisti-

20For lemmas with no SEMCOR annotations, we assign
one count to the first-listed sense in WORDNET 3.0.

cally significant (p > 0.1 in all cases). This still
remains true when we pool together the results
from these groups (second last row of Table 1:
Group = 2–5). While it appears that LEXSEMTM
may still be outperforming SEMCOR on average
over these groups (lower JSD on average), we do
not have enough statistical power to be sure, given
the high variance.

Returning to the initial question regarding a
SEMCOR frequency cutoff, the only strong con-
clusion we can make is that LEXSEMTM is clearly
superior for lemmas missing from SEMCOR. Al-
though it appears that LEXSEMTM may outper-
form SEMCOR for lemmas with higher SEMCOR

frequencies, the variance in our results is too high
to be sure of this, let alone define a frequency
cutoff. However, given that LEXSEMTM sense
distributions never appear to be worse than SEM-
COR-based distributions, regardless of SEMCOR

frequency — and may actually be marginally su-
perior — it seems reasonable to use our sense dis-
tributions in general in place of SEMCOR.

We can contrast this result to the findings of
McCarthy et al. (2007), who found that the au-
tomatic first sense learning method of McCarthy
et al. (2004b) outperformed SEMCOR for words
with SEMCOR frequency less than 5. However,
their analysis was based on the accuracy of the
first sense heuristic, rather than the entire sense
distribution, and they used very different datasets
to us.21 Furthermore, their SEMCOR frequency
cutoff result was only statistically significant for
some variations of their method, and they evalu-
ated over more lemmas22 meaning that statistical
significance was easier to obtain. Given these rea-
sons, their results likely do not contradict ours.

Given that LEXSEMTM contains sense fre-
quencies for 88% of polysemous simplex lemmas
in WORDNET, compared to only 39% for SEM-
COR, the strong performance of our LEXSEMTM
sense distributions for lemmas missing from
SEMCOR is extremely significant. Technically
these results are only relevant for lemmas where
LEXSEMTM was trained on at least 5,000 us-

21Their evaluation on the all words task from SENSEVAL-
2, which will have more occurrences of the more frequent
words, whereas ours is a lexical sample with 100 instances
of each word. However, our experiment has a larger dataset
(50×100 = 5000 instances, as opposed to 786 in total in the
SENSEVAL-2 dataset) which makes it more reliable.

22They evaluated over 63 lemmas with SEMCOR fre-
quency between 1 and 5, whereas we only evaluated over 14
lemmas (Group 2, and part of Group 3).
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Group Lemma Count SEMCOR Freqs. Mean JSD
pLEXSEMTM SEMCOR

1 10 0 .100±.080 .615±.407 .013
2 10 1–3 .203±.169 .214±.250 .959
3 10 4–8 .100±.049 .103±.133 .878
4 10 9–20 .148±.069 .235±.166 .114
5 10 21+ .162±.121 .156±.131 .721

2–5 40 1+ .153±.118 .177±.184 .591
All 50 0+ .142±.113 .265±.301 .046

Table 1: Sense distribution quality for gold-standard dataset lemmas, comparing LEXSEMTM results to
the SEMCOR benchmark.

ages, which reduces the coverage of LEXSEMTM
to 24%. However, even then this gives us sense
frequencies for 1,602 polysemous lemmas miss-
ing from SEMCOR, which accounts for over 5%
of polysemous simplex lemmas in WORDNET.
Furthermore, based on some additional ongoing
analysis comparing LEXSEMTM distributions di-
rectly to SEMCOR-based distributions across all of
LEXSEMTM (not presented here), it appears the
decrease in sense distribution quality for lemmas
trained on fewer than 5,000 usages is on average
fairly small. This is corroborated by our results in
Figure 3: we can observe for the lemmas in the
BNC dataset that when the number of usages was
reduced to 500, the mean change in JSD for each
lemma was almost always less than 0.02 and never
greater than 0.04, which is small compared to the
difference between LEXSEMTM and SEMCOR in
each SEMCOR frequency group. This strongly
suggests that our conclusions can be extended to
lemmas with low LEXSEMTM frequency, though
more work is needed to confirm this.

8 Discussion and Future Work

The most immediate extension of our work would
be to apply our sense learning method to a broader
range of data. In particular, we intend to expand
LEXSEMTM by applying HCA-WSI across the
vocabularies of languages other than English, and
also to multiword lemmas. Another obvious ex-
tension would be to further explore the alignment
component of HCA-WSI. We currently use a sim-
ple approach, and we believe this process could be
improved, e.g. by using word embeddings.

In addition, previous work by Lau et al. (2012)
and Lau et al. (2014) also provided methods
for detecting novel and unattested senses, us-
ing the topic modelling output from the WSI

step of HDP-WSI. These could be applied with
LEXSEMTM— which contains this WSI output as
well as sense frequencies — to search for novel
and unattested senses throughout the entire vocab-
ulary of English. This could be used to expand ex-
isting sense inventories with new senses, for exam-
ple using the methodology of Cook et al. (2013).
Given that LEXSEMTM also contains WSI output
for nonpolysemous WORDNET lemmas (37,566
in total), this could be lead to the discovery of
many new polysemous lemmas.

In conclusion, we have created extensive re-
sources for future work in NLP and related dis-
ciplines. We have produced LEXSEMTM, which
was trained on English Wikipedia and spans ap-
proximately 88% of polysemous English lemmas.
This dataset contains sense distributions for the
majority of polysemous lemmas in WORDNET

3.0. It also contains lemma topic models, for both
polysemous and nonpolysemous lemmas, which
provide rich semantic information about lemma
usage, and can be re-aligned to sense invento-
ries to produce new sense distributions at triv-
ial cost. In addition, we have produced gold-
standard distributions for a subset of the lemmas in
LEXSEMTM, which we have used to demonstrate
that LEXSEMTM sense distributions are at least
on-par with those based on SEMCOR for lemmas
with a reasonable frequency in Wikipedia, and
strongly superior for lemmas missing from SEM-
COR. Finally, we demonstrated that HCA topic
modelling is more efficient than HDP, providing
guidance for others who wish to do large-scale un-
supervised sense distribution learning.
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