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Abstract
Grapheme-to-phoneme (g2p) models are
rarely available in low-resource languages,
as the creation of training and evaluation
data is expensive and time-consuming. We
use Wiktionary to obtain more than 650k
word-pronunciation pairs in more than 500
languages. We then develop phoneme and
language distance metrics based on phono-
logical and linguistic knowledge; apply-
ing those, we adapt g2p models for high-
resource languages to create models for
related low-resource languages. We pro-
vide results for models for 229 adapted lan-
guages.

1 Introduction
Grapheme-to-phoneme (g2p) models convert
words into pronunciations, and are ubiquitous in
speech- and text-processing systems. Due to the
diversity of scripts, phoneme inventories, phono-
tactic constraints, and spelling conventions among
the world’s languages, they are typically language-
specific. Thus, while most statistical g2p learning
methods are language-agnostic, they are trained on
language-specific data—namely, a pronunciation
dictionary consisting of word-pronunciation pairs,
as in Table 1.

Building such a dictionary for a new language is
both time-consuming and expensive, because it re-
quires expertise in both the language and a notation
system like the International Phonetic Alphabet,
applied to thousands of word-pronunciation pairs.
Unsurprisingly, resources have been allocated only
to the most heavily-researched languages. Global-
Phone, one of the most extensive multilingual text
and speech databases, has pronunciation dictionar-
ies in only 20 languages (Schultz et al., 2013)1.

1We have been unable to obtain this dataset.

lang word pronunciation
eng anybody e̞ n iː b ɒ d iː
pol żołądka z̻ o w o n̪ t ̪ k a
ben শক্ s ̪ ɔ k t ̪ ɔ
heb חלומות ʁ a l o m o t

Table 1: Examples of English, Polish, Bengali,
and Hebrew pronunciation dictionary entries, with
pronunciations represented with the International
Phonetic Alphabet (IPA).

word eng deu nld
gift ɡ ɪ f tʰ ɡ ɪ f t ɣ ɪ f t
class kʰ l æ s k l aː s k l ɑ s
send s e̞ n d z ɛ n t s ɛ n t

Table 2: Example pronunciations of English words
using English, German, and Dutch g2p models.

For most of the world’s more than 7,100 lan-
guages (Lewis et al., 2009), no data exists and the
many technologies enabled by g2p models are in-
accessible.

Intuitively, however, pronouncing an unknown
language should not necessarily require large
amounts of language-specific knowledge or data.
A native German or Dutch speaker, with no knowl-
edge of English, can approximate the pronuncia-
tions of an English word, albeit with slightly differ-
ent phonemes. Table 2 demonstrates that German
and Dutch g2p models can do the same.

Motivated by this, we create and evaluate g2p
models for low-resource languages by adapting ex-
isting g2p models for high-resource languages us-
ing linguistic and phonological information. To fa-
cilitate our experiments, we create several notable
data resources, including a multilingual pronunci-
ation dictionary with entries for more than 500 lan-
guages.

The contributions of this work are:
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• Using data scraped from Wiktionary, we
clean and normalize pronunciation dictionar-
ies for 531 languages. To our knowledge, this
is the most comprehensive multilingual pro-
nunciation dictionary available.

• We synthesize several named entities corpora
to create a multilingual corpus covering 384
languages.

• We develop a language-independent distance
metric between IPA phonemes.

• We extend previous metrics for language-
language distance with additional information
and metrics.

• We create two sets of g2p models for “high
resource” languages: 97 simple rule-based
models extracted from Wikipedia’s “IPA
Help” pages, and 85 data-driven models built
from Wiktionary data.

• We develop methods for adapting these g2p
models to related languages, and describe re-
sults for 229 adapted models.

• We release all data and models.

2 Related Work

Because of the severe lack of multilingual pro-
nunciation dictionaries and g2p models, different
methods of rapid resource generation have been
proposed.

Schultz (2009) reduces the amount of exper-
tise needed to build a pronunciation dictionary, by
providing a native speaker with an intuitive rule-
generation user interface. Schlippe et al. (2010)
crawl web resources like Wiktionary for word-
pronunciation pairs. More recently, attempts have
been made to automatically extract pronunciation
dictionaries directly from audio data (Stahlberg et
al., 2016). However, the requirement of a na-
tive speaker, web resources, or audio data specific
to the language still blocks development, and the
number of g2p resources remains very low. Our
method avoids these issues by relying only on text
data from high-resource languages.

Instead of generating language-specific re-
sources, we are instead inspired by research on
cross-lingual automatic speech recognition (ASR)
by Vu and Schultz (2013) and Vu et al. (2014),
who exploit linguistic and phonetic relationships
in low-resource scenarios. Although these works
focus on ASR instead of g2p models and rely on
audio data, they demonstrate that speech technol-
ogy is portable across related languages.

g2phword

trainingh

pronh Mh→l pronl

(a)

g2ph→lword

Mh→l

trainingh

pronl

(b)

Figure 1: Strategies
for adapting existing
language resources
through output map-
ping (a) and training
data mapping (b).

3 Method

Given a low-resource language l without g2p rules
or training data, we adapt resources (either an
existing g2p model or a pronunciation dictio-
nary) from a high-resource language h to create
a g2p for l. We assume the existence of two
modules: a phoneme-to-phoneme distance metric
phon2phon, which allows us to map between the
phonemes used by h to the phonemes used by l,
and a closest language module lang2lang, which
provides us with related language h.

Using these resources, we adapt resources from
h to l in two different ways:

• Output mapping (Figure 1a): We use g2ph to
pronounce wordl, then map the output to the
phonemes used by l with phon2phon.

• Training data mapping (Figure 1b): We use
phon2phon to map the pronunciations in
h’s pronunciation dictionary to the phonemes
used by l, then train a g2p model using the
adapted data.

The next sections describe how we collect
data, create phoneme-to-phoneme and language-
to-language distance metrics, and build high-
resource g2p models.

4 Data

This section describes our data sources, which are
summarized in Table 3.

4.1 Phoible

Phoible (Moran et al., 2014) is an online reposi-
tory of cross-lingual phonological data. We use
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Phoible Wiki IPA Help tables Wiktionary
1674 languages 97 languages 531 languages

2155 lang. inventories 24 scripts 49 scripts
2182 phonemes 1753 graph. segments 658k word-pron pairs

37 features 1534 phon. segments Wiktionary train Wiktionary test
NE data 3389 unique g-p rules 85 languages 501 languages

384 languages 42 scripts 45 scripts
36 scripts 629k word-pron pairs 26k word-pron pairs
9.9m NEs

Table 3: Summary of data resources obtained from Phoible, named entity resources, Wikipedia IPA Help
tables, and Wiktionary. Note that, although our Wiktionary data technically covers over 500 languages,
fewer than 100 include more than 250 entries (Wiktionary train).

two of its components: language phoneme inven-
tories and phonetic features.

4.1.1 Phoneme inventories
A phoneme inventory is the set of phonemes
used to pronounce a language, represented in IPA.
Phoible provides 2156 phoneme inventories for
1674 languages. (Some languages have multiple
inventories from different linguistic studies.)

4.1.2 Phoneme feature vectors
For each phoneme included in its phoneme in-
ventories, Phoible provides information about
37 phonological features, such as whether the
phoneme is nasal, consonantal, sonorant, or a tone.
Each phoneme thus maps to a unique feature vec-
tor, with features expressed as +, -, or 0.

4.2 Named Entity Resources
For our language-to-language distance metric, it is
useful to have written text in many languages. The
most easily accessible source of this data is multi-
lingual named entity (NE) resources.

We synthesize 7 different NE corpora: Chinese-
English names (Ji et al., 2009), Geonames (Vatant
and Wick, 2006), JRC names (Steinberger et al.,
2011), corpora from LDC2, NEWS 2015 (Banchs
et al., 2015), Wikipedia names (Irvine et al.,
2010), and Wikipedia titles (Lin et al., 2011);
to this, we also add multilingual Wikipedia titles
for place names from an online English-language
gazetteer (Everett-Heath, 2014). This yields a list
of 9.9m named entities (8.9 not including English
data) across 384 languages, which include the En-

2LDC2015E13, LDC2015E70, LDC2015E82,
LDC2015E90, LDC2015E84, LDC2014E115, and
LDC2015E91

glish translation, named entity type, and script in-
formation where possible.

4.3 Wikipedia IPA Help tables
To explain different languages’ phonetic notations,
Wikipedia users have created “IPA Help” pages,3
which provide tables of simple grapheme exam-
ples of a language’s phonemes. For example, on
the English page, the phoneme z has the examples
“zoo” and “has.” We automatically scrape these
tables for 97 languages to create simple grapheme-
phoneme rules.

Using the phon2phon distance metric and map-
ping technique described in Section 5, we clean
each table by mapping its IPA phonemes to the lan-
guage’s Phoible phoneme inventory, if it exists. If
it does not exist, we map the phonemes to valid
Phoible phonemes and create a phoneme inventory
for that language.

4.4 Wiktionary pronunciation dictionaries
Ironically, to train data-driven g2p models for
high-resource languages, and to evaluate our
low-resource g2p models, we require pronunci-
ation dictionaries for many languages. A com-
mon and successful technique for obtaining this
data (Schlippe et al., 2010; Schlippe et al.,
2012a; Yao and Kondrak, 2015) is scraping Wik-
tionary, an open-source multilingual dictionary
maintained by Wikimedia. We extract unique
word-pronunciation pairs from the English, Ger-
man, Greek, Japanese, Korean, and Russian sites
of Wiktionary. (Each Wiktionary site, while writ-
ten in its respective language, contains word en-
tries in multiple languages.)

3https://en.wikipedia.org/wiki/Category:
International_Phonetic_Alphabet_help
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Since Wiktionary data is very noisy, we ap-
ply length filtering as discussed by Schlippe et
al. (2012b), as well as simple regular expression fil-
ters for HTML. We also map Wiktionary pronun-
ciations to valid Phoible phonemes and language
phoneme inventories, if they exist, as discussed in
Section 5. This yields 658k word-pronunciation
pairs for 531 languages. However, this data is not
uniformly distributed across languages—German,
English, and French account for 51% of the data.

We extract test and training data as follows: For
each language with at least 1 word-pron pair with
a valid word (at least 3 letters and alphabetic), we
extract a test set of a maximum of 200 valid words.
From the remaining data, for every language with
50 or more entries, we create a training set with the
available data.

Ultimately, this yields a training set with 629k
word-pronunciation pairs in 85 languages, and a
test set with 26k pairs in 501 languages.

5 Phonetic Distance Metric

Automatically comparing pronunciations across
languages is especially difficult in text form. Al-
though two versions of the “sh” sound, “ʃ” and “ɕ,”
sound very similar to most people and very dif-
ferent from “m,” to a machine all three characters
seem equidistant.

Previous research (Özbal and Strapparava,
2012; Vu and Schultz, 2013; Vu et al., 2014) has
addressed this issue by matching exact phonemes
by character or manually selecting comparison fea-
tures; however, we are interested in an automatic
metric covering all possible IPA phoneme pairs.

We handle this problem by using Phoible’s
phoneme feature vectors to create phon2phon, a
distance metric between IPA phonemes. In this
section we also describe how we use this met-
ric to clean open-source data and build phoneme-
mapping models between languages.

5.1 phon2phon

As described in Section 4.1.2, each phoneme in
Phoible maps to a unique feature vector; each
feature value is +, -, or 0, representing whether
a feature is present, not present, or not applica-
ble. (Tones, for example, can never be syllabic or
stressed.)

We convert each feature vector into a bit repre-
sentation by mapping each value to 3 bits. + to 110,
- to 101, and 0 to 000. This captures the idea that

lang word scraped cleaned
ces jód ˈjoːd j o d
pus څلور t͡saˈlor t s a l o r
kan ¸ರತ bhārata b h a ɾ a t ̪ a
hye օդապար otʰɑˈpɑɾ o̞ t ̪h a p a l ̪
ukr тарган tɑrˈɦɑn t ̪ a r ̪ h a n̪

Table 4: Examples of scraped and cleaned Wik-
tionary pronunciation data in Czech, Pashto, Kan-
nada, Armenian, and Ukrainian.

Data: all phonemes P , scraped phoneme set
S, language inventory T

Result: Mapping table M
initialize empty table M ;
for ps in S do

if ps /∈ P and ASCII(ps) ∈ P then
ps = ASCII(ps);

end
pp = min

∀pt∈T

(phon2phon(ps, pt));

add ps → pp to M ;
end

Algorithm 1: A condensed version of our pro-
cedure for mapping scraped phoneme sets from
Wikipedia and Wiktionary to Phoible language
inventories. The full algorithm handles segmen-
tation of the scraped pronunciation and heuristi-
cally promotes coverage of the Phoible inventory.

the features + and - are more similar than 0.
We then compute the normalized Hamming dis-

tance between every phoneme pair p1,2 with fea-
ture vectors f1,2 and feature vector length n as fol-
lows:

phon2phon(p1, p2) =
∑n

i=1 1, iff i
1 ̸= f i

2

n

5.2 Data cleaning
We now combine phon2phon distances and
Phoible phoneme inventories to map phonemes
from scraped Wikipedia IPA help tables and
Wiktionary pronunciation dictionaries to Phoible
phonemes and inventories. We describe a con-
densed version of our procedure in Algorithm 1,
and provide examples of cleaned Wiktionary out-
put in Table 4.

5.3 Phoneme mapping models
Another application of phon2phon is to transform
pronunciations in one language to another lan-
guage’s phoneme inventory. We can do this by
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lang avg phon script
English German Latin French
Hindi Gujarati Bengali Sanskrit

Vietnamese Indonesian Sindhi Polish

Table 5: Closest languages with Wikipedia ver-
sions, based on lang2lang averaged metrics, pho-
netic inventory distance, and script distance.

creating a single-state weighted finite-state trans-
ducer (wFST) W for input language inventory I
and output language inventory O:

∀pi∈I,po∈OW.add(pi, po, 1− phon2phon(pi, po))

W can then be used to map a pronunciation to
a new language; this has the interesting effect of
modeling accents by foreign-language speakers:
think in English (pronounced "θ ɪ ŋ kʰ") becomes
"s ̪ ɛ ŋ k" in German; the capital city Dhaka (pro-
nounced in Bengali with a voiced aspirated "ɖ̤") be-
comes the unaspirated "d æ kʰ æ" in English.

6 Language Distance Metric
Since we are interested in mapping high-resource
languages to low-resource related languages, an
important subtask is finding the related languages
of a given language.

The URIEL Typological Compendium (Littell
et al., 2016) is an invaluable resource for this task.
By using features from linguistic databases (in-
cluding Phoible), URIEL provides 5 distance met-
rics between languages: genetic, geographic, com-
posite (a weighted composite of genetic and ge-
ographic), syntactic, and phonetic. We extend
URIEL by adding two additional metrics, provid-
ing averaged distances over all metrics, and adding
additional information about resources. This cre-
ates lang2lang, a table which provides distances
between and information about 2,790 languages.

6.1 Phoneme inventory distance
Although URIEL provides a distance metric be-
tween languages based on Phoible features, it only
takes into account broad phonetic features, such as
whether each language has voiced plosives. This
can result in some non-intuitive results: based on
this metric, there are almost 100 languages pho-
netically equivalent to the South Asian language
Gujarati, among them Arawak and Chechen.

To provide a more fine-grained phonetic dis-
tance metric, we create a phoneme inventory dis-
tance metric using phon2phon. For each pair of

language phoneme inventories L1,2 in Phoible, we
compute the following:

d(L1, L2) =
∑

p1∈L1

min
p2∈L2

(phon2phon(p1, p2))

and normalize by dividing by
∑

i d(L1, Li).

6.2 Script distance
Although Urdu is very similar to Hindi, its dif-
ferent alphabet and writing conventions would
make it difficult to transfer an Urdu g2p model
to Hindi. A better candidate language would be
Nepali, which shares the Devanagari script, or even
Bengali, which uses a similar South Asian script.
A metric comparing the character sets used by two
languages is very useful for capturing this relation-
ship.

We first use our multilingual named entity data
to extract character sets for the 232 languages with
more than 500 NE pairs; then, we note that Uni-
code character names are similar for linguistically
related scripts. This is most notable in South Asian
scripts: for example, the Bengaliক, Gujarati ક, and
Hindi क have Unicode names BENGALI LETTER
KA, GUJARATI LETTER KA, and DEVANAGARI
LETTER KA, respectively.

We remove script, accent, and form identifiers
from the Unicode names of all characters in our
character sets, to create a set of reduced character
names used across languages. Then we create a bi-
nary feature vector f for every language, with each
feature indicating the language’s use of a reduced
character (like LETTER KA). The distance between
two languages L1,2 can then be computed with a
spatial cosine distance:

d(L1, L2) = 1− f1 · f2

∥f1∥2 ∥f2∥2

6.3 Resource information
Each entry in our lang2lang distance table also
includes the following features for the second lan-
guage: the number of named entities, whether it is
in Europarl (Koehn, 2005), whether it has its own
Wikipedia, whether it is primarily written in the
same script as the first language, whether it has an
IPA Help page, whether it is in our Wiktionary test
set, and whether it is in our Wiktionary training set.

Table 5 shows examples of the closest languages
to English, Hindi, and Vietnamese, according to
different lang2lang metrics.
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Figure 2: Training data size vs. PER for 85 mod-
els trained from Wiktionary. Labeled languages:
English (eng), Serbo-Croatian (hbs), Russian (rus),
Tagalog (tgl), and Chinese macrolanguage (zho).

7 Evaluation Metrics

The next two sections describe our high-resource
and adapted g2p models. To evaluate these models,
we compute the following metrics:

• % of words skipped: This shows the coverage
of the g2p model. Some g2p models do not
cover all character sequences. All other met-
rics are computed over non-skipped words.

• word error rate (WER): The percent of incor-
rect 1-best pronunciations.

• word error rate 100-best (WER 100): The
percent of 100-best lists without the correct
pronunciation.

• phoneme error rate (PER): The percent of er-
rors per phoneme. A PER of 15.0 indicates
that, on average, a linguist would have to edit
15 out of 100 phonemes of the output.

We then average these metrics across all lan-
guages (weighting each language equally).

8 High Resource g2p Models

We now build and evaluate g2p models for the
“high-resource” languages for which we have ei-
ther IPA Help tables or sufficient training data from
Wiktionary. Table 6 shows our evaluation of these
models on Wiktionary test data, and Table 7 shows
results for individual languages.

8.1 IPA Help models
We first use the rules scraped from Wikipedia’s
IPA Help pages to build rule-based g2p models.
We build a wFST for each language, with a path
for each rule g → p and weight w = 1/count(g).

This method prefers rules with longer grapheme
segments; for example, for the word tin, the output
"ʃ n" is preferred over the correct "tʰ ɪ n" because of
the rule ti→ʃ. We build 97 IPA Help models, but
have test data for only 91—some languages, like
Mayan, do not have any Wiktionary entries.

As shown in Table 6, these rule-based models
do not perform very well, suffering especially from
a high percentage of skipped words. This is be-
cause IPA Help tables explain phonemes’ relation-
ships to graphemes, rather than vice versa. Thus,
the English letter x is omitted, since its composite
phonemes are better explained by other letters.

8.2 Wiktionary-trained models

We next build models for the 85 languages in
our Wiktionary train data set, using the wFST-
based Phonetisaurus (Novak et al., 2011) and
MITLM (Hsu and Glass, 2008), as described by
Novak et al (2012). We use a maximum of 10k
pairs of training data, a 7-gram language model,
and 50 iterations of EM.

These data-driven models outperform IPA Help
models by a considerable amount, achieving a
WER of 44.69 and PER of 15.06 averaged across
all 85 languages. Restricting data to 2.5k or more
training examples boosts results to a WER of 28.02
and PER of 7.20, but creates models for only 29
languages.

However, in some languages good results are ob-
tained with very limited data; Figure 2 shows the
varying quality across languages and data avail-
ability.

8.3 Unioned models

We also use our rule-based IPA Help tables to im-
prove Wiktionary model performance. We accom-
plish this very simply, by prepending IPA help
rules like the German sch→ʃ to the Wiktionary
training data as word-pronunciation pairs, then
running the Phonetisaurus pipeline.

Overall, the unioned g2p models outperform
both the IPA help and Wiktionary models; how-
ever, as shown in Table 7, the effects vary across
different languages. It is unclear what effect lan-
guage characteristics, quality of IPA Help rules,
and training data size have on unioned model im-
provement.
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model # langs % skip WER WER 100 PER
ipa-help 91 21.49 78.13 59.18 35.36

wiktionary 85 4.78 44.69 23.15 15.06
unioned 85 3.98 44.17 21.97 14.70
ipa-help 56 22.95 82.61 61.57 35.51

wiktionary 56 3.52 40.28 20.30 13.06
unioned 56 2.31 39.49 18.51 12.52

Table 6: Results for high-resource models. The top portion of the table shows results for all models; the
bottom shows results only for languages with both IPA Help and Wiktionary models.

lang ben tgl tur deu
# train 114 126 2.5k 10k

ipa-help 100.0 64.8 69.0 40.2
wikt 85.6 34.2 39.0 32.5

unioned 66.2 36.2 39.0 24.5

Table 7: WER scores for Bengali, Tagalog,
Turkish, and German models. Unioned models
with IPA Help rules tend to perform better than
Wiktionary-only models, but not consistently.

9 Adapted g2p Models

Having created a set of high-resource models
and our phon2phon and lang2lang metrics, we
now explore different methods for adapting high-
resource models and data for related low-resource
languages. For comparable results, we restrict the
set of high-resource languages to those covered by
both our IPA Help and Wiktionary data.

9.1 No mapping
The simplest experiment is to run our g2p models
on related low-resource languages, without adap-
tation. For each language l in our test set, we
determine the top high-resource related languages
h1,2,... according to the lang2lang averaged met-
ric that have both IPA Help and Wiktionary data
and the same script, not including the language it-
self. For IPA Help models, we choose the 3 most
related languages h1,2,3 and build a g2p model
from their combined g-p rules. For Wiktionary
and unioned models, we compile 5k words from
the closest languages h1,2,... such that each h con-
tributes no more than one third of the data (adding
IPA Help rules for unioned models) and train a
model from the combined data.

For each test word-pronunciation pair, we triv-
ially map the word’s letters to the characters used
in h1,2,... by removing accents where necessary; we
then use the high-resource g2p model to produce

a pronunciation for the word. For example, our
Czech IPA Help model uses a model built from g-p
rules from Serbo-Croatian, Polish, and Slovenian;
the Wiktionary and unioned models use data and
rules from these languages and Latin as well.

This expands 56 g2p models (the languages cov-
ered by both IPA Help and Wiktionary models) to
models for 211 languages. However, as shown in
Table 8, results are very poor, with a very high
WER of 92% using the unioned models and a PER
of more than 50%. Interestingly, IPA Help models
perform better than the unioned models, but this is
primarily due to their high skip rate.

9.2 Output mapping

We next attempt to improve these results by creat-
ing a wFST that maps phonemes from the inven-
tories of h1,2... to l (as described in Section 5.3).
As shown in Figure 1a, by chaining this wFST to
h1,2...’s g2p model, we map the g2p model’s output
phonemes to the phonemes used by l. In each base
model type, this process considerably improves ac-
curacy over the no mapping approach; however,
the IPA Help skip rate increases (Table 8).

9.3 Training data mapping

We now build g2p models for l by creating syn-
thetic data for the Wiktionary and unioned mod-
els, as in Figure 1b. After compiling word-
pronunciation pairs and IPA Help g-p rules from
closest languages h1,2,..., we then map the pronun-
ciations to l and use the new pronunciations as
training data. We again create unioned models by
adding the related languages’ IPA Help rules to the
training data.

This method performs slightly worse in accu-
racy than output mapping, a WER of 87%, but has
a much lower skip rate of 7%.
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method base model # langs % skip WER WER 100 PER
ipa-help 211 12.46 91.57 78.96 54.84

no mapping wikt 211 8.99 93.15 80.36 57.07
unioned 211 8.54 92.38 79.26 57.21
ipa-help 211 12.68 85.45 67.07 47.94

output mapping wikt 211 15.00 86.48 66.20 46.84
unioned 211 11.72 84.82 63.63 46.25

training data mapping wikt 211 8.55 87.40 70.94 48.89
unioned 211 7.19 87.36 70.75 47.48

rescripted wikt +10 15.94 93.66 81.76 56.37
unioned +10 14.97 94.45 80.68 57.35

final wikt/unioned 229 6.77 88.04 69.80 48.01

Table 8: Results for adapted g2p models. Final adapted results (using the 85 languages covered by Wik-
tionary and unioned high-resource models, as well as rescripting) cover 229 languages.

lang method base model rel langs word gold hyp
eng no mapping ipa-help deu, nld, swe fuse f j uː z f ʏ s ɛ
arz output mapping unioned fas, urd بانجو b æː n̪ ɡ uː b a n̪ d̪ ʃ uː
afr training mapping unioned nld, lat, isl dood d ɔ t d uː t
sah training mapping unioned rus, bul, ukr хатырык k a t ̪ ɯ r ̪ ɯ k k a t ̪ i r ̪ i k
kan rescripted unioned hin, ben ದು�ಷɭ d̪ u ʂ ʈʰ a d̪̤ uː ʂ ʈʰ
guj rescripted unioned san, ben, hin ગળૠોએિશઆ k ɾ o e ç ɪ a k ɾ õː ə ʂ ɪ a

Table 9: Sample words, gold pronunciations, and hypothesis pronunciations for English, Egyptian Arabic,
Afrikaans, Yakut, Kannada, and Gujarati.

9.4 Rescripting
Adaptation methods thus far have required that h
and l share a script. However, this excludes lan-
guages with related scripts, like Hindi and Bengali.

We replicate our data mapping experiment, but
now allow related languages h1,2,... with different
scripts from l but a script distance of less than 0.2.
We then build a simple “rescripting” table based on
matching Unicode character names; we can then
map not only h’s pronunciations to l’s phoneme
set, but also h’s word to l’s script.

Although performance is relatively poor, re-
scripting adds 10 new languages, including Telugu,
Gujarati, and Marwari.

9.5 Discussion
Table 8 shows evaluation metrics for all adaptation
methods. We also show results using all 85 Wik-
tionary models (using unioned where IPA Help is
available) and rescripting, which increases the to-
tal number of languages to 229. Table 9 provides
examples of output with different languages.

In general, mapping combined with IPA Help
rules in unioned models provides the best results.

Training data mapping achieves similar scores as
output mapping as well as a lower skip rate. Word
skipping is problematic, but could be lowered by
collecting g-p rules for the low-resource language.

Although the adapted g2p models make many
individual phonetic errors, they nevertheless cap-
ture overall pronunciation conventions, without re-
quiring language-specific data or rules. Specific
points of failure include rules that do not exist in
related languages (e.g., the silent “e” at the end of
“fuse” and the conversion of "dʃ̪" to "ɡ" in Egyp-
tian Arabic), mistakes in phoneme mapping, and
overall “pronounceability” of the output.

9.6 Limitations
Although our adaptation strategies are flexible,
several limitations prevent us from building a g2p
model for any language. If there is not enough
information about the language, our lang2lang
table will not be able to provide related high-
resource languages. Additionally, if the language’s
script is not closely related to another language’s
and thus cannot be rescripted (as with Thai and Ar-
menian), we are not able to adapt related g2p data
or models.
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10 Conclusion

Using a large multilingual pronunciation dic-
tionary from Wiktionary and rule tables from
Wikipedia, we build high-resource g2p models
and show that adding g-p rules as training data
can improve g2p performance. We then lever-
age lang2lang distance metrics and phon2phon
phoneme distances to adapt g2p resources for high-
resource languages for 229 related low-resource
languages. Our experiments show that adapting
training data for low-resource languages outper-
forms adapting output. To our knowledge, these
are the most broadly multilingual g2p experiments
to date.

With this publication, we release a number of
resources to the NLP community: a large multilin-
gual Wiktionary pronunciation dictionary, scraped
Wikipedia IPA Help tables, compiled named entity
resources (including a multilingual gazetteer), and
our phon2phon and lang2lang distance tables.4

Future directions for this work include further
improving the number and quality of g2p mod-
els, as well as performing external evaluations of
the models in speech- and text-processing tasks.
We plan to use the presented data and methods for
other areas of multilingual natural language pro-
cessing.
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