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Abstract e
John drove TN o to pick up
T - - > Berlin a package

This paper complements semantic role
representations with spatial knowledge be-
yond indicating plain locations. Namely,
we extract where entities are (and are not)
located, and for how long (seconds, hours,
days, etc.). Crowdsourced annotations an hour), and then lefBerlin and thus (3) was
show that this additional knowledge is in-  not located there anymore. Some of this addi-
tuitive to humans and can be annotated by  tional spatial knowledge is inherent to the mo-
non-experts. Experimental results show  tion verbdrive: people cannot drive to the loca-
that the task can be automated. tion where they are currently located, and they
will be located at the destination of driving af-
ter driving takes place. But determining for how

Extracting meaning from text is crucial for true ong the agent ofdrive remains at the destina-
text understanding and an important componention depends on the arguments dfive: from
of several natural language processing system$&JONnlacenr [drove], [homelbestination [after an
Among many others, previous efforts have fo-exhausting work dayjye, it is reasonable to be-
cused on extracting causal relations (Bethard antieve thatJohnwill be located athomeovernight.
Martin, 2008), semantic relations between nom- This paper manipulates semantic roles in order
inals (Hendrickx et al., 2010), spatial relationsto extract temporally-anchored spatial knowledge.
(Kordjamshidi et al., 2011) and temporal relationsWe extract where entities are and a@t located,
(Pustejovsky et al., 2003; Chambers et al., 2014).and temporally anchor this information. Tempo-
In terms of corpora development and automatedal anchors indicate for how long something is (or
approaches, semantic roles are one of the moss not) located somewhere, e.g., for 5 minutes be-
studied semantic representations (Toutanova et afgre (or after) an event. We target additional spa-
2005; Marquez et al., 2008). They have beertial knowledge not only between arguments of mo-
proven useful for, among others, coreference resdion verbs as exemplified above, but also between
lution (Ponzetto and Strube, 2006) and questionntra-sentential arguments of any verb. The main
answering (Shen and Lapata, 2007). While secontributions are: (1) crowdsourced annotations
mantic roles provide a useful semantic layer, theyon top of OntoNotesindicating where something
capture a portion of the meaning encoded in alis and is not located (polarity), and for how long
but the simplest statements. Consider the senten€temporal anchors); (2) detailed annotation analy-
in Figure 1 and the semantic rolesarbve (solid  sis using coarse- and fine-grained labels (yes / no
arrows). In addition to these roles, humans in-s. seconds, minutes, years, etc.); and (3) exper-
tuitively understand that (dashed arrow) (Ighn iments detailing results with several feature com-
was not located iBerlin before or duringdrove  binations, and using gold-standard and predicted
(2) he was located iBerlin afterdrovefor a short  linguistic information.
period of time (presumably, until he was done
picking up the package, i.e., for a few minutes to  'Available athttp:/mww.cse.unt.edu/ ~blanco/

Figure 1: Semantic roles (solid arrows) and addi-
tional spatial knowledge (dashed arrow).

1 Introduction
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2 Definitions and Background ber and Chai (2010) augmented NomBank (Mey-
ers et al., 2004) annotations with additional num-
bered arguments appearing in the same or previ-
ous sentences, and Laparra and Rigau (2013) pre-
sented an improved algorithm for the same task.
The SemEval-2010 Task 10 (Ruppenhofer et al.,
09) targeted cross-sentence missing arguments
. . . in FrameNet (Baker et al., 1998) and PropBank
S a pr_edlcate angi 'san argument of. Ger_1era||y (gPaImer et al., 2005). Silberer and Frank (2012)
speaking, semantic roles capture who did what tcasted the SemEval task as an anaphora resolu-
whom, how, when and where. tion task. We have previously proposed an un-

i W? utse thet_teir:a ddlltl?jnal sptatlaltkno&/vle_(tjr?e supervised framework to compose semantic rela-
O retertio spatiatknowledge not captured With S€4;, ¢ ot of previously extracted relations (Blanco
mantic roles, i.e., spatial meaning betweesndy

. . . ) and Moldovan, 2011), and a supervised approach
wherg (1)xis not a predicate or (¥ s a predicate to infer additional argument modifiersRGm) for
andyis notan argL_Jment of. As we shal fee_, WE Verbs in PropBank (Blanco and Moldovan, 2014).
90 'beyond extracting X h‘f"s LOCATION y” with Unlike the current work, these previous efforts (1)
plal_n_ LOCATION(x, ) relations. We extract where improve the semantic representation of verbal and
entities are and are not located, and for how lon

i located (and not located h Shominal predicates, or (2) infer relations between
ey are located (and not located) somewhere. arguments of the same predicate.

We useRr(X, y) to denote a semantic relationship
R betweenx andy. R(X, y) can be readX hasr
y”, e.g., AGENT(drove Johr) can be read drove
hasAGENT Johr’ By definition, semantic roles
are semantic relationships between predicates a
their arguments—for all semantic rolegx, y), x

2.1 Semantic Roles in OntoNotes More recently, we showed that spatial rela-

OntoNotes (Hovy et al., 2006) is large corpustions can be inferred from PropBank-style seman-
(~64K sentences) that includes verbal semantiéiC roles (Blanco and Vempala, 2015; Vempala and
role annotations, i.e., the first argumennbf any ~ Blanco, 2016). In this paper, we expand on this
role R(X, y) is a verk? OntoNotes semantic roles ideéa as follows. First, we not only extract whether
follow PropBank framesets (Palmer et al., 2005)."X hasLOCATION y” before, during or after an

It uses a set of numbered argumemts §—ARG;) ~ €vent, but also specify for how long before and af-
whose meanings are verb-dependent, egg, €r (Seconds, minutes, hours, days, weeks, months,
is used for &mployet with verb work.01 and Years, etc.). Second, we release crowdsourced an-
“expected terminus of slgemith verb sleep.01  hotations for 1,732 potential additional spatial re-
Additionally, it uses argument modifiers which lations. Third, we experiment with both gold and
share a common meaning across verbegw-  Predicted linguistic information.

LOC, ARGM-TMP, ARGM-PRP, ARGM-CAU, €tc.). Spatial semantics has received considerable at-
For a detailed description of OntoNotes semaniention in the last decade.

tic roles, we refer the reader to the LDC (?atélog The task of spatial role labeling (Kordjamshidi
and PropBank (Palmer et al., 2005). To improvegt 51 2011; Kolomiyets et al., 2013) aims at rep-
readability, we often rename numbered argument§esenting spatial information with so-called spa-
€.g.,AGENT instead ofARGy in Figure 1. tial roles, e.g., trajector, landmark, spatial and mo-
tion indicators, etc. Unlike us, spatial role label-
ing does not aim at extracting where entities are
Approaches to extract PropBank-style semantiaot located or temporally-anchored spatial infor-
roles have been studied for years (Carreras anghation. But doing so is intuitive to humans, as
Marguez, 2005), state-of-the-art tools sobtain Fthe examples and crowdsourced annotations in this
measures of 83.5 (Lewis et al., 2015). In this papaper show. Spatial knowledge is intuitively as-
per, we complement semantic role representationsociated with motion events, e.dglrive, go, fly,
with temporally-anchored spatial knowledge. walk, run. Hwang and Palmer (2015) presented
Extracting additional meaning on top of popu- a classifier to detect caused motion constructions
lar corpora is by no means a new problem. Geririggered by non-motion verbs, e.gthe crowd
" 2We use the CoNLL 2011 Shared Task release (Pradhalau hed the clowroff the stage(i.e., the crowd
etal., 2011)http://conll.cemantix.org/2011/ made the clown leave the stage). Our work does
3https://catalog.ldc.upenn.edu/LDC2013T19 not target motion verbs or motion constructions,

3 Related Work
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as the examples in Table 3 show, non-motion condiscarded when crowdsourcing annotations, e.g.,
structions triggered by non-motion verbs also aldocations whose head is an adverb suchagand
low us to infer temporally-anchored spatial mean-there(11% of all ARGM-LOC roles) do not yield
ing, e.g.,played honored taught fighting valid additional spatial knowledge.

OntoNotes annotatés612 ARGM-LOC seman-
tic roles, and the number of potentiabCATION

Our goal is to complement semantic role reprezsen'le|<'3"[i9ns genergted iI5732. Thu_s,' our meth.odol-
tations with additional spatial knowledge. Specifi-09y aims at adding 18% of additional spatial rela-
cally, our goal is to infer temporally-anchored spa-tions on top of OntoNotes semantic roles. If we
tial knowledge betweew andy, where semantic consider each temporal anchor as a different spa-
rOleSARG; (Xpurp, X) ANARGM-LOC(Y,er, y) €x-  tidl relation, we aim at adding 54% additional spa-
ists in the same sentence. In order to achieve thigal relations. As we shall see, over 69% of the ad-
goal, we follow a two-step methodology. First, we ditional potential relations are valid (Section 4.3).
automatically generate potential additional spatial

knowledge by combining selected semantic roles*2 Crowdsourcing Spatial Knowledge

Second, we crowdsource annotations, includingnce potential spatial knowledge is generated, it
polarity and temporal anchors, to validate or dis-must be validated or discarded. We are interested
card the potential additional knowledge. in additional spatial knowledge as intuitively un-
derstood by humans, so we avoid lengthy annota-
tion guidelines and ask simple questions to non-
We generate potential additional relationscA- experts via Amazon Mechanical Turk.
TION(X, y) by combining allARG; (Xyes, X) and After in-house pilot annotations, it became clear
ARGM-LOC(Yuers, ¥) Semantic roles within a sen- nat asking “Isx located in/aty” for each poten-
tence Kyery andyyer, Need not be the same). Then, tig) | ocaTION(X, y) and forcing annotators to an-
we enforce the following restrictions: sweryesor no is suboptimal. For example, con-
sider again Figure 1 and question Jshnlocated
in Berlin?”. An unabridged natural answer would
2. the head ok must be a named entipgerson ~ be “not before or duringlrove but certainly after
org, work_of_art, fac, norp, productor event drovefor a few minutes until he was domecking
up the packagé In other words, it is intuitive to
3. the head ofy must be a noun subsumed by consider polarity (whethex is or is not located at
physicalentity.n.Olin WordNet, or a named y) and tempora| anchors (for how |0ng’))
entity fac, gpe loc, or org;* and We designed the interface in Figure 2 to gather
annotations including polarity and temporal an-
chors, and accounting for granularity levels. An-
swers map to the following coarse-grained labels:
These restrictions were designed after manual
analysis of randomly selected combinations of © Before and afteryes, no, unk andinv .
ARG; and ARGM-LOC semantic roles with two  ® During: yes (first 2 options),no, unk and
goals in mind: to (1) reduce the annotation effort inv .
and (2) generate the least amount of invalid po-
tential additional spatial knowledge without arbi- Label unk stands forunknownand inv  for
trarily discarding any predicates (e.g., focus onlyinvalid. Furthermore,yes maps to these fine-
on motion verbs). Additional relations not satisfy- grained labels indicating specific periods of time:
ing restriction 1 are nonsensical, and restriction 4 _ _
simply discards potential additional relations that ® Before and after: an integer and a unit of
have already been generated. Restrictions 2 and UMe (Secs , mins, hours , days , weeks,
3 are designed to improve the likelihood that the ~ Months oryears )° orinf  for infinity.
potential additional spatial knowledge will not be ¢ During:entire  or some.

4 Corpus Creation and Analysis

4.1 Generating Potential Spatial Knowledge

1. x andy must not overlap;

4. the heads ok andy must be different than
the heads of all previously generated pairs.

4For a description and examples of these named entity °The interface restricts the range of valid integers, e.g.,
types, refer to (Weischedel and Brunstein, 2005). numbers selectable wigecs range from 1 to 59.
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Sentence: Israeli Deputy Defense Minister Ifraem Snae held talks in the Gaza Strip Thursday with Palestinian official Tayab Abdul Rahim.

Question: Do you think the Gaza Strip could be the location of fraem Snae ...

... before held started? ... during held took place? ... after held ended?

¢ Yes, for the entire duration

.

 Yes, Up to * | (SelectUnit) + before
held started

Yes, up to + | (SelectUnit)y = after held
 Yes, but only for some duration while held took place |ended
¢ Not located before held started © Not located while held took place ¢ Not located after held ended

¢ Not sure if yes or no ¢ Not sure if yes or no ¢ Not sure if yes or no

¢ Invalid location or entity

¢ Invalid location or entity € Invalid location or entity

Figure 2: Amazon Mechanical Turk interface to collect tenafig-anchored spatial annotations. Anno-
tators were also provided with a description and exampledl ahswers (not shown).

secs | mins | hours | days | weeks | months | years inf entire some
Before 0.20]| 7.55 11.33| 7.36 3.78 8.15| 46.72| 14.91 n/a n/a
During n/a n/a n/a n/a n/a n/a n/a n/a 97.77| 2.23
After 0.50| 6.48 11.29| 6.48 3.34 6.29 29.47 | 36.15 n/a n/a

Table 1: Percentage of fine-grained labels for instancestatad with coarse-grained labads .

100% edge: whethexk is (or is not) located ay. Anno-
80% . . tators could not commit tges or no in 16.1% of
guestions on averagertk ), with a much smaller
60% o 6% myes percentage for during tempora_l gnchor (5.8%_; be-
s : E‘:k fore: 18.7%, after: 23.7%). This is not surprising,
15.0% inv as arguments of some verbs, eAGENT of play,
o 187% 5.8% 23.1% must be located at the location of the event dur-
13.7% 16.9% 13.2% ing the event, but not necessarily before or after.

0% Finally, inv only accounts for 14.6% of labels

(before: 13.7%, during: 16.9%, after: 13.2%),

Figure 3: Percentage of coarse-grained labels pépuﬁ' most potegtlaél adqltm:il knothJedge dautom?jt—
temporal anchor. Total number of annotations idcally generate ( _ectlon o ) can be understood.
1732 % 3 — 5.196. Percentages of fine-grained labels per temporal

span, i.e., refinements gkes coarse-grained la-
bels, are shown in Table 1. The vast majority of
We created one Human Intelligence Task (HIT)times (97.77%) annotators believe an entity is at a

per potentialLOCATION(X, y), and recruited an- |ocation during an event, the entity is there for the
notators with previous approval rate 95% and  entire duration of the evenéfitire ). Annotators
5,000 or more previous approved HITs. A to-parely used labedecs (before: 0.20% and after:
tal of 74 annotators participated in the task, ong.50%), but percentages range between 3.34% and
average, they annotated 163.24 HITs (maximumie.72% for other units of time (uniform distribu-
1,547, minimum: 1). We rejected submissions thation would bel/8 = 12.5%). Labelsyears and
took unusually short time compared to other subinf | which indicate that an entity is located some-
missions, and those from annotators who alwaygyhere for years or indefinitely before (or after) an

chose the same label. Overall, we only rejectetbvent, are the most common fine-grained labels for
1.2% of submissions. We collected 7 annotationgeforeandafter (14.91-46.72%).

per HIT and paid $0.05 per HIT.

Before During After

4.3.1 Annotation Quality

Table 2 presents agreement measures. Pearson
Figure 3 shows the percentage of coarse-grainecorrelations are the weighted averages between
labels per temporal anchor. Labsgles andno  each annotator and the majority label and are cal-
combined account for 67.7% of labels (before),culated following this mapping: (coarse labels):
77.4% (during) and 63.1% (after). Note that bothyes : 1, unk/inv : 0, no: —1; (fine labels): be-

yes andno yield valid additional spatial knowl- fore/after: secs : 1, mins: 1 + 1/7, hours :

4.3 Annotation Analysis
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Coarse-grained labels Fine-grained labels
% instances s.tz annotators agree % instances s.tz annotators agree
PearsonN— —7 T >6[a>5[a>4 gaz?) PearsonN— —T4>6[as5a>4 %23
Before 0.73 0.9 8.0| 30.0| 65.8] 97.2 0.67 0.8 6.0 216| 49.3| 852
During 0.81 89| 399 59.1| 814| 983 0.79 21| 195| 458| 718 941
After 0.66 0.7 6.0 27.0| 629]| 96.6 0.62 0.5 46| 19.8| 49.9| 87.1
[ All I 067] 35] 18.0] 388] 70.0] 974] 064] 11] 10.0] 29.0] 57.0] 88.8]

Table 2: Weighed Pearson correlations between annotatorshe majority label, and percentage of
instances for which at least 7, 6, 5, 4 and 3 annotators (orit ajree.

Before During After
Statement CJ|] F C|] F CJ| F
Statement 1: [...] [Hsiaks,, vi,v. [Stopped}, off [in Milan] arem-oc,v, [tO [ViSit] v, [Hsiao Chinhre, v, ]arem-prey, -
X: Hsig y: Milan, y,..»: Stopped yes mins | yes | entire yes | hours
X: Hsiao Chiny: Milan, y,..»: Stopped yes years | yes | entire yes | years

Statement 2: [President Clintaag,,., [played}, [a supporting roleke, v, [todaylrem-tmey, [IN [New York City
wherehgrewv-Loc,v, [the first lady, Senator Clintopds, v, , was [honored}, [at Madison Square GardeRgw-Loc,v, ] arem-Loc,v; -

X: (President) Clintony: New York City, Yerb: played yes | hours | yes | entire yes | hours

X: (President) Clintony: Madison Square Gardew,.»: honored yes mins | yes | entire yes | mins
x: (Senator) Clintony: New York City, Y verv: played yes | hours | yes | entire yes | hours

x: (Senator) Clintony: Madison Square Gardey,.,»: honored yes mins | yes | entire yes | mins
Statement 3: [Before [joining] [Maidenformhge, v, [IN 1972)srem-twe, vo |araM-TMR, v; » [[MT. Brawer, whohge,,v; [holdS]y,
[a doctoral degree in Englistys, ,v; ] areo, vi v2» [taught], [at the University of WisconSikew-Loc, v; -

Xx: Maidenform y: University of Wisconsin y ... taught no n/al no n/al no n/a
X: Mr. Brawer, y: University of Wisconsiny ,.»: taught no n/a| yes | entire no n/a

Statement 4: [...] [George Koskotas, self-confessed end8zq,, v, , [NOW]arom-tur,v, [residingl, [in [a jail cellin Salem,
Mass., from wher@kewu-Loc, vo [N€larsy, v, IS [fighting]y, [extradition proceedingsde, vo]ars; v; -
x: George Koskotay: a jail cell in Salem, Massy...+: fighting [ yes [ months [yes [entre [unk | nla

Table 3: Annotation examples. For each statement, we itedg@mantic roles with square brackets, all
potential additional spatial knowledge §idocated at/?), and annotations with respectytq.,, (coarse-
(C) and fine-grained (F) labels per temporal anchor: befiwgng and after).

1+ 2/7, days: 1+ 3/7, weeks: 1 + 4/7, Two additionalLOCATION(X, y) can be inferred
months : 1 + 5/7, years : 1+ 6/7, inf : 2; from Statement (1): whetheHsia and Hisao
during: some: 1 entire :2. Calculating the Chin are located inVlilan before, during and af-
weighted average of individual Pearson correlater stopped Annotators understood thétsia was
tions allows us to take into account the number oin Milan temporarily: for a few minutes before
questions answered by each annotator. stopped during the full duration ofstoppedand
Correlations range between 0.66 and 0.81 witHor a few hours aftestopped In other wordsHsia
coarse-grained labels, and are slightly lower withwas elsewhere, then went Milan and left after
fine-grained labels (0.67 vs. 0.73, 0.79 vs. 0.81yisiting with Hsiao for a few hours. Regarding
and 0.62 vs. 0.66). Questions fduring tempo-  Hsiag annotators interpreted théilan is her per-
ral anchor are easier to answer with both kinds ofnanent location: for years before and aftésia
labels (coarse: 0.81, fine: 0.79). stoppedto visit her. While somehow ambiguous,
Table 2 also shows how many annotators (outh€se annotations are reasonably intuitive.
of 7) chose the same Ia_lbel (exact ma_tch). At Iea;t Statement (2) has 22GM-LOC roles and 4 po-
4 annotators agreed with coarse-grained labels Ipential additional relations. Annotations faurin
most instances (70%), and at least 3 annotators i g

. 0 are straightforward: botlPresident Clintorand

agreed virtually always (97.4%). Percentages ar%enator Clintorwere located inNew York City
I . o 0

lower with fine-grained labels: 57.0% and 88.8 /O'duringplayedand atMadison Square Gardeatur-

ing honored Annotations forbeforeandafter are
more challenging: both Clintons where located in
Table 3 presents several annotation examples. W&ew York City for hours (not days) before and af-
include all potential additional spatial knowledgeter played but at Madison Square Gardefor a
(Section 4.1) and annotations per temporal anchofew minutes (not hours) before and aftesnored

4.4 Annotation Examples
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Feature Description
basic 1-4 | Xyers, Yoers @and their part-of-speech tags
5-12 | first and last words ok andy, and their part-of-speech tags
13 | whetherx occurs before or after
14-17 | heads ol andy, and their part-of-speech tags
18-19 | named entity types of the heads>oandy
20 | semantic role label linking,...» andx
21-24 | number ofARGM-TMP andARGM-LOC roles iNX;oies aNdY;ores
25-26 | number ofARGM-TMP andARGM-LOC roles in the sentence to whichandy belong
27 | whetherx,e,, andy,.,» are the same verb

lexical

heads

semantic

Table 4: Feature set to determine whetkas (or is not) located ay, and for how long.X,ers (Voers)
denote the verbs to which(y) attach, and,..;cs (Vroies) denote the semantic roles xf..5 (Vuers)-

In other words, they arrived tMadison Square for extracting temporally-anchored spatial knowl-
Gardershortly beforehonoredand left shortly af- edge from semantic roles. In order to determine
ter, but stayed ilNew York City for some hours.  whetherx is (or is not) located ay and for how
Statement (3) exemplifieso label. Poten- long, we extract features from andy, the verbs
tial additional spatial knowledge includes whetherto which they attachx.,, andy,..») and all se-
Maidenformis located aUniversity of Wisconsin — mantic roles oi,c,, andy,ery (Xrores @NAY roies)-

which is never truer(o). Additionally, University Basig lexical andheadsfeatures are standard in
of Wisconsinwas a location oMr. Brawerwhile  role labeling (Gildea and Jurafsky, 2002Basic
he taughtthere @uring), but norbeforeor after. features are the word form and part-of-speech of

Statement (4) exemplifies contrastive coarsex,.., andy,..». Lexicalfeatures capture the first
grained labels andnk label. Annotators inter- and last words ok andy and their part-of-speech
preted thatGeorge Koskotagias in thejail cell for  tags, as well as a binary flag indicating whetker
months before and durinfighting extraditionand  occurs before or aftey. Headsfeatures capture
that it is unknown ¢nk ) after fighting because the the heads ok andy and their part-of-speech tags,

outcome of the fight is unknown. as well as their named entity types, if any.
_ Semantic features include features 20-27. Fea-
5 Inferring Temporally-Anchored ture 20 indicates the semantic role linkingand
Spatial Knowledge Xpery (ARGo, ARG1, ARG, etc.); recall that the se-

We follow a standard machine learning approachMantic role betweeg andy,,, is alwaysarRGM-

and use the training, development and test sefsOC (Section 4.1). Features 21-24 are counts of
released by the organizers of the CoNLL-2011ARGM-TMP andARGM-LOC semantic roles in the
Shared Task (Pradhan et al., 2011). We first gen’€rP-argument structures to whigtandy attach.
erate additional spatial knowledge deterministi-m €atures 25-26 are the same counts of roles, but

cally as described in Section 4.1. Then, for eacﬁaking into account all the roles in the sentence to
additional LOCATION(x, ), we generate one in- which x andy belong. Finally, feature 27 signals

stance per temporal anchor and discard those aH\ghether_x andy attach to the same verb..

notatedinv . The total number of instances is V€ tried many other features, including counts
1732 % 3 — 754 — 4.449. We trained SVM mod- of all roles, heads of all semantic roles present, se-
els with RBF kernel using scikit-learn (Pedregosa™antic role ordering, VerbNet (Schuler, 2005) and

et al., 2011). The feature set and SVM parametergevin (Levin, ;993) verb classes, a_nd WorQNet
were tuned using 10-fold cross-validation with theYPeryms (Miller, 1995), but they did not yield

train and development sets, and results are calc@®"Y improvem.ents during th_e tuning PrOCess.
lated using the test set. During the tuning pro- We exemplify features with pairx{ 'G'eorge
cess, we discovered that it is beneficial to trainKOSkOtas' self-confessed embezzera jail cell

one SVM per temporal anchor instead of a singld" [:+-]: from wherg from Statement 4 in Table 3:

model for the 3 temporal anchors. e Basic: features 1-4{residing, VBG, fight-
ing, VBG}.

e Lexical: feature 5-12: {George, NNP,

We use a mixture of standard features from seman-  Koskotas, NNP, a, DT, where, WRBfea-

tic role labeling, and semantic features designed tures 13:{beforé.

5.1 Feature Selection
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Before During After All
PTRT]F PTRT]F PTRT]F PTRT]EF

yes [[ 0.00] 0.00| 0.00| 0.77] 1.00| 0.87] 0.00| 0.00| 0.00 0.77] 0.55] 0.64

baseline no [[ 0.49]1.00] 0.65] 0.00| 0.00] 0.00]| 0.40| 1.00| 0.57]] 0.44| 0.86| 0.58
unk || 0.00| 0.00| 0.00| 0.00| 0.00| 0.00| 0.00| 0.00| 0.00{| 0.00| 0.00 | 0.00

Weighted avg.|| 0.24] 0.49] 0.32] 0.60| 0.77] 0.67] 0.16| 0.40| 0.23]| 0.51| 0.55] 0.50

yes [[ 0.48]0.34] 0.40[ 0.82] 0.94[ 0.88] 0.53| 0.50| 0.52] 0.71] 0.71] 0.71

basic no |[[ 0.52]0.63] 0.57]0.62]| 0.36] 0.46]| 0.47] 0.49] 0.48]| 0.51| 0.54| 0.52
unk || 0.23]0.21{0.22]0.33| 0.10] 0.15| 0.29| 0.29] 0.29([ 0.26| 0.23] 0.25

Weighted avg.|| 0.44] 0.45| 0.44] 0.76] 0.79] 0.76 | 0.44] 0.44] 0.44]| 0.55| 0.56 | 0.56

yes || 0.68| 0.37| 0.48| 0.83] 0.92| 0.87| 0.73| 0.38| 0.50{ 0.79| 0.67| 0.73

basic + lexical no |[ 0.59|0.80] 0.68] 0.47]| 0.32] 0.38| 0.53| 0.66| 0.59]| 0.56| 0.68| 0.61
+ heads unk || 0.36] 0.29] 0.32] 0.20| 0.10] 0.13] 0.32] 0.39] 0.35(] 0.33] 0.32] 0.32
Weighted avg.|| 0.56| 0.56 | 0.54] 0.73]| 0.77] 0.74] 0.54| 0.50| 0.50| 0.62| 0.61| 0.61

basic + lexical yes || 0.86| 0.44| 0.58| 0.85| 0.94| 0.90| 0.79| 0.38| 0.51| 0.84| 0.70| 0.77
+ heads no |[ 0.63]0.80] 0.71|0.56|0.47][050|055]0.69| 0.61[ 0.59| 0.71] 0.64
+ semantics unk || 0.37]0.38] 0.38] 0.50| 0.10] 0.17] 0.33| 0.42] 0.37 (] 0.35]| 0.37] 0.36
Weighted avg.|| 0.64| 0.60| 0.60| 0.78] 0.81] 0.78 0.57| 0.52| 0.52|| 0.66 | 0.64 | 0.65

Table 5: Results obtained with gold-standard linguistinaations and coarse-grained labels using the
baseline and several feature combinations (basic, IeXiealds and semantic features).

e Head: features 14-17Koskotas, NNP, cell,
NN}, features 18-19{person, nong

e Semantic feature 20{ARG}, features 21—
24: {1, 0, O, 1}, feature 25-26{1, 1}, fea-
ture 27:{no}.

thanbefore(0.60) andafter (0.52). Regarding la-
bels,yes obtains best results (overall 0.77), fol-
lowed byno (0.64) andunk (0.36). Not surpris-
ingly, the most frequent label per temporal anchor
obtains the best results with all featurdmfore
no, 0.71;during. yes, 0.90;after. no, 0.61).

Beforeandafter instances benefit the most from

We present results using gold-standard (Sectioi?ammg with all features with respect to the base-
6.1) and predicted (Section 6.2) linguistic anno- <. (before: 0.32 vs. 0.60, after: 0.23 vs. 0.52).
tations. POS tags, parse trees, named entities arwh”e durlngln_stances also benefit, the difference
semantic roles are taken directly frayuold or auto in F-measure is lower (0.67 vs. 0.78).

files in the CoNLL-2011 Shared Task release.

6 Experiments and Results

Feature Ablation. The bottom 3 blocks in Ta-
ble 5 present results using several feature types
incrementally. Basicfeatures yield an overall F-
Jneasure of 0.56, and surprisingly good results for
uring instances (0.76). Indeed, the best perfor-
ance obtained witduring instances is 0.78 (all
eatures), suggesting that the verbs to whicnd

y attach are very strong features.

6.1 Gold-Standard Linguistic Annotations

Using gold-standard linguistic annotations has tw
advantages. First, because we have gold semaﬁ
tic roles and named entities, we generate the sa

potential additional spatial knowledge generate
while creating our annotations (Section 4.1). Sec

ond, feature values are guaranteed to be correct. Lexical and headsfeatures are most useful for

before (0.44 vs. 0.54, +22.7%) andfter (0.44
6.1.1 Predicting Coarse-Grained Labels vs. 0.50, +13.6%) instances, and are actually detri-

Table 5 presents results with coarse-grained labef@ental forduringinstances (0.76 vs. 0.74, -2.6%).
using a baseline and learning with several comIncluding semanticfeatures, however, improves
binations of features extracted from gold-standard€sults with respect tbasicfeatures for all tempo-
linguistic annotations (POS tags, parse trees, sdal anchors: before: 0.44 vs. 0.60, 36.4% during:
mantic roles, etc.). The baseline predicts the mos{-76 vs. 0.78, 2.6% after: 0.44 vs. 0.52, 18.2%.
frequent label per temporal anchor, i.ges for Differences in overall F-measure are not statis-
during, andno for beforeandafter (Figure 3). tically significant betweetbasicandbasic + lex-

Best results for all labels and temporal anchorscal + heads (0.56 vs. 0.61, Z-test, two-tailed,
are obtained with all features (basic, lexical, headg-value = 0.05), but the difference includinge-
and semantics). Overall F-measure is 0.65, anthanticfeatures is significant (0.50 vs. 0.65, Z-test,
during instances obtain higher F-measure (0.78}wo-tailed,p-value= 0.009).
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Before During After All

PTRT]F PTRT]F PTRT]F PTRT]EF
spurious 0.50[ 1.00| 0.66| 0.50| 1.00]| 0.66| 0.50| 1.00] 0.66 ] 0.50] 1.00 | 0.66
baseline other|[ 0.00] 0.00| 0.00] 0.00| 0.00| 0.00| 0.00| 0.00| 0.00| 0.00| 0.00 | 0.00
Weighted avg.|| 0.25] 0.50| 0.33] 0.25]| 0.50| 0.33]| 0.25| 0.50| 0.33]] 0.25| 0.50 | 0.33
yes || 0.00| 0.00| 0.00| 0.47| 0.56| 0.51| 0.00| 0.00| 0.00| 0.52| 0.36 | 0.43
no || 0.55|0.33] 0.42]0.40| 0.20] 0.27] 0.43] 0.38] 0.41] 0.43| 0.32| 0.37
basic unk || 0.26] 0.30| 0.28| 0.11| 0.07] 0.08| 0.37| 0.25] 0.30 (] 0.24] 0.18] 0.21
spurious 0.68[ 0.91]0.78]0.68| 0.71] 0.70| 0.67| 0.93] 0.78] 0.69] 0.88] 0.77
Weighted avg.|| 0.51] 0.58| 0.53] 0.53]| 0.55] 0.54] 0.49] 0.58| 0.52]| 0.54| 0.58 ] 0.55
yes || 1.00| 0.07| 0.13| 0.74| 0.87| 0.80| 0.00 | 0.00| 0.00| 0.74| 0.56 | 0.64
basic + lexical no || 0.64]0.48] 0.55[0.67| 0.20] 0.31| 0.43] 0.46| 0.44]| 0.53| 0.49| 0.51
+ heads unk || 0.41]0.78| 054|050 0.47]0.48|0.41|0.61] 0.49(] 0.51] 0.68] 0.58
+ semantics spurious 1.00{ 1.00] 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00|| 1.00| 1.00| 1.00
Weighted avg.|| 0.82] 0.75] 0.73] 0.84]| 0.84] 0.83| 0.66| 0.71] 0.68]| 0.80| 0.79| 0.79

Table 7: Results obtained with predicted linguistic antiotes and coarse-grained labedpurious

is

a new label indicating overgenerated pairs not presentkigttd standard.

Table 6: Results obtained with gold linguistic an-

Label PR F months for before andsecs , mins , hours ,
mins 1.00 | 0.67 | 0.80 d K d hs f ft h

days 1001 0501067 ays, weeks and months for after (ot er
years 0.15] 0.17 | 0.16 rows). But these labels account for relatively

Before | inf 1.00] 0.33] 0.50 few instances: individually, between 0.2% and
no 063080 0.71
unk 03710381038 11.33%, and among all of them, 23.46% fue-
other 0.00 | 0.00 | 0.00 fore and 34.38% foafter instances.

Weighted avg.|[| 0.52 | 0.54 | 0.51 . . : .
ontire 084109471 0.88 It is worth notlr)g thatmins , days andinf
some 0.00 | 0.00 | 0.00 obtain relatively high F-measures foefore 0.80,

During nok 8-28 g-ig g-ig 0.67 and 0.50 respectively. In other words, we can
un . . . . . . .

Weighted avg.[ 0.77 [ 0.80 [ 0.77 distinguish _Whether an entity is somewhere only
years 0.27] 025 0.26 for a few minutes or days (but not longer) before
inf 0.56 | 0.24 | 0.33 an event, or at all times before an event.

After |10 0.55 [ 0.69 | 0.61
unk 0.33 [ 0.42 | 0.37 : L :
other 0001 0,00 0.00 6.2 Predicted Linguistic Annotations
Weighted avg.|| 0.41 | 0.44 | 0.41 | d k h | L listi
RS 0501 050 T 050 n order to make an honest eva uatlor_1 in a rea istic
days 1.00| 0.29 | 0.44 environment, we also experiment with predicted
years 02110217021 linguistic annotations. The major disadvantage
inf 0.67 | 0.27 | 0.38 ) . . )

All entire 0841094089 of doing so is that predicted semantic roles and
no 059 0.71 | 0.64 named entities are often incorrect or missing, thus
gt”hker 8'83 8'8(7) 8'88 we generate spurious additional spatial knowledge
Weighted avg || 0.56 | 0.59 | 0.57 and miss some additional spatial knowledge be-

cause the potential relation cannot be generated.
Table 7 presents results using predicted linguis-

notations and fine-grained labels using all features;c annotations. The additional labspurious

6.1.2 Predicting Fine-Grained Labels

is used for instances generated from incorrect se-
mantic roles or named entities, as these instances
do not appear in the crowdsourced annotations

Table 6 presents results using fine-grained labelgSection 4). Due to space constraints, we only
and all features. Overall F-measure is lower tharpresent results using coarse-grained labels, but
with coarse-grained labels (0.57 vs. 0.65). Reprovide results per temporal anchor.

sults forduring instances barely decreases (0.78 The baseline, which predicts the most likely
vs. 0.77) because almost 98% of fine-grained latabel per temporal anchor, always predicts
bels areentire  (Table 1). spurious  since 50% of generated additional po-

Most fine-grained labels fobefore and after

tential knowledge does not appear in the crowd-

are infrequent (Table 1), our best model is un-sourced annotations.
able to predict labelsecs , hours , weeks and
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Using all features clearly
outperforms basic features (overall F-measure:



0.79 vs 0.55), thus we focus on the former. 46th Annual Meeting of the Association for Compu-
Using all featuresspurious is always pre- tational Linguistics on Human Language Technolo-

: : : . gies: Short PapersHLT-Short ‘08, pages 177-180,
dicted correctly. While useful to discard addi- ¢ -~ dsburg, PA, USA. Association for Computa-

tional spatial knowledge that should not have been  jonga| Linguistics.

generatedspurious  does not allow us to make
meaningful inferences. The labels that we aré=duardo Blanco and Dan Moldovan. 2011. Unsuper-
vised learning of semantic relation composition. In

most interested inyes andno, obtain overall F- Proceedings of the 49th Annual Meeting of the Asso-
measures of 0.64 and 0.51 (compared to 0.77 and ciation for Computational Linguistics (ACL 2011)

.64 with gold linguistic annotations). Regarding pages 14561465, Portland, Oregon.

!abgls,yes can only be reliably predictec! fatur- Eduardo Blanco and Dan Moldovan. 2014. Leverag-
ing instances (F-measure: 0.80), and is pre- ing verb-argument structures to infer semantic re-
dicted with modest F-measures for all temporal lations. InProceedings of the 14th Conference of

anchors: before: 0.55, during: 0.31, after: 0.44.  the European Chapter of the Association for Com-
’ ' putational Linguisticspages 145-154, Gothenburg,

Sweden, April. Association for Computational Lin-
guistics.

This paper demonstrates that semantic roles aregyarqo Blanco and Alakananda Vempala. 2015. In-
reliable semantic layer from which one can infer  ferring temporally-anchored spatial knowledge from
whether entities are located or not located some- semantic roles. liProceedings of the 2015 Annual

where, and for how long (seconds, minutes, days, Conference of the North American Chapter of the
. ACL, pages 452-461.

years, etc.). Crowdsourced annotations show that

this kind of inferences are intuitive to humans. Xavier Carreras and Lluis Marquez. 2005. Intro-

Moreover, most potential additional spatial knowl- ~duction to the CONLL-2005 shared task: semantic

. . : role labeling. INCONLL '05: Proceedings of the
edge generated following a few simple determin- Ninth Conference on Computational Natural Lan-

istic rules was validated by annotatosee¢ and guage Learning pages 152-164, Morristown, NJ,
no; before: 67.7%, during: 77.4%, after: 63.1%). USA. Association for Computational Linguistics.

Experimental results with gold-standard Seman'l\lathanael Chambers, Taylor Cassidy, Bill McDowell,

tic roles and named entities show that inference 4nqg Steven Bethard. 2014. Dense event ordering
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inference process more challenging. Association for Computational Linguistics.
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other semantic representation in a similar fashion matic labeling of semantic role€omput. Linguist.
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