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Abstract

We propose an approach for semantic
parsing that uses a recurrent neural net-
work to map a natural language question
into a logical form representation of a
KB query. Building on recent work by
(Wang et al., 2015), the interpretable log-
ical forms, which are structured objects
obeying certain constraints, are enumer-
ated by an underlying grammar and are
paired with their canonical realizations.
In order to use sequence prediction, we
need to sequentialize these logical forms.
We compare three sequentializations: a
direct linearization of the logical form, a
linearization of the associated canonical
realization, and a sequence consisting of
derivation steps relative to the underlying
grammar. We also show how grammati-
cal constraints on the derivation sequence
can easily be integrated inside the RNN-
based sequential predictor. Our experi-
ments show important improvements over
previous results for the same dataset, and
also demonstrate the advantage of incor-
porating the grammatical constraints.

1 Introduction

Learning to map natural language utterances (NL)
to logical forms (LF), a process known as seman-
tic parsing, has received a lot of attention recently,
in particular in the context of building Question-
Answering systems (Kwiatkowski et al., 2013;
Berant et al., 2013; Berant and Liang, 2014). In
this paper, we focus on such a task where the NL
question may be semantically complex, leading to
a logical form query with a fair amount of compo-
sitionality, in a spirit close to (Pasupat and Liang,
2015).

Given the recently shown effectiveness of
RNNs (Recurrent Neural Networks), in particu-
lar Long Short Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997), for perform-
ing sequence prediction in NLP applications such
as machine translation (Sutskever et al., 2014) and
natural language generation (Wen et al., 2015),
we try to exploit similar techniques for our task.
However we observe that, contrary to those appli-
cations which try to predict intrinsically sequen-
tial objects (texts), our task involves producing a
structured object, namely a logical form that is
tree-like by nature and also has to respect cer-
tain a priori constraints in order to be interpretable
against the knowledge base.

In our case, building on the work “Building a
Semantic Parser Overnight” (Wang et al., 2015),
which we will refer to as SPO, the LFs are gener-
ated by a grammar which is known a priori, and it
is this grammar that makes explicit the structural
constraints that have to be satisfied by the LFs.
The SPO grammar, along with generating logi-
cal forms, generates so-called “canonical forms”
(CF), which are direct textual realizations of the
LF that, although they are not “natural” English,
transparently convey the meaning of the LF (see
Fig. 1 for an example).

Based on this grammar, we explore three differ-
ent ways of representing the LF structure through
a sequence of items. The first one (LF Prediction,
or LFP), and simplest, consists in just linearizing
the LF tree into a sequence of individual tokens;
the second one (CFP) represents the LF through its
associated CF, which is itself a sequence of words;
and finally the third one (DSP) represents the LF
through a derivation sequence (DS), namely the
sequence of grammar rules that were chosen to
produce this LF.

We then predict the LF via LSTM-based models
that take as input the NL question and map it into
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NL: article published in 1950 
CF: article whose publication date is 1950 
LF: get[[lambda,s,[filter,s,pubDate,=,1950]],article] 
DT: s0(np0 (np1 (typenp0), cp0 (relnp0, entitynp0)) 
DS: s0 np0 np1 typenp0 cp0 relnp0 entitynp0 

Figure 1: Example of natural language utterance (NL) from the SPO dataset and associated representa-
tions considered in this work. CF: canonical form, LF: logical form, DT: derivation tree, DS: derivation
sequence.

one of the three sequentializations. In the three
cases, the LSTM predictor cannot on its own en-
sure the grammaticality of the predicted sequence,
so that some sequences do not lead to well-formed
LFs. However, in the DSP case (in contrast to
LFP and CFP), it is easy to integrate inside the
LSTM predictor local constraints which guarantee
that only grammatical sequences will be produced.

In summary, the contribution of our paper is
twofold. Firstly, we propose to use sequence pre-
diction for semantic parsing. Our experimental
results show some significant improvements over
previous systems. Secondly, we propose to predict
derivation sequences taking into account gram-
matical constraints and we show that the model
performs better than sequence prediction models
not exploiting this knowledge. These results are
obtained without employing any reranking or lin-
guistic features such as POS tags, edit distance,
paraphrase features, etc., which makes the pro-
posed methodology even more promising.

2 Background on SPO

The SPO paper (Wang et al., 2015) proposes an
approach for quickly developing semantic parsers
for new knowledge bases and domains when no
training data initially exists. In this approach,
a small underlying grammar is used to generate
canonical forms and pair them with logical forms.
Crowdsourcing is then used to paraphrase each of
these canonical forms into several natural utter-
ances. The crowdsourcing thus creates a dataset
(SPO dataset in the sequel) consisting of (NL, CF,
LF) tuples where NL is a natural language ques-
tion with CF and LF the canonical and the logical
form associated with this question.

SPO learns a semantic parser on this dataset
by firstly learning a log-linear similarity model
based on a number of features (word matches,
ppdb matches, matches between semantic types
and POSs, etc.) between NL and the correspond-

ing (CF, LF) pair. At decoding time, SPO parses
a natural utterance NL by searching among the
derivations of the grammar for one for which the
projected (CF, LF) is most similar to the NL based
on this log-linear model. The search is based on
a so-called “floating parser” (Pasupat and Liang,
2015), a modification of a standard chart-parser,
which is able to guide the search based on the sim-
ilarity features.

In contrast, our approach does not search among
the derivations for the one that maximizes a match
with the NL, but instead directly tries to predict a
decision sequence that can be mapped to the LF.

The SPO system together with its dataset were
released to the public1 and our work exploits this
release.

3 Approach

3.1 Grammars and Derivations

s0: s(S) → np(S).
np0: np(get[CP,NP]) → np(NP), cp(CP).
np1: np(NP) → typenp(NP).
cp0: cp([lambda,s,[filter,s,RELNP,=,ENTNP]]) →

[whose], relnp(RELNP), [is], entitynp(ENTNP).
...
typenp0: typenp(article) → [article].
relnp0: relnp(pubDate) → [publication, date]
entitynp0: entitynp(1950) → [1950].
...

Figure 2: Some general rules (top) and domain-
specific rules (bottom) in DCG format.

The core grammatical resource released by SPO
is a generic grammar connecting logical forms
with canonical form realizations. They also pro-
vide seven domain-specific lexica that can be used
in combination with the generic grammar to obtain
domain-specific grammars which generate (LF,
CF) pairs in each domain, in such a way that
LF can then be used to query the corresponding
knowledge base. While SPO also released a set of

1https://github.com/percyliang/sempre
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s0 

np0 

np1 cp0 

typenp0 relnp0 entitynp0 

Figure 3: A derivation tree. Its leftmost derivation
sequence is [s0, np0, np1, typenp0, cp0, relnp0,
entitynp0].

typenp0 article
article

relnp0 publication date
pubDate

entitynp0 1950
1950

cp0 whose publication date is 1950
[lambda,s,[filter,s,pubDate,=,1950]

np1 article
article

np0 article whose publication date is 1950
get[[lambda,s,[filter,s,pubDate,=,1950]],article]

s0 article whose publication date is 1950
get[[lambda,s,[filter,s,pubDate,=,1950]],article]

Figure 4: Projection of the derivation tree nodes
into (i) a canonical form and (ii) a logical form.

Java-based parsers and generators for these gram-
mars, for our own purposes we found it conve-
nient to translate the grammars into the formalism
of Definite Clause Grammars (Pereira and War-
ren, 1980), a classical unification-based extension
of CFGs, which — through a standard Prolog in-
terpreter such as SWIPL2 — provide direct sup-
port for jointly generating textual realizations and
logical forms and also for parsing text into logi-
cal forms; we found this translation process to be
rather straightforward and we were able to cover
all of the SPO grammars.

Figure 2 lists a few DCG rules, general rules
first, then lexical rules, for the SPO “publications”
domain. Nonterminals are indicated in bold, ter-
minals in italics. We provide each rule with a
unique identifier (e.g. s0, np0, ...), which is ob-
tained by concatenating the name of its head non-
terminal with a position number relative to the
rules that may expand this nonterminal; we can
then consider that the nonterminal (e.g. np) is the
“type” of all its expanding rules (e.g. np0, np1,
...).

According to standard DCG notation, upper-
2http://www.swi-prolog.org/

case items S, NP, CP, RELNP, ENTNP de-
note unification variables that become instantiated
during processing. In our case unificaion vari-
ables range over logical forms and each nonter-
minal has a single argument denoting a partially
instantiated associated logical form. For instance,
in the cp0 rule, relnp is associated with the log-
ical form RELNP, entitynp with the logical
form ENTNP, and the LHS nonterminal cp is then
associated with the logical form [lambda, s,
[filter, s, RELNP, =, ENTNP]].3

In Figure 3, we display a derivation tree
DT (or simply derivation) relative to this gram-
mar, where each node is labelled with a rule
identifier. This tree projects on the one hand
onto the canonical form article whose publica-
tion date is 1950, on the other hand onto the
logical form get[[lambda,s,[filter,s,
pubDate,=,1950]],article].

Figure 4 shows how these projections are ob-
tained by bottom-up composition. For instance,
the textual projection of node cp0 is obtained from
the textual representations of nodes relnp0 and en-
titynp0, according to the RHS of the rule cp0,
while its logical form projection is obtained by in-
stantiation of the variables RELNP and ENTNP re-
spectively to the LFs associated with relnp0 and
entitynp0.

Relative to these projections, one may note a
fundamental difference between derivation trees
DT and their projections CF and LF: while the
well-formedness of DT can simply be assessed
locally by checking that each node expansion is
valid according to the grammar, there is in princi-
ple no such easy, local, checking possible for the
canonical or the logical form; in fact, in order to
check the validity of a proposed CF (resp. LF),
one needs to search for some DT that projects onto
this CF (resp LF). The first process, of course, is
known as “parsing”, the second process as “gener-
ation”. While parsing has polynomial complexity
for grammars with a context-free backbone such
as the ones considered here, deciding whether a
logical form is well-formed or not could in princi-
ple be undecidable for certain forms of LF compo-
sition.4

3This logical form is written here in DCG list notation; in
the more “Lispian” format used by SPO, it would be written
(lambda s (filter s RELNP = ENTNP)).

4The term ‘projection’ is borrowed from the notion of
bimorphism in formal language theory (Shieber, 2014) and
refers in particular to the fact that the overall logical form is
constructed by bottom-up composition of logical forms asso-
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To be able to leverage sequence prediction mod-
els, we can associate with each derivation tree DT
its leftmost derivation sequence DS, which corre-
sponds to a preorder traversal of the tree. For the
tree of Figure 3, this sequence is [s0, np0, np1,
typenp0, cp0, relnp0, entitynp0]. When the gram-
mar is known (in fact, as soon as the CFG core
of the grammar is known), two properties of the
DS hold (we omit the easy algorithms underlying
these properties; they involve using a prefix of the
DS for constructing a partial derivation tree in a
top-down fashion):

1. knowing the DS uniquely identifies the
derivation tree.

2. knowing a prefix of the DS (for instance [s0,
np0, np1, typenp0]) completely determines
the type of the next item (here, this type is
cp).

The first property implies that if we are able to pre-
dict DS, we are also able to predict DT, and there-
fore also LF and CF. The second property implies
that the sequential prediction of DS is strongly
constrained by a priori knowledge of the underly-
ing grammar: instead of having to select the next
item among all the possible rules in the grammar,
we only have to select among those rules that are
headed by a specific nonterminal. Under a simple
condition on the grammar (namely that there are
no “unproductive” rules, rules that can never pro-
duce an output5), following such constrained se-
lection for the next rule guarantees that the deriva-
tion sequence will always lead to a valid derivation
tree.

At this point, a theoretical observation should
be made: there is no finite-state mechanism on the
sequence of rule-names that can control whether
the next rule-name is valid or not.6 The relevance
of that observation for us is that the RNNs that we
use are basically finite-state devices (with a huge
number of states, but still finite-state), and there-
fore we do not expect them in principle to be able

ciated with lower nodes in the derivation tree. In our DCG
grammars, this composition actually involves more complex
operations (such as “beta-reduction”) than the simple copy-
ings illustrated in the small excerpt of Fig. 2.

5The general grammar ensures a good coverage of possi-
ble logical and canonical forms. However, when this general
grammar is used in particular domains, some rules are not rel-
evant any more (i.e. become ”unproductive”), but these can
be easily eliminated at compile time.

6This is easy to see by considering a CFG generating the
non finite-state language anbn.

to always produce valid derivation sequences un-
less they can exploit the underlying grammar for
constraining the next choice.

3.2 Sequence prediction models
In all these models, we start from a natural utter-
ance NL and we predict a sequence of target items,
according to a common sequence prediction archi-
tecture that will be described in section 3.3.

3.2.1 Predicting logical form (LFP model)
The most direct approach is to directly pre-
dict a linearization of the logical form from
NL, the input question. While an LF such
as that of Figure 1 is really a structured ob-
ject respecting certain implicit constraints (bal-
anced parentheses, consistency of the variables
bound by lambda expressions, and more gener-
ally, conformity with the underlying grammar),
the linearization treats it simply as a sequence
of tokens: get [ [ lambda s [ filter
s pubDate = 1950 ] ] article ]. At
training time, the LFP model only sees such se-
quences, and at test time, the next token in the
target sequence is then predicted without taking
into account any structural constraints. The train-
ing regime is the standard one attempting to mini-
mize the cross-entropy of the model relative to the
logical forms in the training set.

3.2.2 Predicting derivation sequence (DSP-X
models)

Rather than predicting LF directly, we can choose
to predict a derivation sequence DS, that is, a se-
quence of rule-names, and then project it onto LF.
We consider three variants of this model.

DSP This basic derivation sequence prediction
model is trained on pairs (NL, DS) with the stan-
dard training regime. At test time, it is possible for
this model to predict ill-formed sequences, which
do not correspond to grammatical derivation trees,
and therefore do not project onto any logical form.

DSP-C This is a Constrained variant of DSP
where we use the underlying grammar to constrain
the next rule-name. We train this model exactly as
the previous one, but at test time, when sampling
the next rule-name inside the RNN, we reject any
rule that is not a possible continuation.

DSP-CL This last model is also constrained, but
uses a different training regime, with Constrained
Loss. In the standard learning regime (used for the
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Target sequence DS CF LF
Length 10.5 11.8 47.0

Vocabulary Size 106.0 55.8 59.9

Table 1: Characteristics of different target se-
quences.

two previous models), the incremental loss when
predicting the next item yt of the sequence is com-
puted as − log p(yt), where p(yt) is the probabil-
ity of yt according to the RNN model, normalized
(through the computation of a softmax) over all
the potential values of yt (namely, here, all the
rules in the grammar). By contrast, in the CL
learning regime, the incremental loss is computed
as − log p′(yt), where p′(yt) is normalized only
over the values of yt that are possible continu-
ations once the grammar-induced constraints are
taken into account, ignoring whatever weights the
RNN predictor may (wrongly) believe should be
put on impossible continuations. In other words,
the DSP-CL model incorporates the prior knowl-
edge about well-formed derivation sequences that
we have thanks to the grammar. It computes the
actual cross-entropy loss according to the under-
lying generative process of the model that is used
once the constraints are taken into account.

3.2.3 Predicting canonical form (CFP model)

The last possibility we explore is to predict the
sequence of words in the canonical form CF, and
then use our grammar to parse this CF into its cor-
responding LF, which we then execute against the
knowledge base.7

Table 1 provides length and vocabulary-size
statistics for the LFP, DSP and CFP tasks.

We see that, typically, for the different domains,
DS is a shorter sequence than LF or CF, but its vo-
cabulary size (i.e. number of rules) is larger than
that of LF or CF. However DS is unique in allow-
ing us to easily validate grammatical constraints.
We also note that the CF is less lengthy than the

7Although the general intention of SPO is to unambigu-
ously reflect the logical form through the canonical form
(which is the basis on which Turkers provide their para-
phrases), we do encounter some cases where, although the
CF is well-formed and therefore parsable by the grammar,
several parses are actually possible, some of which do not
correspond to queries for which the KB can return an answer.
In these cases, we return the first parse whose logical form
does return an answer. Such situations could be eliminated
by refining the SPO grammar to a moderate extent, but we
did not pursue this.

article

𝑢𝑏

whose publication

𝑢𝑙,𝑡 𝑢𝑙,𝑡+1 𝑢𝑙,𝑡+2
LSTM encoding for the prefix 
of a sequence of items 

𝑢𝑏 𝑢𝑏

whose publication date

Figure 5: Our neural network model which is
shared between all the systems. An MLP encodes
the sentence in unigrams and bigrams and pro-
duces ub. An LSTM encodes the prefix of the
predicted sequence generating ul,t for each step
t. The two representations are then fed into a fi-
nal MLP to predict the next choice of the target
sequence.

LF, which uses a number of non “word-like” sym-
bols such as parentheses, lambda variables, and
the like.

3.3 Sequence prediction architecture
3.3.1 Neural network model
The goal of our neural network is to estimate the
conditional probability p(y1, . . . , yT ′ |x1, . . . , xT )
where (x1, . . . , xT ) is a natural language question
and (y1, . . . , yT ′) is a target sequence (linearized
LF, CF or derivation sequence). In all three cases,
we use the same neural network model, which we
explain in this subsection.

Suppose that the content of the NL is captured
in a real-valued vector ub, while the prefix of the
target sequence up to time t is captured in another
real-valued vector ul,t. Now, the probability of the
target sequence given the input question can be es-
timated as:

p(y1, . . . yT ′ |x1, . . . , xT ) =
T ′∏
t=1

p(yt|ub, y1, . . . yt−1)

=
T ′∏
t=1

p(yt|ub, ul,t−1)

In all our systems, the ub capturing the content
of the NL is calculated from the concatenation of a
vector u1 reading the sentence based on unigrams
and another vector u2 reading the sentence based
on bigrams. Mathematically, u1 = tanh(W1v1)
where v1 is the 1-hot unigram encoding of the NL
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and u2 = tanh(W2v2) where v2 is its 1-hot bi-
gram encoding. Then ub = tanh(Wu), where u
is the concatenation of u1 and u2. W1, W2 and W
are among the parameters to be learnt. For regular-
ization purposes, a dropout procedure (Srivastava
et al., 2014) is applied to u1 and u2.

The prefix of the target sequence up to time t
is modelled with the vector ul,t generated by the
latest hidden state of an LSTM (Hochreiter and
Schmidhuber, 1997); LSTM is appropriate here in
order to capture the long distance dependencies in-
side the target sequence. The vector ul,t is then
concatenated with ub (forming ubl in the equation
below) before passing through a two-layer MLP
(Multi-Layer Perceptron) for the final prediction:

p(yt+1|ul,t, ub) = softmax(W ′
2 tanh(W ′

1ubl))

Using deep structures such as this MLP for RNN
prediction has been shown to be beneficial in pre-
vious work (Pascanu et al., 2013).

The overall network architecture is summarized
in Figure 5. We train the whole network to min-
imize the cross entropy between the predicted se-
quence of items and the reference sequence.

This network architecture can easily support
other representations for the input sentence than
unigrams and bigrams, as long as they are real-
valued vectors of fixed length. We can just con-
catenate them with u1 and u2 and generate ub

as previously. In fact, in initial experiments, we
did concatenate an additional representation which
reads the sentence through an LSTM, but the per-
formance was not improved.

3.3.2 Decoding the target sequence
We implemented a uniform-cost search algorithm
(Russell and Norvig, 2003) to decode the best de-
cision sequence as the sequence with the highest
probability. The algorithm finishes in a reasonable
time for two reasons: 1) as indicated by Table 1,
the vocabulary size of each domain is relatively
small, and 2) we found that our model predicts rel-
atively peaked distributions. Of course, it would
also be easy to use a beam-search procedure, for
situations where these conditions would not hold.

4 Experiments

4.1 Setup

We conduct our experiments on the SPO dataset.
To test the overall performance of a semantic

parser, the SPO dataset contains seven domains fo-
cusing on different linguistic phenomena such as
multi-arity relations, sublexical compositionality
etc. The utterances in each domain are annotated
both with logical forms (LFs) and canonical forms
(CFs). The number of such utterances vary from
800 to 4000 depending on the domain. The size of
training data is indeed small but as the target vo-
cabulary is always in the domain, thus very small
as well, it is actually possible to learn a reasonable
semantic parser.

In the SPO dataset, the natural utterances were
split randomly into 80%-20% for training and test,
and we use the same sets. We perform an addi-
tional 80%-20% random split on the SPO train-
ing data and keep the 20% as development set
to choose certain hyperparameters of our model.
Once the hyperparameters are chosen, we retrain
on the whole training data before testing.

For LFP experiments, we directly tokenize the
LF, as explained earlier, and for CFP experiments
we directly use the CF. For DSP experiments
(DSP, DSP-C, DSP-CL) where our training data
consist of (NL, DS) pairs, the derivation sequences
are obtained by parsing each canonical form using
the DCG grammar of section 3.

We compare our different systems to SPO.
While we only use unigram and bigram features
on the NL, SPO uses a number of features of dif-
ferent kinds: linguistic features on NL such as
POS tags, lexical features computing the similarity
between words in NL and words in CF, semantic
features on types and denotations, and also fea-
tures based on PPDB (Ganitkevitch et al., 2013).

At test time, like SPO, we evaluate our system
on the proportion of questions for which the sys-
tem is able to find the correct answer in the knowl-
edge base.

4.2 Implementation details

We choose the embedding vectors u1 for unigrams
and u2 for bigrams to have 50 dimensions. The
vector ub representing the sentence content has
200 dimensions. The word embedding layer has
100 dimensions, which is also the case of the hid-
den layer of the LSTM ul,t. Thus ubl which is the
concatenation of ub and ul,t has 300 dimensions
and we fix the next layer to ubl to have 100 dimen-
sions. The model is implemented in Keras8 on top
of Theano (Bergstra et al., 2010). For all the exper-

8https://github.com/fchollet/keras
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iments, we train our models using rmsprop (Tiele-
man and Hinton., 2012) as the backpropagation al-
gorithm9. We use our development set to select
the number of training epochs, the dropout factor
over unigrams representation and the dropout fac-
tor over bigrams representation, by employing a
grid search over these hyperparameters: epochs in
{20, 40, 60}, unigrams dropout in {0.05, 0.1} and
bigrams dropout in {0.1, 0.2, 0.3}.

4.3 Experimental results

4.3.1 Results on test data
Table 2 shows the test results of SPO and of our
different systems over the seven domains.

It can be seen that all of our sequence-based sys-
tems are performing better than SPO by a large
margin on these tests. When averaging over the
seven domains, our ‘worst’ system DSP scores at
64.7% compared to SPO at 57.1%.

We note that these positive results hold despite
the fact that DSP has the handicap that it may
generate ungrammatical sequences relative to the
underlying grammar, which do not lead to inter-
pretable LFs. The LFP and CFP models, with
higher performance than DSP, also may generate
ungrammatical sequences.

The best results overall are obtained by the
DSP-C system, which does take into account the
grammatical constraints. This model performs
not only considerably better than its DSP base-
line (72.7% over 64.7%), but also better than the
models LFP and CFP. Somewhat contrary to our
expectations, the DSP-CL model, which exploits
constraints not only during decoding, but also dur-
ing training, performs somewhat worse than the
DSP-C, which only exploits them during decod-
ing.

We note that, for all the sequence based models,
we strictly base our results on the performance of
the first sequence predicted by the model. It would
probably be possible to improve them further by
reranking n-best sequence lists using a set of fea-
tures similar to those used by SPO.

4.4 Analysis of results

4.4.1 Grammatical errors
We just observed that CFP and LFP perform well
on test data although the sequences generated are

9All the hyperparameters of rmsprop as well as options for
initializing the neural network are left at their default values
in Keras.

Basketball Publication Housing
LFP 6.6 3.7 1.6
CFP 1.8 1.9 2.2
DSP 9.5 11.8 5.8

DSP-C(L) 0.0 0.0 0.0

Table 3: Grammatical error rate of different sys-
tems on test.

not guaranteed to be grammatical. We analysed
the percentage of grammatical errors made by
these models and also by DSP for three domains,
which we report in Table 3.10

The table shows that LFP and especially CFP
make few grammatical errors while DSP makes
them more frequently. For DSP-C and DSP-CL,
the error rate is always 0 since by construction,
the derivations must be well-formed. Note that as
DSP is not constrained by prior knowledge about
the grammar, the grammatical error rate can be
high – even higher than CFP or LFP because DSP
typically has to choose among more symbols, see
Table 1.

4.4.2 Difference between DSP-C and DSP-CL
We observed that the DSP-CL model performs
somewhat worse than DSP-C in our experiments.
While we were a bit surprised by that behav-
ior, given that the DSP-CL has strong theoreti-
cal motivations, let us note that the two models
are quite different. To stress the difference, sup-
pose that, for a certain prediction step, only two
rules are considered as possible by the grammar,
among the many rules of the grammar. Suppose
that the LSTM gives probabilities 0.004 and 0.006
respectively to these two rules, the rest of the
mass being on the ungrammatical rules. While
the DSP-C model associates respective losses of
− log 0.004,− log 0.006 with the two rules, the
DSP-CL model normalizes the probabilites first,
resulting in smaller losses − log 0.4,− log 0.6.

As we choose the best complete sequence dur-
ing decoding, it means that DSP-C will be more
likely to prefer to follow a different path in such
a case, in order not to incur a loss of at least
− log 0.006. Intuitively, this means that DSP-
C will prefer paths where the LSTM on its own

10Our DCG permits to compute this error rate directly for
canonical forms and derivation sequences. For logical forms,
we made an estimation by executing them against the knowl-
edge base and eliminating the cases where the errors are not
due to the ungrammaticality of the logical form.
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Basketball Social Publication Blocks Calendar Housing Restaurants Avg
SPO 46.3 48.2 59.0 41.9 74.4 54.0 75.9 57.1
LFP 73.1 70.2 72.0 55.4 71.4 61.9 76.5 68.6
CFP 80.3 79.5 70.2 54.1 73.2 63.5 71.1 70.3
DSP 71.6 67.5 64.0 53.9 64.3 55.0 76.8 64.7

DSP-C 80.5 80.0 75.8 55.6 75.0 61.9 80.1 72.7
DSP-CL 80.6 77.6 70.2 53.1 75.0 59.3 74.4 70.0

Table 2: Test results over different domains on SPO dataset. The numbers reported correspond to the pro-
portion of cases in which the predicted LF is interpretable against the KB and returns the correct answer.
LFP = Logical Form Prediction, CFP = Canonical Form Prediction, DSP = Derivation Sequence Predic-
tion, DSP-C = Derivation Sequence constrained using grammatical knowledge, DSP-CL = Derivation
Sequence using a loss function constrained by grammatical knowledge.

gives small probability to ungrammatical choices,
a property not shared by DSP-CL. However, a
more complete understanding of the difference
will need more investigation.

5 Related Work and Discussion

In recent work on developing semantic parsers
for open-domain and domain-specific question an-
swering, various methods have been proposed to
handle the mismatch between natural language
questions and knowledge base representations in-
cluding, graph matching, paraphrasing and em-
beddings techniques.

Reddy et al. (2014) exploits a weak supervision
signal to learn a mapping between the logical form
associated by a CCG based semantic parser with
the input question and the appropriate logical form
in Freebase (Bollacker et al., 2008).

Paraphrase-based approaches (Fader et al.,
2013; Berant and Liang, 2014) generate variants
of the input question using a simple hand-written
grammar and then rank these using a paraphrase
model. That is, in their setting, the logical form
assigned to the input question is that of the gen-
erated sentence which is most similar to the input
question.

Finally, Bordes et al. (2014b; 2014a) learn a
similarity function between a natural language
question and the knowledge base formula encod-
ing its answer.

We depart from these approaches in that we
learn a direct mapping between natural language
questions and their corresponding logical form or
equivalently, their corresponding derivation and
canonical form. This simple, very direct ap-
proach to semantic parsing eschews the need
for complex feature engineering and large exter-

nal resources required by such paraphrase-based
approaches as (Fader et al., 2013; Berant and
Liang, 2014). It is conceptually simpler than the
two steps, graph matching approach proposed by
Reddy et al. (2014). And it can capture much more
complex semantic representations than Bordes et
al. (2014b; 2014a)’s embeddings based method.11

At a more abstract level, our approach differs
from previous work in that it exploits the fact that
logical forms are structured objects whose shape is
determined by an underlying grammar. Using the
power of RNN as sequence predictors, we learn to
predict, from more or less explicit representations
of this underlying grammar, equivalent but differ-
ent representations of a sentence content namely,
its canonical form, its logical form and its deriva-
tion sequence.

We observe that the best results are obtained by
using the derivation sequence, when also exploit-
ing the underlying grammatical constraints. How-
ever the results obtained by predicting directly the
linearization of the logical form or canonical form
are not far behind; we show that often, the pre-
dicted linearizations actually satisfy the underly-
ing grammar. This observation can be related to
the results obtained by Vinyals et al. (2014), who
use an RNN-based model to map a sentence to
the linearization of its parse tree,12 and find that
in most cases, the predicted sequence produces
well-balanced parentheses. It would be interest-

11In (Bordes et al., 2014b; Bordes et al., 2014a), the logical
forms denoting the question answers involve only few RDF
triples consisting of a subject, a property and an object i.e., a
binary relation and its arguments.

12Note a crucial difference with our approach. While in
their case the underlying (“syntactic”) grammar is only par-
tially and implicitly represented by a set of parse annotations,
in our case the explicit (“semantic”) grammar is known a pri-
ori and can be exploited as such.
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ing to see if our observation would be maintained
for more complex LFs than the ones we tested on,
where it might be more difficult for the RNN to
predict not only the parentheses, but also the de-
pendencies between several lambda variables in-
side the overall structure of the LF.

6 Conclusion and Future Work

We propose a sequence-based approach for the
task of semantic parsing. We encode the target
logical form, a structured object, through three
types of sequences: direct linearization of the log-
ical form, canonical form, derivation sequence in
an underlying grammar. In all cases, we obtain
competitive results with previously reported ex-
periments. The most effective model is one using
derivation sequences and taking into account the
grammatical constraints.

In order to encode the underlying derivation
tree, we chose to use a leftmost derivation se-
quence. But there are other possible choices that
might make the encoding even more easily learn-
able by the LSTM, and we would like to explore
those in future work.

In order to improve performance, other promis-
ing directions would involve adding re-reranking
techniques and extending our neural networks
with attention models in the spirit of (Bahdanau
et al., 2015).
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