Synthesizing Compound Words for Machine Translation

Austin Matthews and Eva Schlinger and Alon Lavie and Chris Dyer
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{austinma, eschling,alavie, cdyer}@cs.cmu.edu

Abstract

Most machine translation systems con-
struct translations from a closed vocabu-
lary of target word forms, posing problems
for translating into languages that have
productive compounding processes. We
present a simple and effective approach
that deals with this problem in two phases.
First, we build a classifier that identifies
spans of the input text that can be trans-
lated into a single compound word in the
target language. Then, for each identi-
fied span, we generate a pool of possible
compounds which are added to the trans-
lation model as “synthetic” phrase trans-
lations. Experiments reveal that (i) we
can effectively predict what spans can be
compounded; (ii) our compound gener-
ation model produces good compounds;
and (iii) modest improvements are pos-
sible in end-to-end English—German and
English—Finnish translation tasks. We ad-
ditionally introduce KomposEval, a new
multi-reference dataset of English phrases
and their translations into German com-
pounds.

1 Introduction

Machine translation systems make a closed-
vocabulary assumption: with the exception of ba-
sic rules for copying unknown word types from
the input to the output, they can produce words in
the target language only from a fixed, finite vo-
cabulary. While this is always a naive assumption
given the long-tailed distributions that character-
ize natural language, it is particularly challenging
in languages such as German and Finnish that have
productive compounding processes.

In such languages, expressing compositions of

basic concepts can require an unbounded num-
ber of words. For example, English multiword
phrases like market for bananas, market for pears,
and market for plums are expressed in German
with single compound words (respectively, as Ba-
nanenmarkt, Birnenmarkt, and Pflaumenmarkt).
Second, while they are individually rare, com-
pound words are, on the whole, frequent in native
texts (Baroni et al., 2002; Fritzinger and Fraser,
2010). Third, compounds are crucial for transla-
tion quality. Not only does generating them make
the output seem more natural, but they are content-
rich. Since each compound has, by definition, at
least two stems, they are intuitively (at least) dou-
bly important for translation adequacy.

Fortunately, compounding is a relatively regular
process (as the above examples also illustrate), and
it is amenable to modeling. In this paper we intro-
duce a two-stage method (§2) to dynamically gen-
erate novel compound word forms given a source
language input text and incorporate these as “syn-
thetic rules” in a standard phrase-based transla-
tion system (Bhatia et al., 2014; Chahuneau et al.,
2013; Tsvetkov et al., 2013). First, a binary classi-
fier examines each source-language sentence and
labels each span therein with whether that span
could become a compound word when translated
into the target language. Second, we transduce
the identified phrase into the target language using
a word-to-character translation model. This sys-
tem makes a closed vocabulary assumption, albeit
at the character (rather than word) level—thereby
enabling new word forms to be generated. Train-
ing data for these models is extracted from auto-
matically aligned and compound split parallel cor-
pora (§3).

We evaluate our approach on both intrinsic and
extrinsic metrics. Since German compounds are
relatively rare, their impact on the standard MT
evaluation metrics (e.g., BLEU) is minimal, as we

1085

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1085-1094,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics

show with an oracle experiment, and we find that
our synthetic phrase approach obtains only mod-
est improvements in overall translation quality. To
better assess its merits, we commissioned a new
test set, which we dub KomposEval (from the Ger-
man word for a compound word, Komposita), con-
sisting of a set of 1090 English phrases and their
translations as German compound words by a pro-
fessional English—-German translator. The transla-
tor was instructed to produce as many compound-
word translations as were reasonable (§4). This
dataset permits us to evaluate our compound gen-
eration component directly, and we show that
(i) without mechanisms for generating compound
words, MT systems cannot produce the long tail
of compounds; and (ii) our method is an effective
method for creating correct compounds.

2 Compound Generation via Rule
Synthesis

Suppose we want to translate the sentence

the market for bananas has collapsed .

from English into German. In order to produce the
following (good) translation,

der bananenmarkt ist abgestiirzt .

a phrase-based translation system would need to
contain a rule similar to market for bananas —
bananenmarkt. While it is possible that such a
rule would be learned from parallel corpora us-
ing standard rule extraction techniques, it is likely
that such a rule would not exist (unless the system
were trained on the translation examples from this
paper).

We solve the compound translation problem by
“filling in” such missing rule gaps in the phrase
table. The process takes place in two parts:
first, identifying spans in the input that appear
to be translatable as compounds (§2.1), and sec-
ond, generating candidate compounds for each
positively identified span (§2.2). Since synthe-
sized rules compete along side rules which are
learned using standard rule extraction techniques
(and which are often quite noisy), our rule synthe-
sis system can overgenerate rule candidates, a fact
which we exploit in both phases.

2.1 Phase I: Classifying Compoundable
Spans

Given a source sentence, we classify each span
therein (up to some maximum length) as either

compoundable or non-compoundable using in-
dependent binary predictions. Rather than at-
tempting to hand-engineer features to represent
phrases, we use a bidirectional LSTM to learn a
fixed-length vector representation h; ; that is com-
puted by composing representations of the tokens
(fi, fix1,-- -, f;) in the input sentence. The prob-
ability that a span is compoundable is then mod-
eled as:

p(compoundable? |f;, fit1,..., fj) =

o (wT tanh(Vh; ; +b) + a>

where o is the logistic sigmoid function, and w,
V, b, and a are parameters.

To represent tokens that are inputs to the LSTM,
we run a POS tagger (Toutanova et al., 2003), and
for each token concatenate a learned embedding of
the tag and word. Figure 1 shows the architecture.

p(is a compound)

p(not a compound)

MLP hidden layer

Backward LSTM

Forward LSTM

Concatenated
Embeddings

Part-of-speech
Embeddings

Word
Embeddings

<s> market for bananas </s>

Figure 1: A graphical representation of the neu-
ral network used for classifying whether an in-
put source phrase should or should not turn into
a compound word in the target language

2.2 Phase II: Generating Compound Words

The second stage of our compound-generating
pipeline is to generate hypothesis compound
words for each source phrase that was identified as
“compoundable” by the classifier just discussed.
We do this by using a word-to-character—based
machine translation system, which enables us to
reuse a standard phrase-based decoder for com-
pound generation.

1086

2.2.1 Generation Model

The cornerstone of our generation approach is the
forward and backward lexical translation tables
learned by an unsupervised word aligner. We com-
bine these two translation tables to create a word-
to-character phrase table compatible with a stan-
dard decoder. This table allows our generator to
know the correct translations of individual mor-
phemes, but alone does not allow the generator to
build full compound words.

To capture the small bits of “phonetic glue”
(e.g., the n that occurs between banane and markt
in the compound bananenmarkt) that may occur
when generating compound words, we insert a
special SUF symbol in between each pair of source
words. This symbol will allow us to insert a small
suffix in between the translations of source words.

Finally, we insert a special END symbol at the
end of each source phrase. This symbol will al-
low the model to generate morphological variants
due to suffixes indicating case, number, and agree-
ment that only occur at the end of a whole com-
pound word, but not in between the individual
pieces. Some examples of all three types of rules
are shown in Table 1.

2.2.2 Reordering and Word Dropping

We observe that in order to generate many com-
pounds, including bananenmarkts from “market
for bananas”, a system must be able to both re-
order and drop source words at will. Imple-
mented naively, however, these allowances may
produce invalid interleavings of source words and
SUF/END tokens. For example, if we (correctly)
drop the word “for” from our example, we might
feed the decoder the sequence “market SUF SUF
bananas END.

To disallow such bogus input sequences we dis-
able all reordering inside the decoder, and instead
encode all possible reorderings in the form of an
input lattice (Dyer et al., 2008). Moreover, we
allow the decoder to drop non-content words by
skipping over them in the lattice. Each edge in our
lattices contains a list of features, including the in-
dices, lexical forms, and parts of speech of each
word kept or dropped. Each possible sequence in
the lattice also encodes features of the full path
of source words kept, the full list of source words
dropped, the parts of speech of the path and all
dropped words, and the order of indices traversed.

With these constraints in place we can train the
compound generator as though it were a normal

MT system with no decode-time reordering.

3 Training

Our approach to generating compound word forms
in translation has two stages. First, we build a clas-
sifier that chooses spans of source text that could
produce target compounds. Second, we build a
compound generator that outputs hypothesis word
forms, given a source phrase. We will detail each
of these steps in turn.

3.1 Extracting Compounds from Bitext

In order to learn to generate compound words we
naturally require training data. Ideally we would
like a large list of English phrases with their nat-
ural contexts and translations as German com-
pounds. Of course virtually no such data exists,
but it is possible to extract from parallel data, us-
ing a technique similar to that used by Tsvetkov
and Wintner (2012).

To this end, we take our tokenized bitext and
pass it through Dyer (2009)’s German compound
splitter. We then align the segmented variant using
the fast_align tool in both the forward and re-
verse directions, which produces both word align-
ments and lexical translation tables, which give
the probability of a compound part given an En-
glish phrase. We then symmetrize the produced
pair of alignments with the intersection heuris-
tic. This results in a sparse alignment in which
each target word is aligned to either 0 or 1 source
words. We then undo any splits performed by
the compound splitter, resulting in a corpus where
the only words aligned many-to-one are precisely
well-aligned compounds.

This process produces two crucially important
data. First, a list of English phrase pairs that may
become compound words in German on which we
train our classifier. Second, the lexical translation
tables, trained on compound split German data,
which form the basis of our generation approach.

3.2 Training the Compoundability Classifier

The network is trained to maximize cross-entropy
of its training data using the Adam optimizer
(Kingma and Ba, 2014) until performance on a
held-out dev set stops improving.

Due to the fact that we only need to represent
the “compoundability” of each source-language
word, and not its full semantics, we find that
very small (10-dimensional) word and POS em-

1087

Source Target

‘ Non-Zero Features

bananas | b
market m
SUF n
END s

anane
arkt

Ppvd = —0.495208 ¢, = —0.455368
Gpwa = —0.499118 ¢, = —0.269879
Opvd = —3.718241 e quf n = 1.0
Gpvd = —2.840721 e end_s = 1.0

Table 1: A fragment of the word-to-character rules used in the compound generation system.

beddings work well. The recurrent part of the neu-
ral network uses two-layer LSTM (Hochreiter and
Schmidhuber, 1997) cells with the hidden layer
size set to 10. The final MLP’s hidden layer size
is also set to 10.

The training data is processed such that each
span of length two to four is considered one train-
ing example, and is labeled as positive if it is well-
aligned (Brown et al., 1993) to a single German
compound word. Since most spans do not trans-
late as compounds, we are faced with an extreme
class imbalance problem (a ratio of about 300:1).
We therefore experiment with down sampling the
negative training examples to have an equal num-
ber of positive and negative examples.

3.3 Training the Compound Generation
Model

As a translation model, there are two compo-
nents to learning the translation system: learn-
ing the rule inventory and their features (§3.3.1)
and learning the parameters of the generation
model (§3.3.2).

3.3.1 Learning Word to Character Sequence
Translation Rules

The possible translations of SUF and END are
learned from the list of positive training examples
extracted for our classifier. For each example, we
find all the possible ways the source words could
translate, in accordance with our translation table,
into nonoverlapping substrings of the target word.
Any left over letters in between pieces become
possible translations of SUF, while extra letters at
the end of the target string become possible trans-
lations of END. Probabilities for each translation
are estimated by simply counting and normalizing
the number of times each candidate was seen. See
Figure 2 for an example of this splitting process.

3.3.2 Learning Generator Feature Weights

Since the generator model is encoded as a phrase-
based machine translation system, we can train it
using existing tools for this task. We choose to

train using MIRA (Crammer and Singer, 2003),
and use a 10-gram character-based language
model trained on the target side of the positive
training examples extracted for the classifier.

4 KomposEval Data Set

To evaluate our compound generator we needed
a dataset containing English phrases that should
be compounded along with their German transla-
tions. To the best of our knowledge, no substantial
human-quality dataset existed, so we created one
as part of this work.

We took our list of automatically extracted (En-
glish phrase, German compound) pairs and manu-
ally selected 1090 of them that should compound.
We then asked a native German speaker to trans-
late each English phrase into German compounds,
and to list as many possibile compound transla-
tions as she could think of. The result is a test set
consisting of 1090 English phrases, with between
1 and 5 possible German compound translations
for each English phrase. This test set is published
as supplementary material with this article. Some
example translations are shown in Table 2.

Source phrase | Reference(s)
Ubergangsphase
transitional period | Ubergangsperiode
Ubergangszeitraum
. Abgeordnetenhaus
Chamber of deputies Abgeordnetenkammer
self-doubt | Selbstzweifel

Table 2: Examples of human-generated com-
pounds from the KomposEval data set

5 Experiments

Before considering the problem of integrating our
compound model with a full machine translation
system, we perform an intrinsic evaluation of each
of the two steps of our pipeline.

1088

Input Phrase

market for plums

Target Compound

pflaumenmarkts

Translation Table
market
for {€}

{e, mark, markt, markts}

{e, pflaume, pflaumen}

plums

Possible Analyses
pflaume+n mark+ts
pflaumen+e mark+ts
pflaume+n markt+s
pflaumen+e markt+s
pflaume+n markts+e

pflaumen+e markts+e

SUF Counts END Counts
> € 3 € 2
n 3 S 2

ts 2

Figure 2: Decomposition of a target compound into possible analyses, given a source phrase and a
morpheme-level translation table. This process allows us to learn the “phonetic glue” that can go in
between morphemes, as well as the inflections that can attach to the end of a compound word.

5.1 Classifier Intrinsic Evaluation

We evaluate the effectiveness of our classifier, by
measuring its precision and recall on the two held
out test sets described in §2.1 taken from two
language pairs: English—-German and English—
Finnish. Furthermore, we show results both with
down-sampling (balanced data set) and without
down-sampling (unbalanced data set).

Our classifier can freely trade off precision and
recall by generalizing its requirement to call an ex-
ample positive from p(compound | span) > 0.5 to
p(compound | span) > 7, for 7 € (0, 1), allowing
us to report full precision-recall curves (Figure 3).

We find that our best results for the unbalanced
cases come at 7 = 0.24 for German and 7 = 0.29
for Finnish, with F-scores of 20.1% and 67.8%,
respectively. In the balanced case, we achieve
67.1% and 97.0% F-scores with 7 = 0.04 and
7 = 0.57 on German and Finnish respectively.

5.2 Generator Instrinsic Evaluation

To evaluate our compound generator, we fed it the
source side of our newly created KomposEval cor-
pus and had it output a 100-best list of hypotheses
translations for each English phrase. From this we
are able to compute many intrinsic quality metrics.
We report the following metrics:

e Mean reciprocal rank (MRR); which is one
divided by the average over all segments of
the position that the reference translation ap-
pears in our k-best list.

e Character error rate (CER), or the average
number of character-level edits that are re-
quired to turn our 1-best hypothesis into the

Recall

050
Precision

Figure 3: Precision-recall curves for our com-
pound classifier for two languages: German (red)
and Finnish (blue). Unbalanced test set results are
shown with solid lines. Balanced test set results
are shown with dashed lines.

nearest of the reference translations.

e Precision at 1, 5, and 10, which indicate what
percentage of the time a reference translation
can be found in the top 1, 5, or 10 hypotheses
of our k-best list, respectively.

These results can be found in Table 3. We com-
pare to a naive baseline that is just a standard
English—-German phrase-based translation system
with no special handling of compound word
forms. We immediately see that the baseline sys-
tem is simply unable to generate most of the com-
pound words in the test set, resulting in extraor-
dinarily low metric scores across the board. Its
one saving grace is its tolerable CER score, which
shows that the system is capable of generating the
correct morphemes, but is failing to correctly ad-

1089

[MRR | CER | P@11 P@5 | P@10 |

Baseline| <0.01 3.305 0% 0% <0.01%
Our model| 0.7004 2.506 61.38% 81.47% 84.31%

Table 3: Mean reciprocal rank, character error
rate, and precision at K statistics of our baseline
MT system and our compound generator.

join them and add the phonological glue required
to produce a well-formed compound word. Our
system, on the other hand, is capable of reaching
at least one of the five references for every single
sentence in the test set, and has a reference trans-
lation in the top 5 hypotheses in its k-best list over
80% of the time.

Qualitatively, the compounds generated by our
model are remarkably good, and very under-
standable. Major error classes include incorrect
word sense, non-compositional phrases, and spe-
cial non- concatenative effects at word boundaries.
An example of each of these errors, along with
some examples of good compound generation can
be found in Table 4.

5.3 Extrinsic Translation Evaluation

Finally, we use our compound generator as part
of a larger machine translation pipeline. We run
our compound span classifier on each of our trans-
lation system’s tune and test sets, and extract our
generator’s top ten hypotheses for each of the pos-
tively identified spans. These English phrases are
then added to a synthetic phrase table, along with
their German compound translations, and two fea-
tures: the compound generator’s score, and an in-
dicator feature simply showing that the rule repre-
sents a synthetic compound. Table 5 shows some
example rules of this form. The weights of these
features are learned, along with the standard trans-
lation system weights, by the MIRA algorithm as
part of the MT training procedure.

The underlying translation system is a stan-
dard Hiero (Chiang et al., 2005) system using
the cdec (Dyer et al., 2010) decoder, trained on
all constrained-track WMT English-German data
as of the 2014 translation task. Tokenization
was done with cdec’s tokenize—-anything
script. The first character of each sentence was
down cased if the unigram probability of the
downcased version of the first word was higher
than that of the original casing. Word alignment
was performed using cdec’s fast_align tool,

BLEU | METR | TER | Len
= Baseline] 162 345 64.8 94.1
& +Our Compounds| 16.3 346 649 942
§+Oracle Compounds| 16.9 35.2 64.6 955
& Baseline| 18.8 37.3 62.1 93.6
§ +Our Compounds| 18.9 37.5 623 96.7
+Oracle Compounds| 19.7 38.2 61.9 97.6
= Baseline| 19.6 389 643 1035
> +Compounds| 19.6 39.0 64.5 103.9
§+Oracle Compounds| 21.7 40.9 61.1 100.6

Table 6: Improvements in English—-German trans-
lation quality using our method of compound gen-
eration on WMT 2012, 2013, and 2014. * indi-
cates the set used for tuning the MT system.

and symmetrized using the grow—diag heuris-
tic. Training is done using cdec’s implementa-
tion of the MIRA algorithm. Evaluation was done
using MultEval (Clark et al., 2011). A 4-gram
language model was estimated using KenLM'’s
1mplz tool (Heafield et al., 2013).

In addition to running our full end-to-end
pipeline, we run an oracle experiment wherein
we run the same pre-processing pipeline (com-
pound splitting, bidirectionally aligning, intersect-
ing, and de-splitting) on each test set to identify
which spans do, in fact, turn into compounds, as
well as their ideal translations. We then add gram-
mar rules that allow precisely these source spans to
translate into these oracle translations. This allows
us to get an upper bound on the impact compound
generation could have on translation quality.

The results, summarized in Table 6 and Table 7,
show that adding these extra compounds has little
effect on metric scores compared to our baseline
system. Nevertheless, we believe that the qualita-
tive improvements of our methods are more sig-
nificant than the automatic metrics would indi-
cate. Our method targets a very specific problem
that pertains only to dense content-bearing target
words that humans find very important. Moreover,
BLEU is unable to reasonably evaluate improve-
ments in these long tail phenomena, as it only
captures exact lexical matches, and because we
are purposely generating fewer target words than
a standard translation system.

6 Related Work

Most prior work on compound generation has
taken a different approach from the one advo-

1090

Input Hypothesis Reference Comments
cheese specialities Fachkése Kisespezialitdten Wrong sense of “specialties”
band-aid Band-hilfe (Should not compound) Idiosyncratic meaning
church towers Kirchentiirme Kirchtiirme Extra word-internal case marking
sugar beet farmers Zuckerriilbenbauern Zuckerriibenbauern Perfect
tomato processing Tomatenverarbeitung Tomatenverarbeitung Perfect
generation of electricity Stromerzeugung Stromerzeugung Perfect, including reordering

Table 4: Examples of erroneous (top) and correct (bottom) compounds generated by our system

Source Target Non-Zero Features

market for bananas | bananenmarkt OCompound = 1 @5core = —38.9818
market for bananas | bananenmarktes | ¢compound = 1 PScore = —49.8976
market for bananas | marktordnung OCompound = 1 @Score = —53.2197
market for bananas | bananenmarkts OCompound = 1 @Score = —54.4962
market for bananas | binnenmarkt OCompound = 1 @Score = —57.6816

Table 5: Example synthetic rules dynamically added to our system to translate the phrase “market for
bananas” into a German compound word. Note that we correctly generate both the nominative form
(with no suffix) and the genitive forms (with the -s and -es suffixes).

BLEU 1 METR 1 TER | Len
% Baseline| 12.3 29.0 727 96.5
S +Our Compounds| 12.3 29.1 72.8 96.8
E Baseline| 114 299 71.6 96.2
Z+Our Compounds| 11.6 30.1 715 96.4
- Baseline| 10.8 284 734 96.7
& +Our Compounds| 10.9 28,5 73.3 969

Table 7: Improvements in English—Finnish trans-
lation quality using our method of compound gen-
eration on WMT 2014 tuning, devtest, and test
sets. * indicates the set used for tuning the MT
system.

cated here, first translating the source language
into a morphologically analyzed and segmented
variant of the target language, and then performing
morphological generation on this sequence (Cap
et al., 2014; Irvine and Callison-Burch, 2013;
Denkowski et al., 2013; Clifton and Sarkar, 2011;
Stymne and Cancedda, 2011).

Requesting multiple translations from a transla-
tor has been used in the past, most notably to cre-
ate HyTER reference lattices (Dreyer and Marcu,
2012). However, in contrast to full-sentence trans-
lations the space of possible grammatical com-
pounds is far smaller, substantially simplifying our
task.

The splitting of German compound phrases for
translation from German into English has been ad-

dressed by Koehn and Knight (2001) and Dyer
(2009). They elegantly solve the problem of hav-
ing a large, open vocabulary on the source side
by splitting compound words into their constituent
morphemes and translating German into English
at the morpheme level. Their approach works ex-
cellently when translating out of a compounding
language, but is unable to generate novel com-
pound words in the target language without some
sort of post processing.

Dynamic generation of compounds in a target
language using such post processing has been ex-
amined in the past by Cap et al. (2014) and Clifton
and Sarkar (2011). Both perform compound split-
ting on their parallel data, train a morpheme-
based translation system, and then stitch com-
pound words back together using different mod-
els. While effective, their approach runs into
difficulties if the morphemes that should com-
pound get separated by the reordering model dur-
ing the translation process. Both address this us-
ing more complicated models, whereas our holis-
tic approach handles this problem seamlessly.

Stymne (2012) gives an excellent taxonomy of
compound types in Germanic languages, and dis-
cusses many different strategies that have been
used to split and merge them for the purposes of
machine translation. She identifies several diffi-
culties with the split-translate-merge approach and
points out some key subtleties, such as handling
of bound morphemes that never occur outside of

1091

compounds, that one must bear in mind when do-
ing translation to or from compounding languages.

The idea of using entirely character-based trans-
lation systems was introduced by Vilar et al.
(2007). While their letter-level translation system
alone did not outperform standard phrase-based
MT on a Spanish—Catalan task, they demonstrated
substantial BLEU gains when combining phrase-
and character-based translation models, particu-
larly in low resource scenarios.

7 Conclusion

In this paper we have presented a technique for
generating compound words for target languages
with open vocabularies by dynamically introduc-
ing synthetic translation options that allow spans
of source text to translate as a single compound
word. Our method for generating such syn-
thetic rules decomposes into two steps. First an
RNN classifier detects compoundable spans in the
source sentence. Second, a word-to-character ma-
chine translation system translates the span of text
into a compound word.

By dynamically adding compound words to our
translation grammars in this way we allow the de-
coder, which is in turn informed by the language
model, to determine which, if any, of our hypoth-
esized compounds look good in context. Our ap-
proach does away with the need for post process-
ing, and avoids complications caused by reorder-
ing of morphemes in previous approaches. How-
ever, this technique relies heavily on a strong tar-
get language model. Therefore, one important ex-
tension of our work is to further study the inter-
action between our model and the underlying lan-
guage model.

In addition to our generation technique we
have presented a new human-quality data set
that specifically targets compounding and use it
to demonstrate tremendous improvements in our
translation system’s ability to correctly general-
ize from compound words found in parallel text
to match human translations of unseen compound-
able phrases.

1092

Acknowledgements

We thank the anonymous reviewers for their care-
ful reading of the submitted draft of this paper.
Furthermore, we thank Isabelle Wolf for her work
in creating the KomposEval data set. This research
work was supported by a Google faculty research
award and by computing resources provided by
the NSF-sponsored XSEDE program under grant
TG-CCR110017. The statements made herein are
solely the responsibility of the authors.

References

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Predicting the components of german nomi-
nal compounds. In ECAI, pages 470-474.

Archna Bhatia, Chu-Cheng Lin, Nathan Schneider, Yu-
lia Tsvetkov, Fatima Talib Al-Raisi, Laleh Roost-
apour, Jordan Bender, Abhimanu Kumar, Lori
Levin, Mandy Simons, et al. 2014. Automatic clas-
sification of communicative functions of definite-
ness. Association for Computational Linguistics.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics, 19(2):263-311.

Fabienne Cap, Alexander Fraser, Marion Weller, and
Aoife Cahill. 2014. How to produce unseen teddy
bears: Improved morphological processing of com-
pounds in SMT. In Proc. EACL.

Victor Chahuneau, Eva Schlinger, Noah A Smith, and
Chris Dyer. 2013. Translating into morphologically
rich languages with synthetic phrases.

David Chiang, Adam Lopez, Nitin Madnani, Christof
Monz, Philip Resnik, and Michael Subotin. 2005.
The hiero machine translation system: Extensions,
evaluation, and analysis. In Proceedings of the con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
pages 779-786. Association for Computational Lin-
guistics.

Jonathan H Clark, Chris Dyer, Alon Lavie, and Noah A
Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer insta-
bility. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies: short papers-Volume
2, pages 176-181. Association for Computational
Linguistics.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language

Technologies-Volume 1, pages 32-42. Association
for Computational Linguistics.

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
The Journal of Machine Learning Research, 3:951—
991.

Waleed Ammar Victor Chahuneau Michael
Denkowski, Greg Hanneman, Wang Ling Austin
Matthews Kenton Murray, Nicola Segall Yulia
Tsvetkov, and Alon Lavie Chris Dyer. 2013. The
cmu machine translation systems at wmt 2013:
Syntax, synthetic translation options, and pseudo-
references. In 8th Workshop on Statistical Machine
Translation, page 70.

Markus Dreyer and Daniel Marcu. 2012. Hyter:
Meaning-equivalent semantics for translation eval-
uation. In Proceedings of the 2012 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 162—171. Association for Computa-
tional Linguistics.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
Technical report, DTIC Document.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Seti-
awan, Vladimir Eidelman, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In Proceedings of ACL.

Chris Dyer. 2009. Using a maximum entropy model
to build segmentation lattices for mt. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 406—414. Association for Computational Lin-
guistics.

Fabienne Fritzinger and Alexander Fraser. 2010. How
to avoid burning ducks: combining linguistic analy-
sis and corpus statistics for german compound pro-
cessing. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and Metric-
SMATR, pages 224-234. Association for Computa-
tional Linguistics.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690-696,
Sofia, Bulgaria, August.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Ann Irvine and Chris Callison-Burch. 2013. Su-
pervised bilingual lexicon induction with multiple
monolingual signals. In HLT-NAACL, pages 518—
523.

1093

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn and Kevin Knight. 2001. Knowledge
sources for word-level translation models. In Pro-
ceedings of the 2001 Conference on Empirical Meth-
ods in Natural Language Processing, pages 27-35.

Sara Stymne and Nicola Cancedda. 2011. Productive
generation of compound words in statistical machine
translation. In Proc. WMT.

Sara Stymne. 2012. Text harmonization strategies for
phrase-based statistical machine translation.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173-180. Association for Compu-
tational Linguistics.

Yulia Tsvetkov and Shuly Wintner. 2012. Extraction
of multi-word expressions from small parallel cor-
pora. Natural Language Engineering, 18(04):549—
573.

Yulia Tsvetkov, Chris Dyer, Lori Levin, and Archna
Bhatia. 2013. Generating English determiners in
phrase-based translation with synthetic translation
options. In Proc. WMT.

David Vilar, Jan-T Peter, and Hermann Ney. 2007.
Can we translate letters? In Proceedings of the
Second Workshop on Statistical Machine Transla-
tion, pages 33-39. Association for Computational
Linguistics.

1094

