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Abstract

Computationally modeling the evolution
of science by tracking how scientific top-
ics rise and fall over time has important
implications for research funding and pub-
lic policy. However, little is known about
the mechanisms underlying topic growth
and decline. We investigate the role of
rhetorical framing: whether the rhetori-
cal role or function that authors ascribe
to topics (as methods, as goals, as results,
etc.) relates to the historical trajectory of
the topics. We train topic models and a
rhetorical function classifier to map topic
models onto their rhetorical roles in 2.4
million abstracts from the Web of Science
from 1991-2010. We find that a topic’s
rhetorical function is highly predictive of
its eventual growth or decline. For exam-
ple, topics that are rhetorically described
as results tend to be in decline, while top-
ics that function as methods tend to be in
early phases of growth.

1 Introduction

One of the most compelling research questions in
the computational analysis of scientific literature
is whether the vast collections of scientific text
hold important clues about the dynamics involved
in the evolution of science; clues that may help
predict the rise and fall of scientific ideas, meth-
ods and even fields. Being able to predict sci-
entific trends in advance could potentially revolu-
tionize the way science is done, for instance, by
enabling funding agencies to optimize allocation
of resources towards promising research areas.
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Topic: Stem Cells
»~ Function: Objective

....Iin order to address the efficacy of
stem cell treatments for neuromotor
impairment._.[.Rats on day 14 of age
were lesioned.... o

Topic: Animal Models
Function: Method

Figure 1: Example abstract snippet. The abstract
rhetorically frames the stem cells topic as the
OBJECTIVE of the research, while the animal
models topic functions as the research METHOD.

Prior studies have often tracked scientific trends
by applying topic modeling (Blei et al., 2003)
based techniques to large corpora of scientific
texts (Griffiths and Steyvers, 2004; Blei and Laf-
ferty, 2006; Hall et al., 2008). They capture sci-
entific ideas, methods, and fields in terms of top-
ics, modeled as distributions over collection of
words. These approaches usually adopt a de-
contextualized view of text and its usage, associ-
ating topics to documents based solely on word
occurrences, disregarding where or how the words
were employed. In reality, however, scientific ab-
stracts often follow narrative structures (Crookes,
1986; Latour, 1987) that signal the specific rhetor-
ical roles that different topics play within the re-
search (Figure 1). The rhetorical role of a topic
is the purpose or role it plays in the paper: as its
background (scientific context), its objective/goal,
the data employed, the design or method used
(mode of inference), the results (what is found) or
the conclusions (what they mean).
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RATIONALE: Neonatal ibotenic acid lesion of the ventral hippocampus was proposed as a relevant animal model of
schizophrenia reflecting positive as well as negative symptoms of this disease. Before and after reaching maturity, specific
alterations in the animals’ social behaviour were found. OBJECTIVE: In this study, social behaviour of ventral hippocampal
lesioned rats was analysed. For comparison, rats lesioned either in the ventral hippocampus or the dorsal hippocampus at the
age of 8 weeks were tested. METHODS: Rats on day 7 of age were lesioned with ibotenic acid in the ventral hippocampus and
social behaviour was tested at the age of 13 weeks. For comparison, adult 8-week-old rats were lesioned either in the ventral or
the dorsal hippocampus. Their social behaviour was tested at the age of 18 weeks. RESULTS: It was found that neonatal lesion
resulted in significantly decreased time spent in social interaction and an enhanced level of aggressive behaviour. This shift is
not due to anxiety because we could not find differences between control rats and lesioned rats in the elevated plus-maze. Lesion
in the ventral and dorsal hippocampus, respectively, in 8-week-old rats did not affect social behaviour. CONCLUSIONS: The
results of our study indicate that ibotenic acid-induced hippocampal damage per se is not related to the shift in social behaviour.
‘We favour the hypothesis that these changes are due to lesion-induced impairments in neurodevelopmental processes at an early
stage of ontogenesis.

Figure 2: An example of a self-annotated abstract.
Source: http://www.ncbi.nlm.nih.gov/pubmed/10435405.

Rhetorical functions that topics take part in
could hold important clues about the stage or de-
velopment of an intellectual movement they stand
to represent. For example, a topic that shifts over
time from being employed as a method to being
mentioned as background may signal an increase
in its maturity and perhaps a corresponding de-
crease in its popularity among new research.

In this paper, we introduce a new algorithm to
determine the rhetorical functions of topics associ-
ated with an abstract. There is much work on an-
notating and automatically parsing the rhetorical
functions or narrative structure of scientific writ-
ing (e.g., Teufel, 2000; Chung, 2009; Gupta and
Manning, 2011; de Waard and Maat, 2012). We
derive insights from this prior work, but since we
desire to apply our analysis to a broad range of
domains, we build our narrative structure model
based on over 83,000 self-labeled abstracts ex-
tracted from a variety of domains in the Web of
Science corpus. Figure 2 shows an example of
an abstract in which the authors have labeled the
different narrative sections explicitly and identi-
fied the rhetorical functions. We use our narrative
structure model to assign rhetorical function labels
to scientific topics and show that these labels of-
fer important clues indicating whether topics will
eventually grow or decline.

Contributions: The three main contributions of
our paper are: 1) we introduce the notion of the
rhetorical scholarly functions of scientific topics,
extending previous work which tended to focus
on the rhetorical functions of individual sentences.
We present an algorithm to assign rhetorical func-
tion labels to a topic as used in an individual pa-
per; 2) we derive a new narrative scheme for scien-
tific abstracts from over 83,000 abstracts that are

labeled with narrative structures by their authors
themselves, and present a tagger trained on this
data that can parse unseen abstracts with 87% ac-
curacy; 3) we show that the rhetorical function dis-
tribution of a topic reflects its temporal trajectory,
and that it is predictive of whether the topic will
eventually rise or fall in popularity.

2 Related Work

Our work builds upon a wealth of previous lit-
erature in both topic modeling and scientific dis-
course analysis, which we discuss in this section.
We also discuss how our work relates to prior work
on analyzing scientific trends.

2.1 Topic Modeling

Topic modeling has a long history of applications
to scientific literature, including studies of tempo-
ral scientific trends (Griffiths and Steyvers, 2004;
Steyvers et al., 2004; Wang and McCallum, 2006),
article recommendation (Wang and Blei, 2011),
and impact prediction (Yogatama et al., 2011). For
example, Hall et al. (2008) and Anderson et al.
(2012) show how tracking topic popularities over
time can produce a ‘computational history’ of a
particular scientific field (in their case ACL, where
they tracked the rise of statistical NLP, among
other dramatic changes).

Technical advancements in these areas usually
correspond to modifications or extensions of the
topic modeling (i.e., LDA) framework itself, such
as by incorporating citation (Nallapati et al., 2008)
or co-authorship information (Mei et al., 2008) di-
rectly into the topic model; Nallapati et al. (2011)
employ such an extension to estimate the tempo-
ral “lead” or “lag” of different scientific informa-
tion outlets. We contribute to this line of work by
showing how we can build off of the standard LDA
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framework—by overlaying rhetorical roles—and
how this allows us to not only detect the growth
and decline of scientific topics but also to predict
these trends based upon the rhetorical roles being
employed. Since our framework is structured as a
pipeline (Figure 3) and works with the output of
a topic modeling system, it is compatible with the
vast majority of these extended topic models.

2.2 Scientific Discourse Analysis

Scientific discourse analysis is an active area of
research with many different proposed schema of
analysis — Argument Zones (Teufel, 2000), Infor-
mation Structure (Guo et al., 2010), Core Scien-
tific Concepts (Liakata, 2010), Research Aspects
(Gupta and Manning, 2011), Discourse Segments
(de Waard and Maat, 2012), Relation Structures
(Tateisi et al., 2014), and Rhetorical Roles (Chung,
2009) to name a few. Most studies in this area fo-
cus on improving automatic discourse parsing of
scientific text, while some works also focus on the
linguistic patterns and psychological effects of sci-
entific argumentation (e.g., de Waard and Maat,
2012). A wide range of techniques have been
used in prior work to parse scientific abstracts,
from fully supervised techniques (Chung, 2009;
Guo et al., 2010) to semi-supervised (Guo et al.,
2011c; Guo et al., 2013) and unsupervised tech-
niques (Kiela et al., 2015).

Scientific discourse parsing has also been
applied to other downstream tasks within the
biomedical domain, such as information retrieval
from randomized controlled trials in evidence
based medicine (Chung, 2009; Kim et al., 2011;
Verbeke et al., 2012), cancer risk assessment (Guo
et al., 2011b), summarization (Teufel and Moens,
2002; Contractor et al., 2012), and question an-
swering (Guo et al., 2013). Our work also falls in
this category in the sense that our goal is to apply
the rhetorical function parser to better understand
the link between rhetoric and the historical trajec-
tory of scientific ideas.

2.3 Scientific Trends Analysis

There is also a large body of literature in biblio-
metrics and scientometrics on tracking scientific
trends using various citation patterns. Researchers
have attempted to detect emerging research fronts
using topological measures of citation networks
(Shibata et al., 2008) as well as co-citation clus-
ters (Small, 2006; Shibata et al., 2009). Unlike
this line of work, our focus is not on citation pat-

terns, but on how scientific trends are reflected in
the texts of scientific publications.

Prior studies have also analyzed text to detect
scientific trends. Mane and Borner (2004) and
Guo et al. (2011a) use word burst detection (Klein-
berg, 2003) to map new and emerging scientific
fields, while Small (2011) examined sentiments
expressed in the text surrounding citations, show-
ing uncertainty in interdisciplinary citations con-
trasted with wutility in within-discipline citations.
In contrast to this previous work, we analyze the
rhetorical function of automatically extracted top-
ics from abstract text, without access to the cita-
tion context in full text.

3 Corpus

We use the Thomson Reuters Web of Science
Core Collection, which contains scientific ab-
stracts from over 8,500 of leading scientific and
technical journals across 150 disciplines. We limit
our study to the subset of abstracts from 1991 to
2010, which forms the majority of articles. This
subset (denoted WOS hereafter) contains over 25
million articles from around 250 fields.

4 Rhetorical Functions of Scientific
Topics

We use the term rhetorical function to identify the
purpose or role a scientific topic plays within a re-
search paper. This function qualifies the associa-
tion between a topic and a paper.

A topic could represent the general domain of
the research or its main objective/goal. It could
also correspond to the data used, the way the re-
search is designed, or the methods used. A topic
may serve one or more of these roles within the
same paper. The same topic may also serve differ-
ent roles in different papers. We are interested in
finding the different rhetorical functions by which
topics are associated with the papers in our cor-
pus, as a tool for understanding the growth and
decline of topics over time. Our focus is thus on
the rhetorical functions that topics play across pa-
pers, in order to understand the ‘rhetorical struc-
ture of science’ (Latour, 1987), although these are
cued by specific rhetorical structures in individual
sentences of individual papers. (Our work on the
function of ropics thus differs somewhat from pre-
vious research focusing on the rhetorical role of
individual sentences or segments in the structure
of the paper.)
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Figure 3: Rhetorical Function Labeling
The topic model (step a) assigns topic distributions to the abstract text (bottom left) and the abstract
parser (step b) divides the text into discourse segments (top right). Rhetorical function labeling (step c)
combines these two analyses to assign rhetorical functions to topics (bottom middle). These labels
enrich the analysis of trends in topic popularity over decades (bottom right).

We follow a three-step process to assign rhetor-
ical function labels to a large corpus of scientific
abstracts. Figure 3 presents the pictorial repre-
sentation of the procedure we follow — 1) obtain
topic probabilities for each abstract, 2) parse the
narrative structure of the abstracts in order to ar-
rive at segments of text with different discourse
intentions, and 3) superimpose the topic assign-
ments and the abstract parse to arrive at the rhetor-
ical function labels that capture how the topics are
associated with the work presented in the abstract.
We describe each of these steps in detail below.

a. Topic modeling: The core of our approach
relies on the popular latent Dirichlet allocation
(LDA) (Blei et al., 2003) algorithm. It probabilis-
tically assigns both words and abstracts to differ-
ent topics, in an unsupervised manner. Let A =
{a1,az,...a;4} be the set of abstracts within the
field we are studying, and let T' = {t1,t2,...t|7|}
be the set of different topics in the field. A topic
model trained on A assigns 6, ¢, the probability of
topic ¢ occurring in abstract a for all a € A and
t € T. The topic model also provides the ¢ ,,, the
probability of word w occurring in topic .

b. Abstract parsing: An abstract parser di-
vides the abstract text into a sequence of dis-
course segments, with each segment assigned a
specific label denoting its rhetorical purpose. Let
S(a) = (s1,52,---5|5(a)|) be the sequence of seg-
ments identified by the abstract parser, and let L

denote the set of labels in the abstract parsing
framework. The abstract parser assigns a label
l(s;) € L, foreach s; € S(a).

c. Rhetorical Function Labeling: We tease
apart the abstract-level topic distribution 0, ; as-
signed by the topic model (step a) along the seg-
ments found by the abstract parser (step b), and
find the topic weights on each label 6; ;(a) by cal-
culating topic weights for segments that are as-
signed label [, i.e., {s; € S(a) : I(s;) = I}. We
calculate the topic weights for each segment by ag-
gregating the topic weights on each word derived
from ¢, ,, inferred by the topic model:

9l,t(a) X Z

w;€s;:l(sq)=l

Ptw ey

We first describe the abstract parsing system
(step b) we built for this purpose in Section 5, be-
fore discussing the execution details of each of the
above three steps in Section 6.

5 Abstract Parsing

Datasets with manual annotations for discourse
structure of abstracts (e.g., Guo et al., 2010; Gupta
and Manning, 2011) are few, small, and limited to
specific domains. It is not clear how accurate an
abstract parser trained on these datasets will per-
form on other domains. Since we want to obtain
the structure of abstracts in a broad range of do-
mains over different time-periods, a parser trained

1173



on small datasets in specific domains may not be
adequate for our purposes. Hence, we exploit the
large number of abstracts in the WOS corpus in
order to gather a dataset of self-labeled abstracts
from a wide range of domains, over a period of
two decades. By self-labeled abstracts, we refer to
the abstracts where the authors have identified the
discourse segments using explicit section labels.

5.1 Extracting Self-labeled Abstracts

In the first step, we extract all the patterns from the
WOS corpus that could potentially be a segment
label. For this, we look for a pattern that is com-
monly used by authors to label abstract segments
— a capitalized phrase of one or more words oc-
curring at the beginning of the abstract or preceded
by a period, and followed by a *“:”. We obtained
455,972 matches for the above pattern, corre-
sponding to 2,074 unique labels, majority of which
were valid discourse segment labels. These in-
clude variations of the same labels (e.g., “OBJEC-
TIVE” and “AIM”, “CONCLUSION” and “CON-
CLUSIONS?” etc.) and typos (e.g., “RESLUTS”).
There were also instances where two common la-
bels were combined (e.g., “DATA AND METH-
ODS”). The extracted matches also contained a
long tail of false positives (e.g., “BMI”).

One of the challenges in using the set of ab-
stracts we obtained above is that they do not follow
a common labeling scheme. Hence, we manually
analyzed the top 100 unique labels (which corre-
sponds to labels with more than ~50 instances)
and mapped them into a unified labeling scheme,
grouping together labels with similar intentions.
This resulted in a typology of seven labels:
BACKGROUND: The scientific context
OBJECTIVE: The specific goal(s)

DATA: The empirical dimension used
DESIGN: The experimental setup
METHOD: Means used to achieve the goal
RESULT: What was found

CONCLUSION: What was inferred

We use this mapping to obtain abstracts that are
self-labeled. We exclude the abstracts that had
combined labels, since they may add noise to
the training data. We also exclude abstracts that
contained only false positive matches. This pre-
processing resulted in a dataset of 83,559 ab-
stracts. We refer to this dataset as SL, hereafter.
We divide the SL dataset into Train/Dev/Test sub-
sets for our experiments (Table 1).

Train Dev Test
# of abstracts 58,600 12,331 12,628
# of labeled segments 243,217 51,111 52,403
# of sentences 681,730 143,792 147,321

Table 1: Statistics of self-labeled abstracts

5.2 Automatic tagging of abstracts

We use the SL dataset to build a supervised learn-
ing system that can predict the abstract structure
in unseen documents. We perform the prediction
at the sentence level. We used the CRF algorithm
to train the model, as it has been proven success-
ful in similar tasks in prior work (Hirohata et al.,
2008; Merity et al., 2009). In our preliminary ex-
periments, we also tried using SVM, but CRF was
faster and outperformed SVM by 4-5% points con-
sistently. We use the following features:

1. Location: location of the sentence from the
beginning or end of the abstract

2. Word ngrams: unigrams and bigrams of word
lemmas

3. Part-of-speech ngrams: unigrams and bi-
grams of part-of-speech tags

4. Verb lemmas and part-of-speeches: lemmas
of verbs, and their part-of-speech tags in or-
der to identify the tense of verb usage

5. Verb classes: we looked up each verb in the
VerbNet (Kipper-Schuler, 2005) index and
added the VerbNet class to the feature set if
the verb maps to a unique verb class.

6. Concreteness rating: we used the max, min,
and mean concreteness ratings of words
based on (Brysbaert et al., 2014).

Most of these features are commonly used in sim-
ilar tasks, while the concreteness features are new
(and significantly improved performance). We
do not use parse features, however, since our
pipeline emphasizes computational efficiency, and
parse features showed minimal utility relative to
their computational cost in prior work (Guo et al.,
2010).

We evaluate the performance of our learned
model in terms of overall accuracy as well as per-
class precision, recall and F-measure of predicting
the segment labels at the sentence level. We per-
formed experiments on the Dev set to choose the
best feature configuration (e.g., tuning for word
and part-of-speech ngram length). Each feature
set described in the previous paragraph were con-
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Precision Recall F-measure

BACKGROUND 74.6 77.2 75.8
OBJECTIVE 85.2 81.8 83.5
DATA 82.6 76.8 79.6
DESIGN 68.0 64.8 66.3
METHOD 80.4 80.1 80.2
RESULT 90.8 93.3 92.0
CONCLUSION 93.8 92.0 92.9
Accuracy 86.6

Table 2: Results of parsing abstract structure

tributing features to the best performance obtained
on the Dev set. The concreteness features we in-
troduced significantly improved the overall accu-
racy by around 2%.

Table 2 shows the results obtained on testing
the final classifier system on the Test subset of
SL.! We obtain an overall high accuracy of 86.6%
at the sentence level. While RESULT and CON-
CLUSION obtained F-measures above 90%, OB-
JECTIVE and METHOD reported reasonable F-
measures above 80%. DESIGN obtained the low-
est precision, recall and F-measure. Overall, the
performance we obtain is in the range of other re-
ported results in similar tasks (Guo et al., 2013).

6 Analysis Setup

In the rest of this paper, we apply the rhetor-
ical function labeling system described in Sec-
tion 4 to analyze the growth and decline of sci-
entific topics. We chose four diverse fields from
the WOS corpus with large numbers of abstracts
for our analysis, which are: Biochemistry &
Molecular Biology (BIO): 850,394 abstracts, Ap-
plied Physics (PHY): 558,934 abstracts, Physical
Chemistry (CHM): 533,871 abstracts, and Neuro-
sciences (NEU): 477,197 abstracts. We apply the
steps (a), (b), and (c¢) of rhetorical function label-
ing as described in Section 4 to these fields as fol-
lows:

Topic Modeling: We use the LightLDA imple-
mentation (Yuan et al., 2015) of LDA. It employs
a highly efficient and parallelized Metropolis-
Hastings sampler that allows us to scale our ap-

"'We report only the results obtained in unseen abstracts
in the Test set due to lack of space. Similar performance was
obtained in the Dev set as well.

proach to massive datasets (e.g., millions of ab-
stracts in our case). For all our experiments, we
ran the algorithm for 1000 iterations, as this was
sufficient for convergence. We use 500 topics for
all four fields, but otherwise use the default hyper-
parameter settings from the LightLDA package.?

Abstract Parsing We applied the 7-label ab-
stract parsing system described in Section 5 on all
abstracts in each of the four disciplines.

Rhetorical Function Labeling Once the steps
(a) and (b) are completed, we applied the rhetor-
ical function labeling step (c) from Section 4 in
order to obtain topic weights for each segment. In
addition, we calculate a rhetorical function label
distribution (referred to as label distribution here-
after) for each topic associated with an abstract.

7 Dissecting Topic Trajectories

In this section, we investigate whether the label
distribution of the topics (i.e., across the rhetori-
cal function labels) sheds light on the kind of tra-
jectories they follow; in particular, whether it can
predict the up-trend vs. down-trend of topics. We
formalize the problem as follows: given two sets
of topics clustered based on their historical trajec-
tories, do the label-distribution based features of a
topic have predictive power to classify the topic to
be in either set?

7.1 Tracking topic popularities

For each field, we first calculated the number of
articles in which each topic occurred in at least
one of the rhetorical functions for each year in the
20-year period 1991-2010. Since the fields them-
selves grow over the years, we divide this number
by the number of articles within that field to obtain
the popularity of each topic in any year:

popularity(t,y) = DocsWithTopic(t)/|Ayl,
where A, denotes the subset of articles in year y.

7.2 Detecting growing vs. declining topics

We are interested in the set of topics in each field
that are either growing or declining. Figure 4
shows example popularity trends for two such top-
ics in neuroscience: stem cell research, which sees

?In preliminary experiments, we used 100, 500 and 1000
topics. Upon manual inspection, we found that 500 topics
resulted in a granularity that better captures the scientific in-
tellectual movements within fields.
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Topic popularity trajectories
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Figure 4: Example topic popularity curves from
1991 till 2010. Stem cell research (green) sees an
increase in popularity over this time period, while

Opioid research (blue) declines in popularity.

a dramatic increase in popularity from 1991-2010,
and opioid® drug research, which declines in pop-
ularity during the same time-period.

Of course, topics do not always follow trajec-
tories of pure growth or decline. A topic may
have risen and subsequently fallen in popularity
over the period of 20 years, or may stay more or
less the same throughout (Griffiths and Steyvers,
2004). Hence, categorizing topics to be grow-
ing or declining solely based on the popularity
at the beginning and end of the time period is
problematic. We circumvent this issue and avoid
manually-defined thresholds by discovering topi-
cal growth/decline curves in an unsupervised fash-
ion. We use the K-Spectral Centroid (K-SC) algo-
rithm (Yang and Leskovec, 2011), which groups
different time-series into clusters, such that simi-
lar shapes get assigned to the same cluster, irre-
spective of scaling and translation (unlike other
popular time series clustering algorithms such as
Dynamic Time Warping). We run the clustering
algorithm using K = 3, and choose the cluster
with the upward trending centroid to be the set of
growing topics and the cluster with the downward
trending centroid to be the set of declining topics.*
Figure 5 shows example centroids from Physical
Chemistry, which clearly exhibit decreasing, in-
creasing, and non-changing trends.

3Opioids are a popular class of analgesic (i.e., painkilling)
drugs, including morphine.

*We also performed experiments using K = 5, 10 and 15
and grouped the clusters that are growing vs. declining. We
obtained similar results in those experiments as well.

05 Cluster 1 (# = 127) Cluster 2 (# = 44) Cluster 3 (# = 329)

»04

&o03
202
o
201
0.0 : ‘

1991 2000 2010 1991 2000
year

’-N

2010 1991 2000 2010

Figure 5: Cluster centroids in Physical Chemistry
Cluster 1: topics that declined in popularity;
Cluster 2: topics that grew in popularity;
Cluster 3: topics that stayed mostly the same.

7.3 Characterizing topic growth vs. decline

We not only seek to detect growing vs. declin-
ing topics; our goal is to characterize these tra-
jectories based upon the rhetorical functions that
the topics are fulfilling during different points of
their life-cycles. Figure 6 shows how the rhetor-
ical function label distributions of the opioid and
stem cell research topics shift from 1991 to 2010.
The opioid research topic, which declines in pop-
ularity during this time-period, is frequently dis-
cussed in the RESULT and BACKGROUND roles
during the early years. In contrast, the stem cell
research topic, which is dramatically increasing in
popularity, only begins to be discussed frequently
in these roles towards the end of the time-period.
Intuitively, these shifts make sense: topics become
results-oriented and mentioned as background as
they reach their peak; this peak is seen at the
beginning of the time-period for opioid research,
while stem cell research appears to be increas-
ing towards a peak by the end of our data (i.e.,
2010). These observations indicate that the rhetor-
ical functions which a topic is fulfilling may be
indicative of its current growth vs. decline.

7.4 Experiments

We perform two sets of experiments to quantify
the qualitative insights noted above, i.e. that a
topic’s rhetorical function distribution is indica-
tive of its eventual growth vs. decline. First, we
show that a topic’s rhetorical function distribution
over the entire time-period can be used to classify
the topic as either growing or declining. Next, we
show that using only the first five years of data, we
can predict whether a topic will eventually grow
or decline. We use two sets of features:

o label-distribution-percents (LD-%): seven
features corresponding to the percentage of
topics across the seven rhetorical function la-
bels (e.g., % of time the topic is a METHOD)
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(a) Stem cell topic.
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Figure 6: Examples of topics with changing rhetorical functions over time.

e label-distribution-changes (LD-A): seven
features that aggregate the mean change in
this percentage over the years (e.g., is the %
of being METHOD going up/down?).

These features are fed into a standard L2-
regularized logistic regression classifier (with reg-
ularization parameter C = 10), which predicts
whether a topic belongs to the growing or declin-
ing cluster.” We use random prediction and major-
ity prediction as two uninformed baselines.

Classification task

System ALL BIO PHY CHM NEU

Random 503 472 478 50.9 51.2
Majority 56.1 563 81.6 74.3 56.6
LR 742 810 833 81.9 74.8
LR-LD-R 713 777 81.6 73.1 70.5

Table 3: Results on classifying trajectories
LR: Logistic Regression using LD-%, LD-A, and LD-R.
LR - LD-R: Logistic Regression without using LD-R.

For the task of classifying a topic as either grow-
ing or declining, we compute the LD-% and LD-
A features separately over the first and last five
years of the data. This allows the model to ana-
lyze how the rhetorical functions are differentially
expressed at the start vs. the end of the period un-
der consideration. We also add a feature label-
distribution-ratio (LD-R), which is the ratio of
the end to beginning LD-% values, so that the
model has access to relative increases/decreases in
the label distributions over the entire time-period.

>Similar performance was obtained with a linear SVM

Table 3 shows the performance of our model on
this task. As expected a topic’s label distribution
over its entire life-time is very informative with re-
spect to classifying the topic as growing or declin-
ing. We achieve a significant improvement over
the baselines on the full dataset (32.3% relative
improvement over majority prediction), and this
trend holds across each field separately. The ratio
feature proved to be extremely predictive in this
task, i.e. relative increases/decreases in a topic be-
ing used in different functional roles are very pre-
dictive of the type of its trajectory.

Prediction task

We now turn to the more difficult task of predict-
ing whether a topic will grow or decline, given ac-
cess only to the first five years of its label distribu-
tion. The setup here is identical to the classifica-
tion task, except that we now have access only to
the LD-A and LD-% features aggregated over the
first five years of data.

System Accuracy on ALL
LD-% + LD-A 72.1
LD-% only 71.0
LD-A only 60.4

Table 4: Results on predicting trajectory

Table 4 shows the performance of our model on
this task. (The baseline performances are the same
as in the classification task). These results show
that we can accurately predict whether a topic will
grow or decline using only a small amount of data.
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Label ‘ BKGRND. OBIJ. DATA DESIGN METHOD RESULT CONC.
LD-% Weight -1.21 -0.10 6.38 1.21 3.82 -8.65 1.67
LD-A Weight 2.05 -0.01 2.20 -1.08 -1.63 -0.26 -1.27

Table 5: Logistic Regression feature weights for the prediction task on the full (ALL) dataset.

Moreover, we see that both percentage and delta
features are necessary for this task.

7.5 Analysis

The feature weights of our learned linear model
also provide insights into the dynamics of scien-
tific trends. Table 5 contains the learned feature
weights for the prediction task. Overall, these
weights reinforce the conclusions drawn from the
case study in Section 7.3. The strongest feature is
the LD-% feature for the RESULT rhetorical func-
tion, which is highly negative. This indicates that
topics that are currently being discussed as a re-
sult are likely at the peak of their popularity, and
are thus likely to decrease in the future. Interest-
ingly, the weights on the LD-% features for the
methodological rhetorical functions (METHODS,
DATA, and DESIGN) are all significantly posi-
tive. This suggests that topics occupying these
functions may have reached a level of maturity
where they are active areas of research and are be-
ing consumed by a large number of researchers,
but that they have not yet peaked in their pop-
ularity. Finally, we see that the weights for the
BACKGROUND and CONCLUSION roles have
opposite trends: growing topics are more often
mentioned as conclusions whereas dying topics,
i.e. topics at the peak of their life-cycles, tend to
be mentioned in background, or contextualizing,
statements.

8 Conclusion

We introduce a novel framework for assigning
rhetorical functions to associations between scien-
tific topics and papers, and we show how these
rhetorical functions are predictive of a topic’s
growth vs. decline.

Our analysis reveals important regularities with
respect to how a topic’s usage evolves over its life-
cycle. We find that topics that are currently dis-
cussed as results tend to be in decline, whereas
topics that are playing a methodological role tend
to be in the early phases of growth. In some ways
these results are counter-intuitive; for example,

one might expect topics that are being discussed
as results to be the focus of current cutting edge
research, and that methodological topics might be
more mundane and lacking in novelty. Instead our
results suggest that results-oriented topics are at
the peak of their life-cycle, while methodological
topics still have room to grow. This result has im-
portant implications for research funding and pub-
lic policy: the most promising topics—in terms of
potential for future growth—are not those that are
currently generating the most results, but are in-
stead those that are active areas of methodological
inquiry.

Our analysis does suffer from some limita-
tions. Examining only 20 years of scientific
progress prevents us from analyzing drastic scien-
tific changes, e.g. paradigm shifts, that are only
obvious over longer time-scales (Kuhn, 2012).
Access to longer time-spans—along with varying
data sources such as grants and patents—would
also allow us to more completely model the trajec-
tory of a topic as it moves from being active area of
research to potentially impacting commercial in-
dustries and economic development. Nonetheless,
we hope this work offers another step towards us-
ing computational tools to better understand the
‘rhetorical structure of science’ (Latour, 1987).
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