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Abstract

We introduce an agreement-based ap-
proach to learning parallel lexicons and
phrases from non-parallel corpora. The
basic idea is to encourage two asym-
metric latent-variable translation models
(i.e., source-to-target and target-to-source)
to agree on identifying latent phrase and
word alignments. The agreement is de-
fined at both word and phrase levels. We
develop a Viterbi EM algorithm for jointly
training the two unidirectional models ef-
ficiently. Experiments on the Chinese-
English dataset show that agreement-
based learning significantly improves both
alignment and translation performance.

1 Introduction

Parallel corpora, which are large collections of
parallel texts, serve as an important resource for
inducing translation correspondences, either at the
level of words (Brown et al., 1993; Smadja and
McKeown, 1994; Wu and Xia, 1994) or phrases
(Kupiec, 1993; Melamed, 1997; Marcu and Wong,
2002; Koehn et al., 2003). However, the availabil-
ity of large-scale, wide-coverage corpora still re-
mains a challenge even in the era of big data: par-
allel corpora are usually only existent for resource-
rich languages and restricted to limited domains
such as government documents and news articles.

Therefore, intensive attention has been drawn
to exploiting non-parallel corpora for acquiring
translation correspondences. Most previous ef-
forts have concentrated on learning parallel lexi-
cons from non-parallel corpora, including parallel
sentence and lexicon extraction via bootstrapping
(Fung and Cheung, 2004), inducing parallel lexi-
cons via canonical correlation analysis (Haghighi

*Corresponding author: Yang Liu.

et al., 2008), training IBM models on monolin-
gual corpora as decipherment (Ravi and Knight,
2011; Nuhn et al., 2012; Dou et al., 2014), and
deriving parallel lexicons from bilingual word em-
beddings (Vuli¢ and Moens, 2013; Mikolov et al.,
2013; Vuli¢ and Moens, 2015).

Recently, a number of authors have turned to
a more challenging task: learning parallel phrases
from non-parallel corpora (Zhang and Zong, 2013;
Dong et al.,, 2015). Zhang and Zong (2013)
present a method for retrieving parallel phrases
from non-parallel corpora using a seed parallel
lexicon. Dong et al. (2015) continue this line
of research to further introduce an iterative ap-
proach to joint learning of parallel lexicons and
phrases. They introduce a corpus-level latent-
variable translation model in a non-parallel sce-
nario and develop a training algorithm that alter-
nates between (1) using a parallel lexicon to ex-
tract parallel phrases from non-parallel corpora
and (2) using the extracted parallel phrases to en-
large the parallel lexicon. They show that starting
from a small seed lexicon, their approach is capa-
ble of learning both new words and phrases grad-
ually over time.

However, due to the structural divergence be-
tween natural languages as well as the presence
of noisy data, only using asymmetric translation
models might be insufficient to accurately identify
parallel lexicons and phrases from non-parallel
corpora. Dong et al. (2015) report that the ac-
curacy on Chinese-English dataset is only around
40% after running for 70 iterations. In addition,
their approach seems prone to be affected by noisy
data in non-parallel corpora as the accuracy drops
significantly with the increase of noise.

Since asymmetric word alignment and phrase
alignment models are usually complementary, it
is natural to combine them to make more accu-
rate predictions. In this work, we propose to in-
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troduce agreement-based learning (Liang et al.,
2006; Liang et al., 2008) into extracting parallel
lexicons and phrases from non-parallel corpora.
Based on the latent-variable model proposed by
Dong et al. (2015), we propose two kinds of
loss functions to take into account the agreement
between both phrase alignment and word align-
ment in two directions. As the inference is in-
tractable, we resort to a Viterbi EM algorithm to
train the two models efficiently. Experiments on
the Chinese-English dataset show that agreement-
based learning is more robust to noisy data and
leads to substantial improvements in phrase align-
ment and machine translation evaluations.

2 Background

Given a monolingual corpus of source language
phrases £ = {e(®)}%_, and a monolingual cor-
pus of target language phrases F' = {f (t)}le,
we assume there exists a parallel corpus D =
{(e®) £fM)]el®) — £B}, where e*) « f() de-
notes that e(*) and f*) are translations of each
other.

As a long sentence in E is usually unlikely to
have an translation in F' and vise versa, most pre-
vious efforts build on the assumption that phrases
are more likely to have translational equivalents on
the other side (Munteanu and Marcu, 2006; Cet-
tolo et al., 2010; Zhang and Zong, 2013; Dong
et al., 2015). Such a set of phrases can be con-
structed by collecting either constituents of parsed
sentences or strings with hyperlinks on webpages
(e.g., Wikipedia). Therefore, we assume the two
monolingual corpora are readily available and fo-
cus on how to extract D from £ and F'

To address this problem, Dong et al. (2015)
introduce a corpus-level latent-variable translation
model in a non-parallel scenario:

P(F|E;0) =) P(F,m|E;6) (1)
m
phrase alignment

where m is phrase alignment and 0 is a set
of model parameters. Each target phrase f(*)
is restricted to connect to exactly one source
phrase: m = (my,...,my,...my), where my €
{0,1,...,S}. For example, m; = s denotes that
£(®) is aligned to e(*). Note that e represents an
empty source phrase.

They follow IBM Model 1 (Brown et al., 1993)
to further decompose the model as

P(F,ml|E;0) =

T|S) 1
(Zf +'1))T [[PE©ie™): ), @)

where P(f()|e(™1): @) is a phrase translation
model that can be further defined as

p(f(t) |e(mt); 0)

= 5(mt, 0) +
ZP

( mt7
word alignment

) ale™);0).  (3)

Dong et al. (2015) distinguish between empty
and non-empty phrase translations. If a target
phrase f ® is aligned to the empty source phrase

9 (i.e., my = 0), they set the phrase transla-
tion probability to a fixed number €. Otherwise,
conventional word alignment models such as IBM
Model 1 can be used for non-empty phrase trans-
lation:

P(t® ale™); g)
J@
p(J 0| 1tme)) (1), (me)
== e, @
(1m0 4 17 7

where p(J|I) is a length model and p(fle) is a
translation model. We use J®) to denote the
length of f(®).

Therefore, the latent-variable model involves
two kinds of latent structures: (1) phrase align-
ment m between source and target phrases, (2)
word alignment a between source and target words
within phrases.

Given the two monolingual corpora E and F/,
the training objective is to maximize the likelihood
of the training data:

0* = L£(0) ¢, 5
arggnaX{ ( )} (5)
where
L) = logP(F|E;0)—

ZAI(ZP(J\I) - 1) -
> e (Doptfle) —1) -

ZZ (f.e,d)lo (fed)

o(fle) ©
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Figure 1: Agreement between (a) Chinese-to-English and (b) English-to-Chinese phrase alignments. The
arrows indicate translation directions. The links on which two models agree are highlighted in bold red.
The outer agreement loss function (see Eq. (14)) aims to encourage the agreement at the phrase level.

Note that d is a small seed parallel lexicon for ini-
tializing training ! and o(f,e,d) checks whether
an entry (f, e) exists in d.

Given the monolingual corpora and the opti-
mized model parameters, the Viterbi phrase align-
ment is calculated as

m* = argmax{P(F,m|E;0*)} (7)

T
= argmax { H P(f®)|e(m). g%) } (8)

t=1

Finally, parallel lexicons can be derived from
the translation probability table of IBM model 1
0* and parallel phrases can be collected from the
Viterbi phrase alignment m*. This process iterates
and enlarges parallel lexicons and phrases gradu-
ally over time.

As it is very challenging to extract parallel
phrases from non-parallel corpora, unidirectional
models might only capture partial aspects of trans-
lation modeling on non-parallel corpora. Indeed,
Dong et al. (2015) find that the accuracy of phrase
alignment is only around 50% on the Chinese-
English dataset. More importantly, their approach
seems to be vulnerable to noise as the accuracy
drops significantly with the increase of noise.
As source-to-target and target-to-source transla-
tion models are usually complementary (Och and
Ney, 2003; Koehn et al., 2003; Liang et al., 2006),

"Due to the difficulty of learning translation correspon-
dences from non-parallel corpora, many authors have as-
sumed that a small seed lexicon is readily available (Gaussier
et al., 2004; Zhang and Zong, 2013; Vuli¢ and Moens, 2013;
Mikolov et al., 2013; Dong et al., 2015).

it is appealing to combine them to improve align-
ment accuracy.

3 Approach

3.1 Agreement-based Learning

The basic idea of our work is to encourage the
source-to-target and target-to-source translation
models to agree on both phrase and word align-
ments.

For example, Figure 1 shows two exam-
ple Chinese-to-English and English-to-Chinese
phrase alignments on the same non-parallel data.
As each model only captures partial aspects of
translation modeling, our intuition is that the links
on which two models agree (highlighted in red)
are more likely to be correct.

More formally, let P(F|E,7) be a source-
to-target translation model and P(El)F,?) be
a target-to-source model, where 6 and 6
are corresponding model parameters. We use
m = (my,...,my,...,my) to denote source-
to-target phrase alignment. Likewise, the target-
to-source phrase alignment is denoted by m =
(my,...,m,,...,ng).

To ease the comparison between m and m, we
represent them as sets of non-empty links equiva-
lently:

m = {<mt,t>|mt7é0} )
{(s.1m) m. # 0.

For example, suppose the source-to-target and
target-to-source phrase alignments are m =

m = (10)
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1: procedure VITERBIEM(FE, F', d)

2 Initialize @)

3 forallk=1,..., K do

4: m®*) — SEARCH(E, F, ®k—1))
s: ©*) — UPDATE(E, F,d, m*)
6 end for

7 return h (%), @ (&)

8: end procedure

Figure 2: A Viterbi EM algorithm for agreement-
based learning of parallel lexicons and phrases
from non-parallel corpora. F' and E are non-
parallel corpora, d is a seed parallel lexicon, @(¥)
is the set of model parameters at the k-th iteration,
m(¥) is the Viterbi phrase alignment on which two
models agree at the k-th iteration.

(2,3,0,0) and m = (0,1,2). The equivalent
link sets are mi = {(2,1),(3,2)} and m =
{(2,1),(3,2)}. Therefore, mi is said to be equal
to m (i.e., 6(m, m) = 1).

Following Liang et al. (2006), we introduce a
new training objective that favors the agreement
between two unidirectional models:

J(6.%9)
—log P(F|E; ) +log P(E|F; §) —
log Z P(H\E,F33>P(E’RE§§)
m,m

xA(E,F,m,m, 0,0), (11)

where the posterior probabilities in two directions
are defined as

T (t)|o(My). 3
P(|E, F;0) = [ et e 0)_ )
1 Dm0 P(f®M]el); )
P(e®)|f(M.), g)
Yo P(e®[E®);9)

S
P(m|F,E;0) =[] (13)

s=1
The loss function A(E, F,m, m, 0, (5) mea-
sures the disagreement between the two models.
3.2 Outer Agreement
3.2.1 Definition

A straightforward loss function is to force the two
models to generate identical phrase alignments:

Aouter(E, F, 1,1, 6, 9) = 1 — §(m, ). (14)

We refer to Eq. (14) as outer agreement since
it only considers phrase alignment and ignores the
word alignment within aligned phrases.

3.2.2 Training Objective

Since the outer agreement forces two models to
generate identical phrase alignments, the training
objective can be written as

—
jOUtCI'( 0 ) 0 )

—log P(F|E; 6) +log P(E|F; 0) +
log ) P(m|E, F; §)P(m|F,E; 9), (15)

where m is a phrase alignment on which two mod-
els agree.

The partial derivatives of the training objective
with respect to source-to-target model parameters
0 are given by

0 Jouter(0, 9)
00
_OP(F|E; 9)/06
~ P(F|E; @)
E,ii9 [aP(F\E; ) /a?}
S P(m|E,F; §)P(m|F,E; 6)

(16)

The partial derivatives with respect to 9 are de-
fined likewise.

3.2.3 Training Algorithm

As the expectation in Eq. (16) is usually in-
tractable to calculate due to the exponential search
space of phrase alignment, we follow Dong et al.
(2015) to use a Viterbi EM algorithm instead.

As shown in Figure 2, the algorithm takes a
set of source phrases FE, a set of target phrases
F, and a seed parallel lexicon d as input (line
1). After initializing model parameters @ =
{7, ?} (line 2), the algorithm calls the procedure
ALIGN(F, E,©) to compute the Viterbi phrase
alignment between F and F' on which two mod-
els agree. Then, the algorithm updates the two
models by normalizing counts collected from the
Viterbi phrase alignment. The process iterates for
K iterations and returns the final Viterbi phrase
alignment and model parameters.

3.24 Computing Viterbi Phrase Alignments

The procedure ALIGN(F,E,®) computes the
Viterbi phrase alignment m between E and F' on
which two models agree as follows:

m = argmax {P(m\E, F; 5}) X
m

P(m]|F, E;?)}. (17)
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Unfortunately, due to the exponential search
space of phrase alignment, computing m is also
intractable. As a result, we approximate it as the
intersection of two unidirectional Viterbi phrase
alignments:

m~~m'Nnm", (18)
where the unidirectional Viterbi phrase alignments
are calculated as

m” —argmax{ ,?)} (19)

T
[[re
5
m* = argmax { H ,W)} (20)

The source-to-target Viterbi phrase alignment is
calculated as

m* = argmax {P(m\E, F; ?)} 21)
m

= argmax { ﬁ P(£O) |emo). E’)}. (22)

t=1

Dong et al. (2015) indicate that computing the
Viterbi alignment for individual target phrases is
independent and only need to focus on finding
the most probable source phrase for each target
phrase:

m; = (23)

argmax
s€{0,1,...,S}

{P(f(t)\e(s); 6’)}.

This can be cast as a translation retrieval prob-
lem (Zhang and Zong, 2013; Dong et al., 2014).
Please refer to (Dong et al., 2015) for more details.
The target-to-source Viterbi phrase alignment can
be calculated similarly.

3.2.5 Updating Model Parameters

Following Liang et al. (2006), we collect counts of

model parameters only from the agreement term.”
Given the agreed Viterbi phrase alignment 1n,

the count of the source-to-target length model

p(J|I) is given by

c(JIE,F)= Y §(JW,0)5(1%),1). 24)

(s,t)em
The new length probabilities can be obtained by
c(J|I; E, F)

PN = S LB Fy

(25)

>We experimented with collecting counts from both the
unidirectional and agreement terms but obtained much worse
results than counting only from the agreement term.

resolve resolve

‘ jiejue ‘ jiejue

‘ maoyi ‘ maoyi

‘ jiufen }—b{ disputes | !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

trade ‘ trade ‘

disputes | !

‘ jiufen

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: Agreement between (a) Chinese-to-
English and (b) English-to-Chinese word align-
ments. The links on which two models agree are
highlighted in red. The inner agreement loss func-
tion (see Eq. (28)) aims to encourage the agree-
ment at both the phrase and word levels.

The count of the source-to-target translation
model p(f|e) is given by

c(fle; B, F)

) p(fle)
%ﬁlz“s p(fle)

J® I
Za (LB S d(e,ef?
=0
+o(f, e,d)-

The new translation probabilities can be ob-
tained by

(26)

c(fle; E, F)
foc(f le; B, F)

Counts of target-to-source length and transla-
tion models can be calculated in a similar way.

p(fle) = 27

3.3 Inner Agreement
3.3.1 Definition

As the outer agreement only considers the phrase
alignment, the inner agreement takes both phrase
alignment and word alignment into consideration:

Ajpner(E, F, ™, 1, 6, 9)

— —5(m, M) x

2. 2. F

(syem @,a

(28)

For example, Figure 3 shows two examples of
Chinese-to-English and English-to-Chinese word
alignments. The shared links are highlighted in
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red. Our intuition is that a source phrase and a
target phrase are more likely to be translations of
each other if the two translation models also agree
on word alignment within aligned phrases.

3.3.2 Training Objective and Algorithm

The training objective for inner agreement is given
by

—
"711’11161'( 9’ 0)
— logP(F|E; ) +1log P(E|F; 6) +

log Y P(m|E, F; 6)P(m|F, E; 9) x
Z ZP(a|e(8),f(t);7) X
(s,tyem a
P(alf® e®):9). (29)

We still use the Viterbi EM algorithm as shown
in Figure 2 for training the two models.

3.3.3 Computing Viterbi Phrase Alignments

The agreed Viterbi phrase alignment is defined as
1 = argmax {P(m|E, F; ?)P(myF, E; ?)
m

xZZPa| )

(s,t)ém a

P(alf®, e g )}. (30)

As computing m is intractable, we still approxi-
mate it using the intersection of two unidirectional
Viterbi phrase alignments (see Eq. (18)). The
source-to-target Viterbi phrase alignment is calcu-
lated as

m" = argmax {P(ﬁi\E, F;0)x
m

J@) 1(s)

D 2D P((@)e.£:8) x

(s,t)em j=1 i=1

P((i, )£, 65 8)}, 63D

where P((i,j)|e(s),f(t);7) is source-to-target
link posterior probability of the link (i,j) be-
ing present (or absent) in the word align-
ment according to the source-to-target model,
P((i, ) |f®, &), ?) is target-to-source link pos-
terior probability. We follow Liang et al. (2006)
to use the product of link posteriors to encourage
the agreement at the level of word alignment.

We use a coarse-to-fine approach (Dong et al.,
2015) to compute the Viterbi alignment: first re-
trieving a coarse set of candidate source phrases
using translation probabilities and then selecting
the candidate with the highest score according to
Eq. (31). The target-to-source Viterbi phrase
alignment can be calculated similarly.

3.3.4 Updating Model Parameters

Given the agreed Viterbi phrase alignment m, the
count of the source-to-target length model p(J|I)
is still given by Eq. (24). The count of the transla-
tion model p( f|e) is calculated as

c(fle; E, F)
1) g(®)

= ZZZPZ]|eS)f,)

(s,t)em i=1 j=1

+o(f,e,d). (32)

Counts of target-to-source length and transla-
tion models can be calculated in a similar way.

4 Experiments

In this section, we evaluate our approach in two
tasks: phrase alignment (Section 4.1) and machine
translation (Section 4.2).

4.1 Alignment Evaluation
4.1.1 Evaluation Metrics

Given two monolingual corpora F and F', we sup-
pose there exists a ground truth parallel corpus G
and denote an extracted parallel corpus as D. The
quality of an extracted parallel corpus can be mea-
sured by F1 = 2|D N G|/(|D] + |G|).

4.1.2 Data Preparation

Although it is appealing to apply our approach to
dealing with real-world non-parallel corpora, it is
time-consuming and labor-intensive to manually
construct a ground truth parallel corpus. There-
fore, we follow Dong et al. (2015) to build syn-
thetic F, F', and G to facilitate the evaluation.

We first extract a set of parallel phrases from
a sentence-level parallel corpus using the state-
of-the-art phrase-based translation system Moses
(Koehn et al., 2007) and discard low-probability
parallel phrases. Then, F/ and F' can be con-
structed by corrupting the parallel phrase set by
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Figure 4: Comparison of agreement ratios on the
development set.

seed | C—E | E— C | Outer | Inner
50 4.1 48 | 60.8 | 66.2
100 5.1 55| 656 | 69.8
500 7.5 84| 704 | 725
1,000 22.4 23.1 73.6 | 743

Table 1: Effect of seed lexicon size in terms of F1
on the development set.

adding irrelevant source and target phrases ran-
domly. Note that the parallel phrase set can serve
as the ground truth parallel corpus G. We refer to
the non-parallel phrases in £ and F' as noise.

From LDC Chinese-English parallel corpora,
we constructed a development set and a test
set. The development set contains 20K paral-
lel phrases, 20K noisy Chinese phrases, and 20K
noisy English phrases. The test test contains 20K
parallel phrases, 180K noisy Chinese phrases, and
180K noisy English phrases. The seed parallel lex-
icon contains 1K entries.

4.1.3 Comparison of Agreement Ratios

We introduce agreement ratio to measure to what
extent two unidirectional models agree on phrase
alignment:

. 2|m* N im*|
ratio = &+ [ (33)

Figure 4 shows the agreement ratios of inde-
pendent training (“no agreement”), joint training
with the outer agreement (“‘outer”), and joint train-
ing with the inner agreement (“inner”). We find
that independently trained unidirectional models

Cno‘lseE C—E | E— C | Outer | Inner
0 0 58.5 61.2 86.5 | 86.1
0 10K 41.0 54.4 83.6 | 83.8
0 20K 28.3 48.3 80.1 | 81.2
10K | O 54.7 43.1 849 | 84.3
20K O 50.4 314 83.8 | 83.6
10K | 10K 34.9 34.4 80.0 | 79.7
20K | 20K 22.4 23.1 73.6 | 74.3

Table 2: Effect of noise in terms of F1 on the de-
velopment set.

hardly agree on phrase alignment, suggesting that
each model can only capture partial aspects of
translation modeling on non-parallel corpora. In
contrast, imposing the agreement term signifi-
cantly increases the agreement ratios: after 10 it-
erations, about 40% of phrase alignment links are
shared by two models.

4.1.4 Effect of Seed Lexicon Size

Table 1 shows the F1 scores of the Chinese-to-
English model (“C — E”), the English-to-Chinese
model (“E — C”), joint learning based on the outer
agreement (“‘outer”), and jointing learning based
on the inner agreement (“inner”’) over various sizes
of seed lexicons on the development set.

We find that agreement-based learning obtains
substantial improvements over independent learn-
ing across all sizes. More importantly, even
with a seed lexicon containing only 50 entries,
agreement-based learning is able to achieve F1
scores above 60%. The inner agreement performs
better than the outer agreement by taking the con-
sensus at the word level into account.

4.1.5 Effect of Noise

Table 2 demonstrates the effect of noise on the de-
velopment set. In row 1, “0+0” denotes there is
no noise, which can be seen as an upper bound.
Adding noise, either on the Chinese side or on
the English side, deteriorates the F1 scores for all
methods. Adding noise on the English side makes
predicting phrase alignment in the C — E direc-
tion more challenging due to the enlarged search
space. The situation is similar in the reverse di-
rection. It is clear that agreement-based learning
is more robust to noise: while independent train-
ing suffers from a reduction of 40% in terms of
F1 for the “20K + 20K” setting, agreement-based
learning still achieves F1 scores over 70%.
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Figure 5: Comparison of F1 scores on the test set.

Chinese | jingji

English | economy

Chinese | jialebi

English | caribbean

Chinese | zhengzhi huanjing

English | political environment

Chinese | jiaoyisuo shichang jiage zhishu
English | exchange market price index
Chinese | gianding bianjing maoyi xieding
English | signed border trade agreements

Table 3: Example learned parallel lexicons and
phrases. New words that are not included in the
seed lexicon are highlighted in italic.

4.1.6 Results

Figure 5 gives the final results on the test set.
We find that agreement-based training achieves
significant improvements over independent train-
ing. By considering the consensus on both phrase
and word alignments, the inner agreement signif-
icantly outperforms the outer agreement. Notice
that Dong et al. (2015) only add noise on one side
while we add noisy phrases on both sides, which
makes phrase alignment more challenging.

Table 3 shows example learned parallel words
and phrases. The lexicon is built from the transla-
tion table by retaining high-probability word pairs.
Therefore, our approach is capable of learning
both new words and new phrases unseen in the
seed lexicon.

4.2 Translation Evaluation

Following Zhang and Zong (2013) and Dong et
al. (2015), we evaluate our approach on domain

adaptation for machine translation.

The data set consists of two in-domain non-
parallel corpora and an out-domain parallel cor-
pus. The in-domain non-parallel corpora con-
sists of 2.65M Chinese phrases and 3.67M English
phrases extracted from LDC news articles. We
use a small out-domain parallel corpus extracted
from financial news of FTChina which contains
10K phrase pairs. The task is to extract a parallel
corpus from in-domain non-parallel corpora start-
ing from a small out-domain parallel corpus.

We use the state-of-the-art translation system
Moses (Koehn et al., 2007) and evaluate the per-
formance on Chinese-English NIST datasets. The
development set is NIST 2006 and the test set
is NIST 2005. The evaluation metric is case-
insensitive BLEU4 (Papineni et al., 2002). We
use the SRILM toolkit (Stolcke, 2002) to train a
4-gram English language model on a monolingual
corpus with 399M English words.

Table 4 shows the results. At iteration 0, only
the out-domain corpus is used and the BLEU score
is 5.61. All methods iteratively extract parallel
phrases from non-parallel corpora and enlarge the
extracted parallel corpus. We find that agreement-
based learning achieves much higher BLEU scores
while obtains a smaller parallel corpus as com-
pared with independent learning. One possible
reason is that the agreement-based learning rules
out most unlikely phrase pairs by encouraging
consensus between two models.

5 Conclusion

We have presented agreement-based training for
learning parallel lexicons and phrases from non-
parallel corpora. By modeling the agreement
on both phrase alignment and word alignment,
our approach achieves significant improvements in
both alignment and translation evaluations.

In the future, we plan to apply our approach
to real-world non-parallel corpora to further ver-
ify its effectiveness. It is also interesting to ex-
tend the phrase translation model to more sophis-
ticated models such as IBM models 2-5 (Brown et
al., 1993) and HMM (Vogel and Ney, 1996).
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