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Abstract

We propose a novel reranking method to
extend a deterministic neural dependency
parser. Different to conventional k-best
reranking, the proposed model integrates
search and learning by utilizing a dynamic
action revising process, using the rerank-
ing model to guide modification for the
base outputs and to rerank the candidates.
The dynamic reranking model achieves
an absolute 1.78% accuracy improvement
over the deterministic baseline parser on
PTB, which is the highest improvement by
neural rerankers in the literature.

1 Introduction

Neural network models have recently been ex-
ploited for dependency parsing. Chen and Man-
ning (2014) built a seminal model by replacing
the SVM classifier at the transition-based Malt-
Parser (Nivre et al., 2007) with a feed-forward
neural network, achieving significantly higher ac-
curacies and faster speed. As a local and greedy
neural baseline, it does not outperform the best
discrete-feature parsers, but nevertheless demon-
strates strong potentials for neural network models
in transition-based dependency parsing.

Subsequent work aimed to improve the model
of Chen and Manning (2014) in two main direc-
tions. First, global optimization learning and beam
search inference have been exploited to reduce er-
ror propagation (Weiss et al., 2015; Zhou et al.,
2015). Second, recurrent neural network models
have been used to extend the range of neural fea-
tures beyond a local window (Dyer et al., 2015;
Ballesteros et al., 2015). These methods give ac-
curacies that are competitive to the best results in
the literature.
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(d) 2-step action revising process for sentence “John loves
Mary”. Numbers before actions are the probabilities for
that action.

Figure 1: Example action revising process. S, L,
R stand for the SHIFT, LEFT, RIGHT actions, re-
spectively (Section 2).

Another direction to extend a baseline parser
is reranking (Collins and Koo, 2000; Charniak
and Johnson, 2005; Huang, 2008). Recently,
neural network models have been used to con-
stituent (Socher et al.,, 2013; Le et al., 2013)
and dependency (Le and Zuidema, 2014; Zhu
et al., 2015) parsing reranking. Compared with
rerankers that rely on discrete manual features,
neural network rerankers can potentially capture
more global information over whole parse trees.

Traditional rerankers are based on chart parsers,
which can yield exact k-best lists and forests.
For reranking, this is infeasible for the transition-
based neural parser and neural reranker, which
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have rather weak feature locality. In addition, k-
best lists from the baseline parser are not necessar-
ily the best candidates for a reranker. Our prelim-
inary results show that reranking candidates can
be constructed by modifying unconfident actions
in the baseline parser output, and letting the base-
line parser re-decode the sentence from the mod-
ified action. In particular, revising two incorrect
actions of the baseline parser yields oracle with
97.79% UAS, which increases to 99.74% by revis-
ing five actions. Accordingly, we design a novel
search-based dynamic reranking algorithm by re-
vising baseline parser outputs.

For example, the sentence: “John loves Mary”,
the baseline parser generates a base tree (Figure
1a) using 5 shift-reduce actions (Figure 1d) of Sec-
tion 2. The gold parse tree can be obtained by a
2-step action revising process:

Revise 1 Revise 2
Base Tree ——— Tree 1 ———= Tree 2

As shown in Figure 1d, we first revise the least
confident action S of the base tree, running the
baseline parser again from the revised action to
obtain tree 1. This corrects the John « loves de-
pendency arc. Then we obtain the gold parsing
tree (tree 2) by further revising the least confident
action in tree I on the second action sequence.

Rather than relying on the baseline model
scores alone for deciding the action to re-
vise (static search), we build a neural network
model to guide which actions to revise, as well
as to rerank the output trees (dynamic search).
The resulting model integrates search and learn-
ing, yielding the minimum amount of candidates
for the best accuracies. Given the extensively fast
speed of the baseline parser, the reranker can be
executed with high efficiency.

Our dynamic search reranker has two main ad-
vantages over the static one: the first is frain-
ing diversity, the dynamic reranker searches over
more different structurally diverse candidate trees,
which allows the reranker to distinguish candi-
dates more easily; the second is reranking oracle,
with the guidance of the reranking model, the dy-
namic reranker has a better reranking oracle com-
pared to the static reranker.

On WSJ, our dynamic reranker achieved
94.08% and 93.61% UAS on the development and
test sets, respectively, at a speed of 16.1 sentences
per second. It yields a 0.44% accuracy improve-
ment (+1.78%) from the same number of candi-
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Figure 2: Hierarchical neural parsing model.

dates, compared to a static reranker (+1.34%), ob-
taining the largest accuracy improvement among
related neural rerankers.

2 Baseline Dependency Parser

Transition-based dependency parsers scan an in-
put sentence from left to right, performing a se-
quence of transition actions to predict its parse
tree (Nivre, 2008). We employ the arc-standard
system (Nivre et al., 2007), which maintains
partially-constructed outputs using a stack, and
orders the incoming words in the sentence in a
queue. Parsing starts with an empty stack and a
queue consisting of the whole input sentence. At
each step, a transition action is taken to consume
the input and construct the output.

Formally, a parsing state is denoted as (j, S, L),
where S is a stack of subtrees [...s9, s1, Sgl, j is
the head of the queue (i.e. [ g9 = wj, 1 = wjt1
---]), and L is a set of dependency arcs that has
been built. At each step, the parser chooses one of
the following actions:

e SHIFT (S): move the front word w; from the

queue onto the stacks.

e LEFT-/ (L): add an arc with label [ between
the top two trees on the stack (s; < sg), and
remove s; from the stack.

e RIGHT-! (R): add an arc with label [ between
the top two trees on the stack (s; — sp), and
remove sg from the stack.

Given the sentence “John loves Mary”, the gold

standard action sequence is S, S, L, S, R.

2.1 Model

Chen and Manning (2014) proposed a determinis-
tic neural dependency parser, which rely on dense
embeddings to predict the optimal actions at each
step. We propose a variation of Chen and Manning
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(2014), which splits the output layer into two hi-
erarchical layers: the action layer and dependency
label layer. The hierarchical parser determines a
action in two steps, first deciding the action type,
and then the dependency label (Figure 2).

At each step of deterministic parsing, the neural
model extracts n atomic features from the parsing
state. We adopt the feature templates of Chen and
Manning (2014). Every atomic feature is repre-
sented by a feature embedding e; € R?, An input
layer is used to concatenate the n feature embed-
dings into a vector x = [e1;e2 ... ey,], where x €
R™. Then z is mapped to a dj,-dimensional hid-
den layer h by a mapping matrix W; € R»xdn
and a cube activation function for feature combi-
nation:

h= (Wi +by)* (1)

Our method is different from Chen and Man-
ning (2014) in the output layer. Given the hidden
layer h, the action type output layer o, and the
label output layer ojqpe;(a;) of the action type a;
are computed as

Oqct = W2 h (2)

Olabel(ai) = W?fh > (3)
Where Wy € R%*4n is the mapping matrix from
the hidden layer to the action layer, and d, is the
number of action types. Wi € RavetXdn jg the
mapping matrix from the hidden layer to the cor-
responding label layer, d;up; is the number of de-
pendency labels.

The probability of a labeled action y; ; given its
history Acts and input = is computed as:

p(yiJ | .f,ACtS)
= pla; |z, Acts) x p(lj | z, Acts,a;)  (4)

where

pla; | x, Acts) = chuet )
Zk 1 (& n,ct

eolubel(a")

p(l] | x’ ACtsa a‘i) = Zzl:aliel eofabel(ai)

. (0

Here a; is the i, action in the action layer, and [;
is the 7, label in the label layer for a;.

In training, we use the cross-entropy loss to
maximum the probability of training data A:

L(0) == ) logp(yij | =, Acts)  (7)
Yi,; €A

Experiments show that our hierarchical neural
parser is both faster and slightly accurate than the
original neural parser.

3 Reranking Scorer

We adopt the recursive convolutional neural net-
work (RCNN) of Zhu et al. (2015) for scoring full
trees. Given a dependency subtree rooted at h,
¢; (0 < ¢ < L) is the iy, child of h. The de-
pendency arc (h, ¢;) is represented by:

z; = tanh(W(h’ci)pi) , (8)
where

pi = wp, ® xe, ® dP) )

Here p; € R" is the concatenation of head word
embedding wy,, child phrase representation x,
and the distance embeddings d(-¢). W) ¢
R™*" is a linear composition matrix, which de-
pends on the POS tags of h and ¢;. The sub-
tree phrase representation 2" are computed using
a max-pooling function on rows, over the matrix
of arc representations Z".

7" = [z, 29, ..., 21 (10)
o =max 7,0 <j <m (11)
The subtree with the head h is scored by:
L
score(h) = th’cizi (12)
i=1
Here, v/ is the score vector, which is a vector of

parameters that need to be trained. The score of
the whole dependency tree y is computed as:

E SCOTG

wEeY

st(z,y,© (13)
where w is the node in tree y and © denotes the
set of parameters in the network.

4 Search-based Dynamic Reranking for
Dependency Parsing

Using the hierarchical parser of Section 2 as the
baseline parser, we propose a search-based dy-
namic reranking model, which integrates search
and learning by searching the reranking candidates
dynamically, instead of limiting the scope to a
fixed k-best list. The efficiency of the reranking
model is guaranteed by 3 properties of the base-
line parser, namely revising efficiency, probability
diversity and search efficiency.
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Revising Depth | UAS | LAS
0 92.28 | 91.15
1 95.76 | 94.42
2 97.79 | 96.63
3 98.77 | 97.55
4 99.39 | 98.15
5 99.74 | 98.47

Table 1: Oracle of the baseline parser after revis-
ing actions. Revising depth is the maximum num-
ber of revised actions for one sentence.

Action Type Num | Average Probability
Shift | 39194 99.38%
Gold Right | 19477 98.90%
Left | 19556 99.61%
Shift 968 84.96%
Incorrect | Right 746 85.88%
Left 338 85.03%

Table 2: Average action probabilities.

4.1 Properties of the Baseline Parser

To demonstrate the above three properties, we
give some preliminary results for the baseline. To
parse the 1,695 sentences in Section 22 of WSJ,
our baseline parser needs to perform 78,227 shift-
reduce actions. During the process, if we correct
every encountered incorrectly determined action
and let the baseline parser re-decode the sentence
from the point, we need to revise 2,052 actions, av-
eraging 1.2 actions per sentence. In other words,
the baseline parser can parse the 1,695 sentences
correctly with 2,052 action being revised.

Note that the revise operation is required to
change the action type (i.e. S, L). After revising
the action type, the optimal dependency label will
be chosen for parsing by the hierarchical baseline
parser. We only modify the action type in the re-
vising process. Thus the modified trees are always
structurally different instead of only with different
dependency labels compared to the original one,
which guarantees structured diversity.

Revising Efficiency It can be seen from Table 1
that revising one incorrect action results in 3.5%
accuracy improvement. We obtain a 99.74% UAS
after a maximum 5 depth revising. Although we
only revise the action type, the LAS goes up with
the UAS. The property of revising efficiency sug-
gests that high quality tree candidates can be found
with a small number of changes.

Probability Diversity Actions with lower prob-
abilities are more likely to be incorrect. We com-
pute the average probabilities of gold and incor-

rect actions in parsing the section 22 of WSJ (Ta-
ble 2), finding that most gold actions have very
high probabilities. The average probabilities of
the gold actions is much higher than that of the
incorrectly predicted ones, indicating that revising
actions with lower probabilities can lead to better
trees.

Search Efficiency The fast speed of the baseline
parser allows the reranker to search a large num-
ber of tree candidates efficiently. With the graph
stack trick (Goldberg et al., 2013), the reranker
only needs to perform partial parsing to obtain new
trees. This enables a fast reranker in theory.

4.2 Search Strategy

Given an output sequence of actions by the base-
line parser, we revise the action with the lowest
probability margin, and start a new branch by tak-
ing a new action at this point. The probability mar-
gin of an action a is computed as: p(@mqz) —p(a),
where a4, 1S the action taken by the baseline,
which has the highest model probability. a is taken
instead of a4, for this branch, and the baseline
parser is executed deterministically until parsing
finishes, thus yielding a new dependency tree. We
require that the action type must change in the
revision and the most probable dependency label
among all for the revised action type will be used.

Multiple strategies can be used to search for
the revised reranking process. For example, one
intuitive strategy is best-first, which modifies the
action with the lowest probability margin among
all sequences of actions constructed so far. Start-
ing from the original output of the baseline parser,
modifying the action with the lowest probability
margin results in a new tree. According to the
best-first strategy, the action with the lowest prob-
ability margin in the two outputs will be revised
next to yield the third output. The search repeats
until k£ candidates are obtained, which are used as
candidates for reranking.

The best-first strategy, however, does not con-
sider the quality of the output, which is like a
greedy process. A better candidate ( with higher
F1 score) is more likely to take us to the gold tree.
With the best-first strategy, we revise one tree at
each time. If the selected tree is not the optimal
one, the revised tree will be less likely the gold
one. Revising a worse output is less likely to gen-
erate the gold parse tree compared with revising
a relatively better output. Our preliminary experi-
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ments confirms this intuition. As a result, we take
a beam search strategy, which uses a beam to hold
b outputs to modify.

For each tree in beam search, most f actions
with the lowest probability margin are modified,
leading to b x f new trees. Here, b is the beam
size, f is the revising factor. From these trees, the
b best are put to the beam for the next step. Search
starts with the beam containing only the original
base parse, and repeats for [ steps, where [ is called
the revising depth. The best tree will be selected
from all the trees constructed. The search process
for example in Figure 1 is illustrated in Figure 3,
inwhichb=1, f=3and!=2.

At each iteration, the b best candidates can be
decided by the baseline parser score alone, which
is the product of the probability of each action. We
call this the static search reranking. As mentioned
in the introduction, the baseline model score might
not be the optimal criteria to select candidates for
reranking, since they may not reflect the best or-
acle or diversity. We introduce a dynamic search
strategy instead, using the reranking model to cal-
culate heuristic scores for guiding the search.

4.3 Search-Based Dynamic Reranking

Doppa et al. (2013) propose that structured-
prediction by learning guide search should main-
tain two different scoring functions, a heuristic
function for guiding search and a cost function
for obtaining the best output. Following Doppa
et al. (2013), we use the RCNN in Section 3 to
yield two different scores, namely a heuristic score
st(z,y, Op) to guide the search of revising, and a
cost score s¢(x,y, O.) to select the best tree out-
put.

Denote b(7) as the beam at i-th step of search,
k-best candidates in the beam of ¢ + 1 step is:

b(i + 1) = arg K(s¢(z, ¢, Op) + sp(x, ¢)), (14)

cec(i

where (i) denotes the set of newly constructed
trees by revising trees in b(7), sp(z, ¢) is the base-
line model score and arg K leaves the k best can-
didate trees to the next beam. Finally, the output
tree y; of reranking is selected from all searched
trees C' in the revising process

y; = arg Inezgc(st(x,c, Oc) + sp(x,c))  (15)

C
Interpolated Reranker In testing, we also
adopt the popular mixture reranking strat-

egy (Hayashi et al., 2013; Le and Mikolov, 2014),

Algorithm 1: Training Algorithm for the
Search-Based Dynamic Reranking.

Input: Sentence x, Gold Trees y

Output: Oy, O,

for iter < 1 to N do

Dy, =1[];

Dy =11

foreach (z, y) € (x, y) do

bestHScoreT = null,

bestCScoreT = null;

bestUAST = null;

initTree = BASELINEPARSE(X);

by = [initTree];

b2 =11;

for d — 1 to depth do

foreach ¢t € b; do
revisedActs = SEEK (t);
revisedTrees = REVISE (t,
revisedActs);
bestK = SORT (revisedTrees, ©y, )
ba.ADD (bestK);,
bestHScoreT = MAXSCORE
(bestHScoreT, revisedTrees, Op);
bestCScoreT = MAXSCORE
(bestCScoreT, revisedTrees, O.);
bestUAST = MAXUAS (bestUAST,

| revisedTrees, y)
b1 = ba;

L ba=1[]
Dy.ADD (x, bestUAST, bestTScoreT);

| D..ADD (z, y, bestCScoreT);

UPDATE(Dy,, O);
| UPDATE(D., ©.);

which obtains better reranking performance by a
linear combination of the reranking score and the
baseline model score.

Y; = arg 1max (B(St(xh Y, 60) + St(l’, Y, Gh))

yeT(z4)
+ (1= B)sp(wi,y))
(16)

Here y; is the final output tree for a sentence
x;; T(x;) returns all the trees candidates of the dy-
namic reranking; 3 €[0, 1] is a hyper-parameter.

4.4 Training

As k-best neural rerankers (Socher et al., 2013;
Zhu et al., 2015), we use the max-margin cri-
terion to train our model in a stage-wise man-
ner (Doppa et al., 2013). Given training data D,
= (x4, Yi, y})f\il, where x; is the sentence, 7j; is the
output tree with highest cost score and y; is the
corresponding gold tree, the final training objec-
tive is to minimize the loss function J(©.), plus a
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Figure 3: The beam search revising process of the example in Figure 1 withb=1, f=3and =2
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Here, ©. is the model, s;(z;,y;,O.) is the cost
reranking score for y;.

Alyi,gi) = > kl{d ¢ y;}

dey;

(19)

A(y;, y;) is the structured margin loss between y;
and y;, measured by counting the number of incor-
rect dependency arcs in the tree (Goodman, 1998;
Zhu et al., 2015).

Given training data Dy, = (2, y., /)Y, for the
heuristic score model, the training objective is to
minimize the loss between the tree with the best
UAS y; and the tree with the best heuristic rerank-
ing score ¥;.

1 A
J(©Op) = il Z 7i(Op) + 5”®hH
" (@il gD eD
(20)
T’i<@h) - max(ovst(xivgg7@h)> (21)

- St(xia y;: @h)

The detailed training algorithm is given by Al-
gorithm 1. AdaGrad (Duchi et al., 2011) updating
with subgradient (Ratliff et al., 2007) and mini-
batch is adopted for optimization.

5 Experiments

5.1 Set-up

Our experiments are performed using the English
Penn Treebank (PTB; Marcus et al., (1993)). We
follow the standard splits of PTB3, using sections
2-21 for training, section 22 for development and

section 23 for final testing. Following prior work
on reranking, we use Penn2Malt! to convert con-
stituent trees to dependency trees. Ten-fold POS
jackknifing is used in the training of the baseline
parser. We use the POS-tagger of Collins (2002) to
assign POS automatically. Because our reranking
model is a dynamic reranking model, which gen-
erates training instances during search, we train 10
baseline parsing models on the 10-fold jackknifing
data, and load the baseline parser model dynami-
cally for reranking training .

We follow Chen and Manning (2014), using the
set of pre-trained word embeddings with a dictio-
nary size of 13,0002 from Collobert et al. (2011).
The word embeddings were trained on the entire
English Wikipedia, which contains about 631 mil-
lion words.

5.2 Hyper-parameters

There are two different networks in our system,
namely a hierarchical feed-forward neural net-
work for the baseline parsing and a recursive con-
volution network for dynamic reranking. The
hyper-parameters of the hierarchical parser are set
as described by Chen and Manning (2014), with
the embedding size d = 50, the hidden layer size
dy, = 300, the regularization parameter A\ = 1078,
the initial learning rate of Adagrad a = 0.01 and
the batch size b = 100,000. We set the hyper-
parameters of the RCNN as follows: word embed-
ding size d¥,,, = 25, distance embedding size d?,,,
= 25, initial learning rate of Adagrad cp, = 0.1,
regularization parameter A, = 1074, margin loss
discount x = 0.1 and revising factor f = 8.

5.3 The Hierarchical Neural Parser

Shown in Table 3, the proposed hierarchical base
parser is 1.3 times faster, and obtains a slight ac-
curacy improvement (Table 3) upon the parser of
Chen and Manning (2014). The reason for the

"http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.htm]
*http://ronan.collobert.com/senna/
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Parser dev test Speed
UAS | LAS | UAS | LAS

hiero 92.28 | 91.15 | 91.83 | 90.76 | 884.7

original | 92.00 | 90.89 | 91.67 | 90.62 | 682.3

Table 3: Performance comparison between the hi-
erarchical and original neural parsers. Speed: sen-
tences per second.

Beam Size 1 2 4 8
UAS 93.38 | 93.45 | 93.81 | 93.51
Oracle 96.95 | 97.29 | 97.80 | 97.81
K 22.57 | 37.16 | 65.8 118.7

Table 4: Accuracies of the revising reranker with
different beam sizes on the development set.

speed gain is that smaller output layer leads to less
computation of mapping from the hidden layer to
the output layer in neural networks (Morin and
Bengio, 2005; Mnih and Hinton, 2009).

5.4 Development Tests

For the beam search dynamic reranking model, the
selection of beam size b and revising depth [ affect
the accuracy and efficiency of the reranker. We
tune the values on the development set.

Beam Size A proper beam size balances effi-
ciency and accuracy in the search process. The
reranking accuracies with different beam sizes are
listed in Table 4. Here, the oracle is the best UAS
among searched trees during reranking. K is the
number of searched candidate trees in testing. The
UAS and parsing oracle both go up with increas-
ing the beam size. Reranking with beam size = 4
gives the best development performance. We set
the final beam size as 4 in the next experiments.

Revising Depth As shown in Table 5, with re-
vising depth increasing from 1 to 3, the reranker
obtains better parsing oracle. The depth of 3 gives
the best UAS 93.81% on the development set.
The parsing oracle stops improving with deeper
revised search. This may because in the fourth
search step, the high quality trees begin to fall
out the beam, resulting in worse output candi-
dates, which make the revising step yield less ora-
cle gains. We set the search depth as 3 in the next
experiments.

Integrating Search and Learning Shown in
Table 6, the dynamic and static rerankers both
achieve significant accuracy improvements over
the baseline parser. The dynamic reranker gives

Revising Depth 1 2 3 4
UAS 93.22 | 93.50 | 93.81 | 93.53
Oracle 96.31 | 97.57 | 97.80 | 97.81
K 8.87 | 3845 | 65.8 | 90.28

Table 5: Accuracies of the revised reranker with
different revising depths on development set.

Search Type | UAS | +UAS | Oracle
Dynamic 93.81 | +1.53 | 97.80
Static 9329 | +1.01 | 97.61

Table 6: Comparing dynamic and the static search.

much better improvement, although the oracle of
dynamic reranker is only 0.2% higher than the
static one. This demostrates the benefit of diver-
sity. The candidates are always the same for static
search, but the dynamic reranker searches more
diverse tree candidates in different iterations of
training.

To further explore the impact of training diver-
sity to dynamic reranking, we also compare the
dynamic search reranker of training and testing
with different revising depth. In Table 7, origin
is the results by training and testing with the same
depth d. Results of #s is obtained by training with
d = 3, and testing with a smaller d. For example,
a reranker with training d = 3 and testing d = 2
achieves better performance than with training d =
2 and testing d = 2. The testing oracle of the for-
mer reranker is lower than the later, yet the former
learns more from the training instance, obtaining
better parsing accuracies. This again indicates that
training diversity is very important besides the or-
acle accuracy.

Interpolated Reranker Finally, we mix the
baseline model score and the reranking score by
following Hayashi et al. (2013) and Zhu et al.
(2015), and the mixture parameter 3 is optimized
by searching with the step size of 0.005. With the
mixture reranking trick, the dynamic reranker ob-
tains an accuracy of 94.08% (Table 8), with an im-
provement of 0.28% on the development set.

5.5 Final Results

Comparison with Dependency Rerankers In
Table 9, we compare the search-based dynamic
rerankers with a list of dependency rerankers. The
reranking models of Hayashi et al. (2013) and
Hayashi et al. (2011) are forest reranking mod-
els. Le and Zuidema (2014) and Zhu et al. (2015)
are neural k-best reranking models. Our dynamic
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Depth 1 2 3
ordinary UAS | 93.22 | 93.50 | 93.81
oracle | 96.31 | 97.57 | 97.80
s UAS | 93.59 | 93.79 | 93.81
oracle | 96.29 | 93.42 | 97.80

Table 7: Accuracies of the revised reranker with
different revising depths on the development set.

Type static | dynamic
w/o mixture | 93.29 93.81
w/ mixture | 93.53 94.08

Table 8: Effects of interpolated reranking.

reranking model achieves the highest accuracy im-
provement over the baseline parser on both the de-
velopment and test sets. We obtain the best perfor-
mance on the development set. Zhu et al. (2015)
achieved higher accuracy on the test set, but they
adopted a better baseline parser than ours, which
could not be used in our dynamic reranker because
it is not fast enough and will make our reranker
slow in practice.

Comparing with Neural Dependency Parsers
We also compare parsing accuracies and speeds
with a number of neural network dependency
parsers. Dyer et al. (2015) proposed a dependency
parser with stack LSTM; Zhou et al. (2015) ap-
plied the beam search for structured dependency
parsing. Both achieved significant accuracy im-
provements over the deterministic neural parser of
Chen and Manning (2014). Our dynamic search
reranker obtains a 93.61% UAS on the test set,
which is higher than most of the neural parsers ex-
cept Weiss et al. (2015), who employ a structured
prediction model upon the neural greedy baseline,
achieving very high parsing accuracy.

5.6 Results on Stanford dependencies

We also evaluate the proposed static and dynamic
rerankers on Staford dependency treebank. The
main results are consistent with CoNLL depen-
dency treebank with the dynamic reranker achiev-
ing a 0.41% accuracy improvement upon the static
reranker on test data. But the parsing accuracy
on Stanford dependency is not the state-of-the-art.
We speculate that there may be two reasons. First,
the baseline parsing accuracy on Stanford depen-
dencies is lower than CoNLL. Second, all the
hyper-parameters are tuned on the CoNLL data.

UAS
Reranker dov Tost

Hayashi et al. (2011) N/A 92.87 (+0.97)
Hayashi et al. (2013) N/A 93.12 (+0.62)
Le and Zuidema (2014) N/A 93.12 (+1.09)

(Zhu et al., baseline 92.45 92.35
2015) reranking | 93.50 (+1.05) | 93.83 (+1.48)

This work baseliqe 92.28 91.83
(CoNLL) dynar}nc 94.08 (+1.80) | 93.61 (+1.78)
static 93.53 (+1.25) | 93.17 (+1.34)

Table 9: Comparison of dependency rerankers.

6 Related Work

Neural Networks Reranking A line of work
has been proposed to explore reranking using neu-
ral networks. Socher et al. (2013) first proposed
a neural reranker using a recursive neural net-
work for constituent parsing. Le and Zuidema
(2014) extended the neural reranker to dependency
parsing using a inside-outside recursive neural
network (IORNN), which can process trees both
bottom-up and top-down. Zhu et al. (2015) pro-
posed a RCNN method, which solved the prob-
lem of modeling k-ary parsing tree in dependency
parsing. The neural rerankers are capable of cap-
turing global syntax features across the tree. In
contrast, the most non-local neural parser with
LSTM (Dyer et al., 2015) cannot exploit global
features. Different to previous neural rerankers,
our work in this paper contributes on integrat-
ing search and learning for reranking, instead of
proposing a new neural model.

Forest Reranking Forest reranking (Huang,
2008; Hayashi et al., 2013) offers a different way
to extend the coverage of reranking candidates,
with computing the reranking score in the trees
forests by decomposing non-local features with
cube-pruning (Huang and Chiang, 2005). In con-
trast, the neural reranking score encodes the whole
dependency tree, which cannot be decomposed for
forest reranking efficiently and accurately.

HC-Search Doppa et al. (2013) proposed a
structured prediction model with HC-Search strat-
egy and imitation learning, which is closely re-
lated to our work in spirit. They used the complete
space search (Doppa et al., 2012) for sequence la-
beling tasks, and the whole search process halts
after a specific time bound. Different from them,
we propose a dynamic parsing reranking model
based on the action revising process, which is a
multi-step process by revising the least confident
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Type System UAS | Speed
Zhou et al. (2015) 93.28 143
Dyer et al. (2015)1 93.30 105
Neural Weiss et al. (2015)7 93.99 N/A
Weiss et al. (2015) semi t | 94.26 | N/A
Pei et al. (2015) 9329 | N/A
Chen et al. (2015) 92.60 2.7
Chen and Manning (2014) | 92.00 1013
This work dynamic 93.61 16.1

Table 10: Comparison with neural parsers. Speed:
sentences per second. 71: results are reported on
Stanford dependencies. i: results are run by our-
self using their codes.

UAS
System dev test
baseline 91.80 91.41
dynamic | 93.44 (+1.64) | 92.95 (+1.57)
static 93.09 (+1.29) | 92.57 (+1.16)

Table 11: Dynamic reranking results on Stanford
dependencies.

actions from the base output and the search stops
in a given revising depth. The dynamic rerank-
ing model concentrates on extending the train-
ing diversity and testing oracle for parsing rerank-
ing, which is built on the transition-based parsing
framework.

7 Conclusion

In this paper, we proposed a search-based dy-
namic reranking model using a hierarchical neu-
ral base parser and a recursive convolutional neu-
ral score model. The dynamic model is the first
reranker integrating search and learning for de-
pendency parsing. It achieves significant accuracy
improvement (+1.78%) upon the baseline deter-
ministic parser. With the dynamic search process,
our reranker obtains a 0.44% accuracy improve-
ment upon the static reranker. The code of this pa-
per can be downloaded from http://github.
com/zhouh/dynamic—-reranker.
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