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Abstract

Modeling interactions between two sen-
tences is crucial for a number of natu-
ral language processing tasks including
Answer Selection, Dialogue Act Analy-
sis, etc. While deep learning methods
like Recurrent Neural Network or Convo-
lutional Neural Network have been proved
to be powerful for sentence modeling,
prior studies paid less attention on inter-
actions between sentences. In this work,
we propose a Sentence Interaction Net-
work (SIN) for modeling the complex in-
teractions between two sentences. By in-
troducing “interaction states” for word and
phrase pairs, SIN is powerful and flexi-
ble in capturing sentence interactions for
different tasks. We obtain significant im-
provements on Answer Selection and Dia-
logue Act Analysis without any feature en-
gineering.

1 Introduction

There exist complex interactions between sen-
tences in many natural language processing (NLP)
tasks such as Answer Selection (Yu et al., 2014;
Yin et al., 2015), Dialogue Act Analysis (Kalch-
brenner and Blunsom, 2013), etc. For instance,
given a question and two candidate answers below,
though they are all talking about cats, only the first

Q What do cats look like?
Al  Cats have large eyes and furry bodies.
A2 Cats like to play with boxes and bags.

answer correctly answers the question about cats’
appearance. It is important to appropriately model
the relation between two sentences in such cases.

* Correspondence author
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For sentence pair modeling, some methods first
project the two sentences to fix-sized vectors sep-
arately without considering the interactions be-
tween them, and then fed the sentence vectors
to other classifiers as features for a specific task
(Kalchbrenner and Blunsom, 2013; Tai et al.,
2015). Such methods suffer from being unable to
encode context information during sentence em-
bedding.

A more reasonable way to capture sentence in-
teractions is to introduce some mechanisms to uti-
lize information from both sentences at the same
time. Some methods attempt to introduce an at-
tention matrix which contains similarity scores be-
tween words and phrases to approach sentence in-
teractions (Socher et al., 2011; Yin et al., 2015).
While the meaning of words and phrases may drift
from contexts to contexts, simple similarity scores
may be too weak to capture the complex interac-
tions, and a more powerful interaction mechanism
is needed.

In this work, we propose a Sentence Interaction
Network (SIN) focusing on modeling sentence in-
teractions. The main idea behind this model is
that each word in one sentence may potentially in-
fluence every word in another sentence in some
degree (the word “influence” here may refer to
“answer” or “match” in different tasks). So, we
introduce a mechanism that allows information
to flow from every word (or phrase) in one sen-
tence to every word (or phrase) in another sen-
tence. These “information flows” are real-valued
vectors describing how words and phrases interact
with each other, for example, a word (or phrase)
in one sentence can modify the meaning of a word
(or phrase) in another sentence through such “in-
formation flows”.

Specifically, given two sentences s; and sa, for
every word x; in s1, we introduce a “candidate
interaction state” for every word x, in s3. This
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state is regarded as the “influence” of x, to z;, and
is actually the “information flow” from z to x;
mentioned above. By summing over all the “can-
didate interaction states”, we generate an “interac-
tion state” for x4, which represents the influence of
the whole sentence s5 to word z¢ . When feeding
the “interaction state” and the word embedding to-
gether into Recurrent Neural Network (with Long
Short-Time Memory unit in our model), we ob-
tain a sentence vector with context information
encoded. We also add a convolution layer on
the word embeddings so that interactions between
phrases can also be modeled.

SIN is powerful and flexible for modeling sen-
tence interactions in different tasks. First, the “in-
teraction state” is a vector, compared with a single
similarity score, it is able to encode more informa-
tion for word or phrase interactions. Second, the
interaction mechanism in SIN can be adapted to
different functions for different tasks during train-
ing, such as “word meaning adjustment” for Di-
alogue Act Analysis or “Answering” for Answer
Selection.

Our main contributions are as follows:

e We propose a Sentence Interaction Network
(SIN) which utilizes a new mechanism to
model sentence interactions.

e We add convolution layers to SIN, which im-
proves the ability to model interactions be-
tween phrases.

e We obtain significant improvements on An-
swer Selection and Dialogue Act Analysis
without any handcrafted features.

The rest of the paper is structured as follows:
We survey related work in Section 2, introduce our
method in Section 3, present the experiments in
Section 4, and summarize our work in Section 5.

2 Related Work

Our work is mainly related to deep learning for
sentence modeling and sentence pair modeling.
For sentence modeling, we have to first repre-
sent each word as a real-valued vector (Mikolov et
al., 2010; Pennington et al., 2014) , and then com-
pose word vectors into a sentence vector. Several
methods have been proposed for sentence model-
ing. Recurrent Neural Network (RNN) (Elman,
1990; Mikolov et al., 2010) introduces a hidden
state to represent contexts, and repeatedly feed the
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hidden state and word embeddings to the network
to update the context representation. RNN suf-
fers from gradient vanishing and exploding prob-
lems which limit the length of reachable context.
RNN with Long Short-Time Memory Network
unit (LSTM) (Hochreiter and Schmidhuber, 1997,
Gers, 2001) solves such problems by introducing
a “memory cell” and “gates” into the network. Re-
cursive Neural Network (Socher et al., 2013; Qian
etal., 2015) and LSTM over tree structures (Zhu et
al., 2015; Tai et al., 2015) are able to utilize some
syntactic information for sentence modeling. Kim
(2014) proposed a Convolutional Neural Network
(CNN) for sentence classification which models a
sentence in multiple granularities.

For sentence pair modeling, a simple idea is to
first project the sentences to two sentence vectors
separately with sentence modeling methods, and
then feed these two vectors into other classifiers
for classification (Tai et al., 2015; Yu et al., 2014;
Yang et al., 2015). The drawback of such meth-
ods is that separately modeling the two sentences
is unable to capture the complex sentence inter-
actions. Socher et al. (2011) model the two sen-
tences with Recursive Neural Networks (Unfold-
ing Recursive Autoencoders), and then feed sim-
ilarity scores between words and phrases (syntax
tree nodes) to a CNN with dynamic pooling to cap-
ture sentence interactions. Hu et al. (2014) first
create an “interaction space” (matching score ma-
trix) by feeding word and phrase pairs into a multi-
layer perceptron (MLP), and then apply CNN to
such a space for interaction modeling. Yin et al.
(2015) proposed an Attention based Convolutional
Neural Network (ABCNN) for sentence pair mod-
eling. ABCNN introduces an attention matrix be-
tween the convolution layers of the two sentences,
and feed the matrix back to CNN to model sen-
tence interactions. There are also some methods
that make use of rich lexical semantic features for
sentence pair modeling (Yih et al., 2013; Yang
et al., 2015), but these methods can not be easily
adapted to different tasks.

Our work is also related to context modeling.
Hermann et al. (2015) proposed a LSTM-based
method for reading comprehension. Their model
is able to effectively utilize the context (given by
a document) to answer questions. Ghosh et al.
(2016) proposed a Contextual LSTM (CLSTM)
which introduces a topic vector into LSTM for
context modeling. The topic vector in CLSTM is
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Figure 1: RNN (a) and LSTM (b) !

computed according to those already seen words,
and therefore reflects the underlying topic of the
current word.

3 Method

3.1 Background: RNN and LSTM

Recurrent Neural Network (RNN) (Elman, 1990;
Mikolov et al., 2010), as depicted in Figure 1(a), is
proposed for modeling long-distance dependence
in a sequence. Its hidden layer is connected to it-
self so that previous information is considered in
later times. RNN can be formalized as

hi = f(Wyxy + Wyhi—1 + bp)

where x; is the input at time step ¢ and h; is the
hidden state. Though theoretically, RNN is able
to capture dependence of arbitrary length, it tends
to suffer from the gradient vanishing and explod-
ing problems which limit the length of reachable
context. In addition, an additive function of the
previous hidden layer and the current input is too
simple to describe the complex interactions within
a sequence.

RNN with Long Short-Time Memory Network
unit (LSTM, Figure 1(b)) (Hochreiter and Schmid-
huber, 1997; Gers, 2001) solves such problems by
introducing a “memory cell” and “gates” into the
network. Each time step is associated with a sub-
net known as a memory block in which a “memory
cell” stores the context information and “gates”
control which information should be added or dis-
carded or reserved. LSTM can be formalized as

fe=0(Wy - [x, he—1] + by)
i = o(Wi - (@, hy—1] + b;)
Cy = tanh(We - [24, hi—1] + be)

IThis figure referred to http://colah.github.io/posts/2015-
08-Understanding-LSTMs/
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Cy = fi* Cr_1 +iy % Gy
or =Wy - [xe, he—1] + bo)
ht = o * tanh(C})

where * means element-wise multiplication,
f+,1¢, 0¢ is the forget, input and output gate that
control which information should be forgot, input
and output, respectively. Cy is the candidate infor-
mation to be added to the memory cell state C'. hy
is the hidden state which is regarded as a represen-
tation of the current time step with contexts.

In this work, we use LSTM with peephole con-
nections, namely adding C';_; to compute the for-
get gate f; and the input gate 4;, and adding C} to
compute the output gate o;.

3.2 Sentence Interaction Network (SIN)

Sentence Interaction Network (SIN, Figure 2)
models the interactions between two sentences in
two steps.

First, we use a LSTM (referred to as LSTM;)
to model the two sentences s; and so separately,
and the hidden states related to the ¢-th word in s;
and the 7-th word in sy are denoted as zt(l) and
29) respectively. For simplicity, we will use the
position (¢, 7) to denote the corresponding words
hereafter.

Second, we propose a new mechanism to model
the interactions between s; and so by allowing
information to flow between them. Specifically,
word ¢ in s; may be potentially influenced by all
words in s in some degree. Thus, for word ¢ in

(%)

s1, a candidate interaction state c;’

(4)

and an input

gate ¢, are introduced for each word 7 in sg as
follows:

Eﬁ) = tanh(W - [zﬁl), 2] + b0

ity = oW [z, 2] + b

€69
1

here, the superscript indicates “interaction”.

w Wi(i)’ b bgi)
interaction state ng)
formalized as

are model parameters. The

i

for word ¢ in s; can then be

|s2]

$-y

T=1

(@) . ()

Cir * Lir

where |so| is the length of sentence so, and cgl)
can be viewed as the total interaction information
received by word ¢ in s; from sentence so. The

interaction states of words in sg can be similarly
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Figure 2: SIN for modeling sentence s; at timestep ¢. First, we model s; and sy separately with LSTM;

and obtain the hidden states zlfl) for s; and z.(,2) for so. Second, we compute interaction states based on
these hidden states, and incorporate cz(f) into LSTMs. Information flows (interaction states) from s; to
so are not depicted here for simplicity.

computed by exchanging the position of zt(l) and  state cgi) gives the influence of the whole sentence

2% in " and i{?
eters. . .

We now introduce the interaction states into 3.3 SIN with Convolution (SIN-CONV)
another LSTM (referred to as LSTMy) to com-  SINis good at capturing the complex interactions
pute the sentence vectors. Therefore, information ~ of words in two sentences, but not strong enough

can flow between the two sentences through these ~ for phrase interactions. Since convolutional neural

while sharing the model param- ~ s2 to word ¢.

states. For sentence sq, at timestep t, we have network 1is widely and SllCCCSSquy used for mod-
' eling phrases, we add a convolution layer before
Jt =Wy [z, hy—1, cgl), Ci—1] + by) SIN to model phrase interactions between two sen-
. () tences.
ft = oW [oe v,y ’Cftfl] i) Let vy, vg, ..., v|s be the word embeddings of a
Cr = tanh(We - [24, hy—1, ng)] +bc) sentence s, and let ¢; € R¥? 1 <4 < [s| —w +
Cy = fir % Co_1 + iy * C’t 1, be the concatenation of vj.;1,,—1, Where w is

the window size. The representation p; for phrase

or=0(Wo - [zt, hu-, C'gl)’ Cil + bo) Visi+w—1 1S computed as:

ht = o4 * tanh(C})

. ) p; = tanh(F - ¢; + b)
By averaging all hidden states of LSTM>, we ob-

tain the sentence vector vs, of s1, and the sentence  where ' € R2X%4 ig the convolution filter, and d

vector v, of s3 can be computed similarly. vs, s the dimension of the word embeddings.
and v, can then be used as features for different In SIN-CONV, we first use a convolution layer
tasks. . to obtain phrase representations for the two sen-
In SIN, the candidate interaction state Eg) T€P-  tences s1 and so, and the SIN interaction proce-
resents the potential influence of word 7 in s3 t0  gure is then applied to these phrase representations
word ¢ in s1, and the related input gate 21517) con- as before to model phrase interactions. The aver-
trols the degree of the influence. The element-wise  age of all hidden states are treated as sentence vec-
multiplication Eg? *zgfr) is then the actual influence.  tors v$"™ and vg)"™. Thus, SIN-CONYV is SIN with
By summing over all words in s, the interaction ~ word vectors substituted by phrase vectors. The
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two phrase-based sentence vectors are then fed to a
classifier along with the two word-based sentence
vectors together for classification.

The LSTM and interaction parameters are not
shared between SIN and SIN-CONV.

4 Experiments

In this section, we test our model on two tasks:
Answer Selection and Dialogue Act Analysis.
Both tasks require to model interactions between
sentences. We also conduct auxiliary experiments
for analyzing the interaction mechanism in our
SIN model.

4.1 Answer Selection

Selecting correct answers from a set of candidates
for a given question is quite crucial for a number
of NLP tasks including question-answering, natu-
ral language generation, information retrieval, etc.
The key challenge for answer selection is to appro-
priately model the complex interactions between
the question and the answer, and hence our SIN
model is suitable for this task.

We treat Answer Selection as a classification
task, namely to classify each question-answer pair
as “correct” or “incorrect”. Given a question-
answer pair (g, a), after generating the question
and answer vectors v, and v, using SIN, we feed
them to a logistic regression layer to output a prob-
ability. And we maximize the following objective
function:

po(g,a) = o(W - [vg, va]) + D)

L= Z gq,a 10gp0(Q> CL)—I-
(¢,a)

(1 = Gg,0) log(1 = py(g; a))

where g, , is the true label for the question-answer
pair (g, a) (1 for correct, O for incorrect). For SIN-
CONYV, the sentence vector vy and vy"" are also
fed to the logistic regression layer.
During evaluation, we rank the answers of a
question ¢ according to the probability py(q, a).
The evaluation metrics are mean average precision

(MAP) and mean reciprocal rank (MRR).

4.1.1 Dataset

The WikiQAz(Yang et al., 2015) dataset is used
for this task. Following Yin et al. (2015), we
filtered out those questions that do not have any

*http://aka.ms/WikiQA
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Q QA pair | A/Q | correct A/Q
Train | 2,118 | 20,360 | 9.61 0.49
Dev 126 1,130 | 8.97 1.11
Test | 243 2,351 | 9.67 1.21
Table 1: Statistics of WikiQA (Q=Question,
A=Answer)

correct answers from the development and test set.
Some statistics are shown in Table 1.

4.1.2 Setup

We use the 100-dimensional GloVe vectors® (Pen-
nington et al., 2014) to initialize our word embed-
dings, and those words that do not appear in Glove
vectors are treated as unknown. The dimension of
all hidden states is set to 100 as well. The window
size of the convolution layer is 2. To avoid overfit-
ting, dropout is introduced to the sentence vectors,
namely setting some dimensions of the sentence
vectors to 0 with a probability p (0.5 in our experi-
ment) randomly. No handcrafted features are used
in our methods and the baselines.

Mini-batch Gradient Descent (30 question-
answer pairs for each mini batch), with AdaDelta
tuning learning rate, is used for model training.
We update model parameters after every mini
batch, check validation MAP and save model af-
ter every 10 batches. We run 10 epochs in to-
tal, and the model with highest validation MAP
is treated as the optimal model, and we report the
corresponding test MAP and MRR metrics.

4.1.3 Baselines

We compare our SIN and SIN-CONV model with
5 baselines listed below:

LCLR: The model utilizes rich semantic and
lexical features (Yih et al., 2013).

PV: The cosine similarity score of paragraph
vectors of the two sentences is used to rank
answers (Le and Mikolov, 2014).

CNN: Bigram CNN (Yu et al., 2014).

ABCNN: Attention based CNN, no hand-
crafted features are used here (Yin et al.,
2015).

LSTM: The question and answer are modeled
by a simple LSTM. Different from SIN, there
is no interaction between sentences.

*http://nlp.stanford.edu/projects/glove/



4.1.4 Results

Results are shown in Table 2. SIN performs much
better than LSTM, PV and CNN, this justifies that
the proposed interaction mechanism well captures
the complex interactions between the question and
the answer. But SIN performs slightly worse than
ABCNN because it is not strong enough at model-
ing phrases. By introducing a simple convolution
layer to improve its phrase-modeling ability, SIN-
CONV outperforms all the other models.

For SIN-CONY, we do not observe much im-
provements by using larger convolution filters
(window size > 3) or stacking more convolution
layers. The reason may be the fact that interactions
between long phrases is relatively rare, and in ad-
dition, the QA pairs in the WikiQA dataset may
be insufficient for training such a complex model
with long convolution windows.

4.2 Dialogue Act Analysis

Dialogue acts (DA), such as Statement, Yes-No-
Question, Agreement, indicate the sentence prag-
matic role as well as the intention of the speakers
(Williams, 2012). They are widely used in natu-
ral language generation (Wen et al., 2015), speech
and meeting summarization (Murray et al., 2006;
Murray et al., 2010), etc. In a dialogue, the DA
of a sentence is highly relevant to the content of
itself and the previous sentences. As a result, to
model the interactions and long-range dependence
between sentences in a dialogue is crucial for dia-
logue act analysis.

Given a dialogue (n sentences) d =
[$1,52, ..., 8p], we first use a LSTM (LSTM;)
to model all the sentences independently. The
hidden states of sentence s; obtained at this step
are used to compute the interaction states of
sentence s;11, and SIN will generate a sentence
vector v, using another LSTM (LSTM3) for each
sentence s; in the dialogue (see Section 3.2) .
These sentence vectors can be used as features
for dialogue act analysis. We refer to this method
as SIN (or SIN-CONYV for adding a convolution
layer).

For dialogue act analysis, we add a softmax
layer on the sentence vector v, to predict the prob-
ability distribution:
exp(v], - wj + b;)

- > rexp(vl - wy + by)

“With extra handcrafted features, ABCNN’s performance
is: MAP(0.692), MRR(0.711).

Po (yj |Usi )
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Model MAP | MRR
LCLR 0.599 | 0.609
PV 0.511 | 0.516
CNN 0.619 | 0.628
ABCNN | 0.660 | 0.677
LSTM 0.634 | 0.648
SIN 0.657 | 0.672
SIN-CONV | 0.674 | 0.693

Table 2: Results on answer selection®.
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Figure 3: SIN-LD for dialogue act analysis.

LSTM; is not shown here for simplicity. azgsj )
means word ¢ in s;, cS’Sj ) means the interaction

state for word ¢ in s;.

where y; is the j-th DA tag, w; and b, is the weight
vector and bias corresponding to ;. We maximize
the following objective function:

|d|

L£=>"> logps(fs,|vs;)

deD i=1

where D is the training set, namely a set of dia-
logues, |d| is the length of the dialogue, s; is the
i-th sentence in d, ¥, is the true dialogue act label
of Si.

In order to capture long-range dependence in
the dialogue, we can further join up the sentence
vector v,; with another LSTM (LSTM3). The
hidden state hs, of LSTM3 are treated as the fi-
nal sentence vector, and the probability distri-
bution is given by substituting v, with hg, in
Po(y;|vs; ). We refer to this method as SIN-LD (or
SIN-CONV-LD for adding a convolution layer),
where LD means long-range dependence. Figure
3 shows the whole structure (LSTM; is not shown
here for simplicity).



Dialogue Act Example Train(%) Test(%)
Statement-non-Opinion Me, I'm in the legal department. 37.0 31.5
Backchannel/Acknowledge  Uh-huh. 18.8 18.3
Statement-Opinion 1 think it’s great 12.8 17.2
Abandoned/Uninterpretable  So,- 7.6 8.6
Agreement/Accept That’s exactly it. 5.5 5.0
Appreciation I can imagine. 2.4 1.8
Yes-No-Question Do you have to have any special training ? 2.3 2.0
Non-Verbal [Laughter], [Throat-clearing] 1.8 2.3
Yes-Answers Yes. 1.5 1.7
Conventional-closing Well, it’s been nice talking to you. 1.3 1.9
Other Labels(32) 9.1 9.8
Total number of sentences 196258 4186
Total number of dialogues 1115 19
Table 3: Dialogue act labels

4.2.1 Dataset Model Accuracy(%)

We use the Switch-board Dialogue Act (SwDA) unigram LM-HMM 68.2

corpus (Calhoun et al., 2010) in our experiments>. bigram LM-HMM 70.6

SwDA contains the transcripts of several people trigram LM-HMM 71.0

discussing a given topic on the telephone. There RCNN 73.9

are 42 dialogue act tags in SWDA,® and we list the LST™M 72.8

10 most frequent tags in Table 3. SIN 74.8

The same data split as in Stolcke et al. (2000) SIN-CONV 75.1
is used in our experiments. There are 1,115 dia- SIN-LD 76.0
logues in the training set and 19 dialogues in the SIN-CONV-LD 76.5

test set’. We also randomly split the original train-
ing set as a new training set (1,085 dialogues) and
a validation set (30 dialogues).

4.2.2 Setup

The setup is the same as that in Answer Selection
except: (1) Only the most common 10,000 words
are used, other words are all treated as unknown.
(2) Each mini batch contains all sentences from
3 dialogues for Mini-batch Gradient Descent. (3)
The evaluation metric is accuracy. (4) We run 30
epochs in total. (5) We use the last hidden state of
LSTM; as sentence representation since the sen-
tences here are much shorter compared with those
in Answer Selection.

4.2.3 Baselines

We compare with the following baselines:

e unigram, bigram, trigram LM-HMM: HMM
variants (Stolcke et al., 2000).

Shttp://compprag.christopherpotts.net /swda.html.

8SwDA actually contains 43 tags in which “+” should not
be treated as a valid tag since it means continuation of the
previous sentence.

"http://web.stanford.edu/%7ejurafsky/ws97/
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Table 4: Accuracy on dialogue act analysis. Inter-
annotator agreement is 84%.

e RCNN: Recurrent Convolutional Neural Net-
works (Kalchbrenner and Blunsom, 2013).
Sentences are first separately embedded with
CNN, and then joined up with RNN.

o LSTM: All sentences are modeled separately
by one LSTM. Different from SIN, there is
no sentence interactions in this method.

4.2.4 Results

Results are shown in Table 4. HMM variants,
RCNN and LSTM model the sentences separately
during sentence embedding, and are unable to cap-
ture the sentence interactions. With our inter-
action mechanism, SIN outperforms LSTM, and
proves that well modeling the interactions be-
tween sentences in a dialogue is important for di-
alogue act analysis. After introducing a convo-
lution layer, SIN-CONV performs slightly better
than SIN. SIN-LD and SIN-CONV-LD model the



what
creates
a
cloud
Ep "32"23%5TEL55%3
9 ° ZE & S3BE
) ) RZ 2 g
—_ O = E‘
= > —
o} = S
2
Q
g

of

Ii

[ ) VO O VLV VY
S £28%F £33 € 5 8
s E o G 3 o
>Fq:)% o 7] =
5 7 g &
<

Figure 4: Lo-norm of the interaction states from question to answer (linearly mapped to [0, 1]).

what creates a cloud

in meteorology , a cloud is a visible mass
of liquid droplets or frozen crystals made
of water or various chemicals suspended
in the atmosphere above the surface of a
planetary body.

>R

Table 5: A question-answer pair example.

long-range dependence in the dialogue with an-
other LSTM, and obtain further improvements.

4.3 Interaction Mechanism Analysis

We investigate into the interaction states of SIN
for Answer Selection to see how our proposed in-
teraction mechanism works.

Given a question-answer pair in Table (5), for
(2

~¢ and

SIN, there is a candidate interaction state ¢
an input gate Z(th) from each word ¢ in the ques-
tion to each word 7 in the answer. We investigate
into the Ly-norm [|e%) % i”)||5 to see how words
in the two sentences interact with each other. Note
that we have linearly mapped the original Ly-norm
value to [0, 1] as follows:
fla) =
Lmaxr — Tmin

As depicted in Figure 4, we can see that the
word “what” in the question has little impact to
the answer through interactions. This is reason-
able since “what” appears frequently in questions,
and does not carry much information for answer
selection®. On the contrary, the phrase “creates
a cloud”, especially the word “cloud”, transmits
much information through interactions to the an-
swer, this conforms with human knowledge since

80ur statements focus on the interaction, in a sense of
“answering” or “matching”. Definitely, such words like
“what” and “why” are very important for answering ques-
tions from the general QA perspective since they determine
the type of answers.
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we rely on these words to answer the question as
well.

In the answer, interactions concentrate on the
phrase “a cloud is a visible mass of liquid
droplets” which seems to be a good and com-
plete answer to the question. Although there are
also other highly related words in the answer, they
are almost ignored. The reason may be failing to
model such a complex phrase (three relatively sim-
ple sentences joined by “or”) or the existence of
the previous phrase which is already a good an-
SWer.

This experiment clearly shows how the interac-
tion mechanism works in SIN. Through interac-
tion states, SIN is able to figure out what the ques-
tion is asking about, namely to detect those highly
informative words in the question, and which part
in the answer can answer the question.

5 Conclusion and Future Work

In this work, we propose Sentence Interaction Net-
work (SIN) which utilizes a new mechanism for
modeling interactions between two sentences. We
also introduce a convolution layer into SIN (SIN-
CONV) to improve its phrase modeling ability so
that phrase interactions can be handled. SIN is
powerful and flexible to model sentence interac-
tions for different tasks. Experiments show that
the proposed interaction mechanism is effective,
and we obtain significant improvements on An-
swer Selection and Dialogue Act Analysis without
any handcrafted features.

Previous works have showed that it is important
to utilize the syntactic structures for modeling sen-
tences. We also find out that LSTM is sometimes
unable to model complex phrases. So, we are go-
ing to extend SIN to tree-based SIN for sentence
modeling as future work. Moreover, applying the
models to other tasks, such as semantic relatedness
measurement and paraphrase identification, would



also be interesting attempts.
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