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Abstract

Automatic negation scope detection is a
task that has been tackled using differ-
ent classifiers and heuristics. Most sys-
tems are however 1) highly-engineered, 2)
English-specific, and 3) only tested on the
same genre they were trained on. We start
by addressing 1) and 2) using a neural
network architecture. Results obtained on
data from the *SEM2012 shared task on
negation scope detection show that even
a simple feed-forward neural network us-
ing word-embedding features alone, per-
forms on par with earlier classifiers, with
a bi-directional LSTM outperforming all
of them. We then address 3) by means of
a specially-designed synthetic test set; in
doing so, we explore the problem of de-
tecting the negation scope more in depth
and show that performance suffers from
genre effects and differs with the type of
negation considered.

1 Introduction

Amongst different extra-propositional aspects of
meaning, negation is one that has received a lot
of attention in the NLP community. Previous work
have focused in particular on automatically detect-
ing the scope of negation, that is, given a nega-
tive instance, to identify which tokens are affected
by negation (§2). As shown in (1), only the first
clause is negated and therefore we mark he and the
car, along with the predicate was driving as inside
the scope, while leaving the other tokens outside.

(1) He was not driving the car and she left to
go home.

In the BioMedical domain there is a long line
of research around the topic (e.g. Velldal et al.
(2012) and Prabhakaran and Boguraev (2015)),

given the importance of recognizing negation for
information extraction from medical records. In
more general domains, efforts have been more
limited and most of the work centered around the
*SEM2012 shared task on automatically detecting
negation (§3), despite the recent interest (e.g.
machine translation (Wetzel and Bond, 2012;
Fancellu and Webber, 2014; Fancellu and Webber,
2015)).

The systems submitted for this shared task,
although reaching good overall performance are
highly feature-engineered, with some relying on
heuristics based on English (Read et al. (2012)) or
on tools that are available for a limited number of
languages (e.g. Basile et al. (2012), Packard et al.
(2014)), which do not make them easily portable
across languages. Moreover, the performance of
these systems was only assessed on data of the
same genre (stories from Conan Doyle’s Sherlock
Holmes) but there was no attempt to test the
approach on data of different genre.

Given these shortcomings, we investigate
whether neural network based sequence-to-
sequence models (§ 4) are a valid alternative. The
first advantage of neural networks-based methods
for NLP is that we could perform classification
by means of unsupervised word-embeddings
features only, under the assumption that they also
encode structural information previous system
had to explicitly represent as features. If this
assumption holds, another advantage of contin-
uous representations is that, by using a bilingual
word-embedding space, we would be able to
transfer the model cross-lingually, obviating the
problem of the lack of annotated data in other
languages.

The paper makes the following contributions:

1. Comparable or better performance: We
show that neural networks perform on par
with previously developed classifiers, with
a bi-directional LSTM outperforming them
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when tested on data from the same genre.

2. Better understanding of the problem: We an-
alyze in more detail the difficulty of detecting
negation scope by testing on data of different
genre and find that the performance of word-
embedding features is comparable to that of
more fine-grained syntactic features.

3. Creation of additional resources: We cre-
ate a synthetic test set of negative sentences
extracted from Simple English Wikipedia (§
5) and annotated according to the guidelines
released during the *SEM2012 shared task
(Morante et al., 2011), that we hope will
guide future work in the field.

2 The task

Before formalizing the task, we begin by giving
some definitions. A negative sentence n is defined
as a vector of words 〈w1, w2...wn〉 containing one
or more negation cues, where the latter can be a
word (e.g. not), a morpheme (e.g. im-patient) or
a multi-word expression (e.g. by no means, no
longer) inherently expressing negation.

A word is a scope token if included in the
scope of a negation cue. Following Blanco
and Moldovan (2011), in the *SEM2012 shared
task the negation scope is understood as part
of a knowledge representation focused around a
negated event along with its related semantic roles
and adjuncts (or its head in the case of a nominal
event). This is exemplified in (2) (from Blanco and
Moldovan (2011)) where the scope includes both
the negated event eat along the subject the cow,
the object grass and the PP with a fork.

(2) The cow did n’t eat grass with a fork.1

Each cue defines its own negation instance, here
defined as a tuple I(n,c) where c ∈ {1,0}|n| is a
vector of length n s.t. ci = 1 if wi is part of the cue
and 0 otherwise. Given I the goal of automatic
scope detection is to predict a vector s ∈ {O,I}|n|
s.t. si = I (inside of the scope) if wi is in the scope
of the cue or O (outside) otherwise.

In (3) for instance, there are two cues, not and
no longer, each one defining a separate negation
instance, I1(n,c1) and I2(n,c2), and each with its
own scope, s1 and s2. In both (3a) and (3b), n =

1In the *SEM2012 shared task, negation is not considered
as a downward monotone function and definite expressions
are included in its scope.

[I, do, not, love, you, and, you, are, no, longer,
invited]; in (3a), the vector c1 is 1 only at index 3
(w2=‘not’), while in (3b) c2 is 1 at position 9, 10
(where w9 w10 = ‘no longer’); finally the vectors
s1 and s2 are I only at the indices of the words
underlined and O anywhere else.

(3) a. I do not love you and you are no
longer invited

b. I do not love you and you are no
longer invited

There are the two main challenges involved in de-
tecting the scope of negation: 1) a sentence can
contain multiple instances of negation, sometimes
nested and 2) scope can be discontinuous. As
for 1), the classifier must correctly classify each
word as being inside or outside the scope and as-
sign each word to the correct scope; in (4) for in-
stance, there are two negation cues and therefore
two scopes, one spanning the entire sentence (3a.)
and the other the subordinate only (3b.), with the
latter being nested in the former (given that, ac-
cording to the guidelines, if we negate the event in
the main, we also negate its cause).

(4) a. I did not drive to school because my
wife was not feeling well .2

b. I did not drive to school because
my wife was not feeling well .

In (5), the classifier should instead be able to cap-
ture the long range dependency between the sub-
ject and its negated predicate, while excluding the
positive VP in the middle.

(5) Naomi went to visit her parents to give
them a special gift for their anniversary but
never came back .

In the original task, the performance of the classi-
fier is assessed in terms of precision, recall and
F1 measure over the number of words correctly
classified as part of the scope (scope tokens) and
over the number of scopes predicted that exactly

2One might object that the scope only spans over the sub-
ordinate given that it is the part of the scope most likely to be
interpreted as false (It is not the case that I drove to school
because my wife was not at home, but for other reasons). In
the *SEM2012 shared task however this is defined separately
as the focus of negation and considered as part of the scope.
One reason to distinguish the two is the high ambiguity of
the focus: one can imagine for instance that if the speaker
stresses the words to school this will be most likely consid-
ered the focus and the statement interpreted as It is not the
case that I drive to school because my wife was not feeling
well (but I drove to the hospital instead).
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match the gold scopes (exact scope match). As
for latter, recall is a measure of accuracy since we
score how many scopes we fully predict (true posi-
tives) over the total number of scopes in our test set
(true positives and false negatives); precision takes
instead into consideration false positives, that is
those negation instances that are predicted as hav-
ing a scope but in reality don’t have any. This is
the case of the interjection No (e.g. ‘No, leave her
alone’) that never take scope.

3 Previous work

Table 1 summarizes the performance of systems
previously developed to resolve the scope of nega-
tion in non-Biomedical texts.

In general, supervised classifiers perform better
than rule-based systems, although it is a combina-
tion of hand-crafted heuristics and SVM rankers
to achieve the best performance. Regardless of the
approach used, the syntactic structure (either con-
stituent or dependency-based) of the sentence is
often used to detect the scope of negation. This
is because the position of the cue in the tree
along with the projection of its parent/governor are
strong indicators of scope boundaries. Moreover,
given that during training we basically learn which
syntactic patterns the scope are likely to span, it
is also possible to hypothesize that this system
should scale well to other genre/domain, as long
as we can have a parse for the sentence; this how-
ever was never confirmed empirically. Although
informative, these systems suffers form three main
shortcomings: 1) they are highly-engineered (as in
the case of Read et al. (2012)) and syntactic fea-
tures add up to other PoS, word and lemma n-gram
features, 2) they rely on the parser producing a cor-
rect parse and 3) they are English specific.

Other systems (Basile et al., 2012; Packard et
al., 2014) tried to traverse a semantic representa-
tion instead. Packard et al. (2014) achieves the
best results so far, using hand-crafted heuristics to
traverse the MRS (Minimal Recursion Semantics)
structures of negative sentences. If the semantic
parser cannot create a reliable representation for
a sentence, the system ‘backs-off’ to the hybrid
model of Read et al. (2012), which uses syntactic
information instead. This system suffers however
from the same shortcomings mentioned above, in
particular, given that MRS representation can only
be built for a small set of languages.

4 Scope detection using Neural Networks

In this paper, we experiment with two differ-
ent neural networks architecture: a one hidden
layer feed-forward neural network and a bi-
directional LSTM (Long Short Term Memory,
BiLSTM below) model. We chose to ‘start sim-
ple’ from a feed-forward network to investigate
whether even a simple model can reach good per-
formance using word-embedding features only.
We then turned to a BiLSTM because a better
fit for the task. BiLSTM are sequential models
that operate both in forward and backwards fash-
ion; the backward pass is especially important in
the case of negation scope detection, given that
a scope token can appear in a string before the
cue and it is therefore important that we see the
latter first to classify the former. We opted in
this case for LSTM over RNN cells given that
their inner composition is able to better retain use-
ful information when backpropagating the error.4

Both networks take as input a single negative
instance I(n,c). We represent each word wi ∈ n
as a d-dimensional word-embedding vector x ∈
Rd (d=50). In order to encode information about
the cue, each word is also represented by a cue-
embedding vector c ∈ Rd of the same dimension-
ality of x. c can only take two representations, cue,
if ci=1, or notcue otherwise. We also define Evxd

w

as the word-embedding matrix, where v is the vo-
cabulary size, and E2xd

c as the cue-embedding ma-
trix.

In the case of a feed-forward neural network,
the input for each word wi ∈ n is the concate-
nation of its representation with the ones of its
neighboring words in a context window of length
l. This is because feed-forward networks treat the
input units as separate and information about how
words are arranged as sequences must be explic-
itly encoded in the input. We define these con-
catenations xconc and cconc as xwi−l ...xwi−1 ; xwi ;
xwi+1 ...xwi+l and cwi−l ...cwi−1 ; cwi ; cwi+1 ...cwi+l

respectively. We chose the value of l after analyz-
ing the negation scopes in the dev set. We found
that although the furthest scope tokens are 23 and
31 positions away from the cue on the left and the
right respectively, 95% of the scope tokens fall in
a window of 9 tokens to the left and 15 to the right,
these two values being the window sizes we con-

4For more details on LSTM and related mathematical for-
mulations, we refer to reader to Hochreiter and Schmidhuber
(1997)
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Scope tokens3 Exact scope match
Method Prec. Rec. F1 Prec. Rec. F1

*S
E

M
20

12

C
lo

se
d

tr
ac

k

UiO1 (Read et al., 2012) heuristics + SVM 81.99 88.81 85.26 87.43 61.45 72.17
UiO2 (Lapponi et al., 2012) CRF 86.03 81.55 83.73 85.71 62.65 72.39

FBK (Chowdhury and Mahbub, 2012) CRF 81.53 82.44 81.89 88.96 58.23 70.39
UWashington (White, 2012) CRF 83.26 83.77 83.51 82.72 63.45 71.81

UMichigan (Abu-Jbara and Radev, 2012) CRF 84.85 80.66 82.70 90.00 50.60 64.78
UABCoRAL (Gyawali and Solorio, 2012) SVM 85.37 68.86 76.23 79.04 53.01 63.46

O
pe

n
tr

ac
k UiO2 (Lapponi et al., 2012) CRF 82.25 82.16 82.20 85.71 62.65 72.39

UGroningen (Basile et al., 2012) rule-based 69.20 82.27 75.15 76.12 40.96 53.26
UCM-1 (de Albornoz et al., 2012) rule-based 85.37 68.53 76.03 82.86 46.59 59.64
UCM-2 (Ballesteros et al., 2012) rule-based 58.30 67.70 62.65 67.13 38.55 48.98

Packard et al. (2014) heuristics + SVM 86.1 90.4 88.2 98.8 65.5 78.7

Table 1: Summary of previous work on automatic detection of negation scope.

sider for our input. The probability of a given in-
put is then computed as follows:

h = σ(Wxxconc + Wccconc + b)
y = g(Wyh + by)

(1)

where W and b the weight and biases matrices,
h the hidden layer representation, σ the sigmoid
activation function and g the softmax operation
(g(zm)= ezm /

∑
k ezk ) to assign a probability to

the input of belonging to either the inside (I) or
outside (O) of the scope classes.

In the biLSTM, no concatenation is performed,
given that the structure of the network is already
sequential. The input to the network for each word
wi are the word-embedding vector xwi and the
cue-embedding vector cwi , where wi constitutes a
time step. The computation of the hidden layer
at time t and the output can be represented as fol-
lows:

it = σ(W(i)
x x + W(i)

c c + W(i)
h ht−1 + b(i))

ft = σ(W(f)
x x + W(f)

c c + W(f)
h ht−1 + b(f))

ot = σ(W(o)
x x + W(o)

c c + W(o)
h ht−1 + b(o))

c̃t = tanh(W(c)
x x + W(c)

c c + W(c)
h ht−1 + b(c))

ct = ft · c̃t−1 + it · c̃t

hback/forw = ot · tanh(ct)

yt = g(Wy(hback;hforw) + by)
(2)

where the Ws are the weight matrices, ht−1 the
hidden layer state a time t-1, it, ft, ot the input,
forget and the output gate at the time t and hback ;
hforw the concatenation of the backward and for-
ward hidden layers.

Finally, in both networks our training objective
is to minimise, for each negative instance, the neg-
ative log likelihood J(W,b) of the correct predic-

tions over gold labels:

J(W, b) = −1

l

l∑
i=1

y(wi) log hθ(x
(wi))

+ (1− y(wi)) log(1− hθ(x
(wi)))

(3)

where l is the length of the sentence n ∈ I, x(wi)

the probability for the word wi to belong to either
the I or O class and y(wi) its gold label.

An overview of both architectures is shown in
Figure 1.

4.1 Experiments
Training, development and test set are a col-
lection of stories from Conan Doyle’s Sherlock
Holmes annotated for cue and scope of negation
and released in concomitance with the *SEM2012
shared task.5 For each word, the correspondent
lemma, POS tag and the constituent subtree it be-
longs to are also annotated. If a sentence contains
multiple instances of negation, each is annotated
separately.

Both training and testing is done on negative
sentences only, i.e. those sentences with at least
one cue annotated. Training and test size are of
848 and 235 sentences respectively. If a sentence
contains multiple negation instances, we create as
many copies as the number of instances. If the
sentence contains a morphological cue (e.g. im-
patient) we split it into affix (im-) and root (pa-
tient), and consider the former as cue and the latter
as part of the scope.

Both neural network architectures are imple-
mented using TensorFlow (Abadi et al., 2015)
with a 200-units hidden layer (400 in total for two
concatenated hidden layers in the BiLSTM), the
Adam optimizer (Kingma and Ba, 2014) with a

5For the statistics regarding the data, we refer the reader
to Morante and Blanco (2012).
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Figure 1: An example of scope detection using
feed-forward and BiLSTM for the tokens ‘you are
no longer invited’ in the instance in ex. (3b).

starting learning rate of 0.0001, learning rate de-
cay after 10 iterations without improvement and
early stopping. In both cases we experimented
with different settings:

1. Simple baseline: In order to understand how
hard the task of negation scope detection is,
we created a simple baseline by tagging as
part of the scope all the tokens 4 words to
the left and 6 to the right of the cue; these
values were found to be the average span of
the scope in either direction in the training
data.

2. Cue info (C): The word-embedding matrix is
randomly initialised and updated relying on
the training data only. Information about the
cue is fed through another set of embedding
vectors, as shown in 4. This resembles the
‘Closed track’ of the *SEM2012 shared task
since no external resource is used.

3. Cue info + external embeddings (E): This is
the same as setting (2) except that the embed-

dings are pre-trained using external data. We
experimented with both keeping the word-
embedding matrix fixed and updating it dur-
ing training but we found small or no dif-
ference between the two settings. To do
this, we train a word-embedding matrix us-
ing Word2Vec (Mikolov et al., 2013) on 770
million tokens (for a total of 30 million sen-
tences and 791028 types) from the ‘One Bil-
lion Words Language Modelling’ dataset 6

and the Sherlock Holmes data (5520 sen-
tences) combined. The dataset was tokenized
and morphological cues split into negation
affix and root to match the Conan Doyle’s
data. In order to perform this split, we
matched each word against an hand-crafted
list of words containing affixal negation7; this
method have an accuracy of 0.93 on the Co-
nan Doyle test data.

4. Adding PoS / Universal PoS information
(PoS/uni PoS): This was mainly to assess
whether we could get further improvement by
adding additional information. For all the set-
ting above, we also add an extra embedding
input vector for the POS or Universal POS
of each word wi. As for the word and the cue
embeddings, PoS-embedding information are
fed to the hidden layer through a separate
weight matrix. When pre-trained, the train-
ing data for the external PoS-embedding ma-
trix is the same used for building the word
embedding representation, except that in this
case we feed the PoS / Universal PoS tag for
each word. As in (3), we experimented with
both updating the tag-embedding matrix and
keeping it fixed but found again small or no
difference between the two settings. In or-
der to maintain consistency with the original
data, we perform PoS tagging using the GE-
NIA tagger (Tsuruoka et al., 2005)8 and then
map the resulting tags to universal POS tags.9

4.2 Results

The results for the scope detection task are shown
in Table 2.

6Available at https://code.google.com/
archive/p/word2vec/

7The list was courtesy of Ulf Hermjakob and Nathan
Schneider.

8https://github.com/saffsd/geniatagger
9Mapping available at https://github.com/

slavpetrov/universal-pos-tags
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Results for both architecture when word-
embedding features only are used (C and C + E)
show that neural networks are a valid alternative
for scope detection, with bi-directional LSTM be-
ing able to outperform all previously developed
classifiers on both scope token recognition and ex-
act scope matching. Moreover, a bi-directional
LSTM shows similar performance to the hybrid
system of Packard et al. (2014) (rule-based +
SVM as a back-off) in absence of any hand-crafted
heuristics.

It is also worth noticing that although pre-
training the word-embedding and PoS-embedding
matrices on external data leads to a slight improve-
ment in performance, the performance of the sys-
tems using internal data only is already competi-
tive; this is a particularly positive result consider-
ing that the training data is relatively small.

Finally, adding universal POS related infor-
mation leads to a better performance in most
cases. The fact that the best system is built using
language-independent features only is an impor-
tant result when considering the portability of the
model across different languages.

4.3 Error analysis

In order to understand the kind of errors our best
classifier makes, we performed an error analysis
on the held-out set.

First, we investigate whether the per-instance
prediction accuracy correlates with scope-related
(length of the scope to the left, to the right and
combined; maximum length of the gap in a discon-
tinuous scope) and cue-related (type of cue -one-
word, prefixal, suffixal, multiword-) variables. We
also checked whether the neural network is biased
towards the words it has seen in the training(for
instance, if it has seen the same token always la-
beled as O it will then classify it as O). For our best
biLSTM system, we found only weak to moderate
negative correlations with the following variables:

• length of the gap, if the scope is discontinu-
ous (r=-0.1783, p = 0.004);

• overall scope length (r=-0.3529, p < 0.001);

• scope length to the left and to the right (r=-
0.3251 and -0.2659 respectively with p <
0.001)

• presence of a prefixal cue (r=-0.1781, p =
0.004)

• presence of a multiword cue (r=-0.1868, p =
0.0023)

meaning that the variables considered are not
strong enough to be considered as error patterns.

For this reason we also manually analyzed the
96 negation scopes that the best biLSTM system
predicted incorrectly and noticed several error pat-
terns:

• in 5 cases, the scope should only span on the
subordinate but end up including elements
from the main. In (6) for instance, where the
system prediction is reported in curly brack-
ets, the BiLSTM ends up including the main
predicate with its subject in the scope.

(6) You felt so strongly about it
that {I knew you could} not
{think of Beecher without thinking of
that also} .

• in 5 cases, the system makes an incorrect pre-
diction in presence of the syntactic inversion,
where a subordinate appears before the main
clause; in (7) for instance, the system ex-
tends the prediction to the main clause when
the scope should instead span the subordinate
only.

(7) But {if she does} not {wish to shield
him she would give his name}

• in 8 cases, where two VPs, one positive and
one negative, are coordinated, the system
ends up including in the scope the positive
VP as well, as shown in (8). We hypothe-
sized this is due to the lack of such examples
in the training set.

(8) Ah, {you do} n’t {know Sarah ’s
temper or you would wonder no
more} .

As in Packard et al. (2014), we also noticed that
in 15 cases, the gold annotations do not follow the
guidelines; in the case of a negated adverb in par-
ticular, as shown in (9a) and (9b) the annotations
do not seem to agree on whether consider as scope
only the adverb or the entire clause around it.
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Scope tokens Exact scope match
System gold tp fp fn Prec. Rec. F1 Prec. Rec. F1

Baseline 1830 472 3031 1358 13.47 25.79 17.70 0.0 0.0 0.0
Best closed track: UiO1 N/A N/A N/A N/A 81.99 88.81 85.26 87.43 61.45 72.17
Packard et al. (2014) N/A N/A N/A N/A 86.1 90.4 88.2 98.8 65.5 78.7
FF - C 1830 1371 273 459 83.39 74.91 78.92 93.61 34.10 50.00
FF - C + PoS 1830 1413 235 417 85.74 77.21 81.25 92.51 37.50 53.33
FF - C + Uni PoS 1830 1435 276 395 83.86 78.41 81.05 93.06 36.57 52.51
FF - C + E 1830 1455 398 375 78.52 79.50 79.01 89.53 30.19 45.16
FF - C + PoS + E 1830 1413 179 417 88.75 77.21 82.58 96.63 44.23 60.68
FF - C + Uni PoS + E 1830 1412 158 418 89.93 77.15 83.05 96.58 43.46 59.94
BiLSTM - C 1830 1583 175 247 90.04 86.50 88.23 98.71 58.77 73.68
BiLSTM - C + PoS 1830 1591 203 239 88.68 86.93 87.80 98.70 58.01 73.07
BiLSTM - C + Uni Pos 1830 1592 193 238 89.18 86.95 88.07 98.96 57.63 72.77
BiLSTM - C + E 1830 1570 157 260 90.90 85.79 88.27 99.37 60.83 75.47
BiLSTM - C + PoS + E 1830 1546 148 284 91.26 84.48 87.74 98.75 60.30 74.88
BiLSTM - C + Uni PoS + E 1830 1552 124 272 92.62 85.13 88.72 99.40 63.87 77.77

Table 2: Results for the scope detection task on the held-out set. Results are plotted against the simple baseline, the best system
so far (Packard et al., 2014) and the system with the highest F1 for scope tokens classification amongst the ones submitted for
the *SEM2012 shared task. We also report the number of gold scope tokens, true positive (tp), false positives(fp) and false
negatives(fn).

(9) a. [...] tossing restlessly from side to side
[..]

b. [...] glaring helplessly at the frightful
thing which was hunting him down.

5 Evaluation on synthetic data set

5.1 Methodology

One question left unanswered by previous work is
whether the performance of scope detection classi-
fiers is robust against data of a different genre and
whether different types of negation lead to differ-
ence in performance. To answer this, we compare
two of our systems with the only original submis-
sion to the *SEM2012 we found available (White,
2012)10. We decided to use both our best sys-
tem, BiLSTM+C+UniPoS+E and a sub-optimal
systems, BiLSTM+C+E to also assess the robust-
ness of non-English specific features.

The synthetic test set here used is built on sen-
tences extracted from Simple Wikipedia and man-
ually annotated for cue and scope according to the
annotation guidelines released in concomitance
with the *SEM2012 shared task (Morante et al.,
2011). We created 7 different subsets to test dif-
ferent types of negative sentences:

Simple: we randomly picked 50 positive sen-
tences, containing only one predicate, no dates and
no named entities, and we made them negative by

10In order for the results to be comparable, we feed White’s
system with the cues from the gold-standard instead of auto-
matically detecting them.

adding a negation cue (do support or minor mor-
phological changes were added when required). If
more than a lexical negation cue fit in the context,
we used them all by creating more than one nega-
tive counterpart, as shown in (10). The sentences
were picked to contain different kind of predicates
(verbal, existential, nominal, adjectival).

(10) a. Many people disagree on the topic

b. Many people do not disagree on the
topic

c. Many people never disagree on the
topic

Lexical: we randomly picked 10 sentences11 for
each lexical (i.e. one-word) cue in training data
(these are not, no, none, nobody, never, without)

Prefixal: we randomly picked 10 sentences for
each prefixal cue in the training data (un-, im-, in-,
dis-, ir-)

Suffixal: we randomly picked 10 sentences for
the suffixal cue -less.

Multi-word: we randomly picked 10 sen-
tences for each multi-word cue (neither...nor,no
longer,by no means).

Unseen: we include 10 sentences for each of
the negative prefixes a- (e.g. a-cyclic), ab- (e.g.
ab-normal) non- (e.g. non-Communist) that are
not annotated as cue in the Conan Doyle corpus,

11In some cases, we ended up with more than 10 examples
for some cues given that some of the sentences we picked
contained more than a negation instance.
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Scope tokens Exact scope match
Data gold tp fp fn Prec. Rec. F1 Prec. Rec. F1

White (2012)

simple 850 830 0 20 100.00 97.65 98.81 100.00 93.98 96.90
lexical 814 652 101 162 86.59 80.10 83.22 100.00 58.41 73.75
prefixal 316 232 103 83 68.98 73.40 71.12 100.00 32.76 49.35
suffixal 100 78 7 22 91.76 78.00 84.32 100.00 69.23 81.82

multi-word 269 190 12 49 89.62 70.63 79.00 100.00 9.00 16.67
unseen 220 138 40 82 77.53 62.73 69.35 100.00 38.89 56.00

avg. 2569 2120 263 418 85.74 77.08 80.97 100.00 50.37 62.41

BiLSTM - C+ E

simple 850 827 0 23 100.00 97.29 98.62 100.00 88.72 94.02
lexical 814 618 120 133 85.01 83.66 84.33 100.00 40.35 57.50
prefixal 316 235 156 81 60.10 74.36 66.47 100.00 10.34 18.75
suffixal 100 53 5 47 91.52 53.46 67.50 100.00 15.28 26.66

multi-word 269 192 22 79 93.65 71.37 81.01 100.00 36.36 53.00
unseen 220 151 79 69 66.09 69.05 67.54 100.00 22.22 36.36

avg. 2569 2076 382 432 82.72 74.86 77.57 100.00 35.54 47.76

BiLSTM - C+ UniPos + E

simple 850 816 0 34 100.00 96 97.95 100.00 82.70 90.05
lexical 814 668 97 146 87.32 82.06 84.61 100.00 42.10 59.25
prefixal 316 231 128 85 64.34 73.10 68.44 100.00 20.68 34.28
suffixal 100 54 3 47 94.73 53.46 68.35 100.00 38.46 55.55

multi-word 269 202 19 67 91.40 75.09 82.44 100.00 27.27 42.85
unseen 220 152 56 71 73.07 68.16 70.53 100.00 25.00 40.00

avg. 2569 2123 303 449 85.14 74.64 78.72 100.00 39.36 53.66

Table 3: Results for the scope detection task on the synthetic test set.

to test whether the system can generalise the clas-
sification to unseen cues.12

5.2 Results
Table 3. shows the results for the comparison on
the synthetic test set. The first thing worth noticing
is that by using word-embedding features only it
is possible to reach comparable performance with
a classifier using syntactic features, with univer-
sal PoS generally contributing to a better perfor-
mance; this is particularly evident in the multi-
word and lexical sub-sets. In general, genre ef-
fects hinder both systems; however, considering
that the training data is less than 1000 sentences,
results are relatively good.

Performance gets worse when dealing with
morphological cues and in particular in the case of
our classifier, with suffixal cues; at a closer inspec-
tion however, the cause of such poor performance
is attributable to a discrepancy between the an-
notation guidelines and the training data, already
noted in §4.4. The guidelines state in fact that ‘If
the negated affix is attached to an adverb that is
a complement of a verb, the negation scopes over
the entire clause’(Morante et al., 2011, p. 21) and
we annotated suffixal negation in this way. How-
ever, 3 out of 4 examples of suffixal negation in
adverbs in the training data (e.g. 9a.) mark the

12The data, along with the code, is freely available at
https://github.com/ffancellu/NegNN

scope on the adverbial root only and that’s what
our classifiers learn to do.

Finally, it can be noticed that our system does
worse at exact scope matching than the CRF clas-
sifier. This is because White (2012)’s CRF model
is build on constituency-based features that will
then predict scope tokens based on constituent
boundaries (which, as we said, are good indica-
tor of scope boundaries), while neural networks,
basing the prediction only on word-embedding in-
formation, might extend the prediction over these
boundaries or leave ‘gaps’ within.

6 Conclusion and Future Work

In this work, we investigated and confirmed that
neural networks sequence-to-sequence models are
a valid alternative for the task of detecting the
scope of negation. In doing so we offer a detailed
analysis of its performance on data of different
genre and containing different types of negation,
also in comparison with previous classifiers, and
found that non-English specific continuous repre-
sentation can perform batter than or on par with
more fine-grained structural features.

Future work can be directed towards answering
two main questions:

Can we improve the performance of our classi-
fier? To do this, we are going to explore whether
adding language-independent structural informa-
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tion (e.g. universal dependency information) can
help the performance on exact scope matching.

Can we transfer our model to other languages?
Most importantly, we are going to test the model
using word-embedding features extracted from a
bilingual embedding space.
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