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Abstract

Different from traditional active learning
based on sentence-wise full annotation
(FA), this paper proposes active
learning with dependency-wise partial
annotation (PA) as a finer-grained unit for
dependency parsing. At each iteration,
we select a few most uncertain words
from an unlabeled data pool, manually
annotate their syntactic heads, and add the
partial trees into labeled data for parser
retraining. Compared with sentence-wise
FA, dependency-wise PA gives us more
flexibility in task selection and avoids
wasting time on annotating trivial tasks
in a sentence. Our work makes the
following contributions.  First, we are
the first to apply a probabilistic model to
active learning for dependency parsing,
which can 1) provide tree probabilities
and dependency marginal probabilities
as principled uncertainty metrics, and
2) directly learn parameters from PA
based on a forest-based training objective.
Second, we propose and compare several
uncertainty metrics through simulation
experiments on both Chinese and English.
Finally, we conduct human annotation
experiments to compare FA and PA on
real annotation time and quality.

1 Introduction

During the past decade, supervised dependency
parsing has gained extensive progress in boosting
parsing performance on canonical texts, especially
on texts from domains or genres similar to exist-
ing manually labeled treebanks (Koo and Collins,
2010; Zhang and Nivre, 2011). However, the

Correspondence author.

344

7\

$o Ty sawo Sarahg withy a5 telescopeg

Figure 1: A partially annotated sentence, where
only the heads of “saw” and “with” are decided.

upsurge of web data (e.g., tweets, blogs, and
product comments) imposes great challenges to
existing parsing techniques. Meanwhile, previous
research on out-of-domain dependency parsing
gains little success (Dredze et al., 2007; Petrov
and McDonald, 2012). A more feasible way for
open-domain parsing is to manually annotate a
certain amount of texts from the target domain or
genre. Recently, several small-scale treebanks on
web texts have been built for study and evaluation
(Foster et al., 2011; Petrov and McDonald, 2012;
Kong et al., 2014; Wang et al., 2014).

Meanwhile, active learning (AL) aims to reduce
annotation effort by choosing and manually an-
notating unlabeled instances that are most valu-
able for training statistical models (Olsson, 2009).
Traditionally, AL utilizes full annotation (FA) for
parsing (Tang et al., 2002; Hwa, 2004; Lynn et al.,
2012), where a whole syntactic tree is annotated
for a given sentence at a time. However, as
commented by Mejer and Crammer (2012), the
annotation process is complex, slow, and prone
to mistakes when FA is required. Particularly,
annotators waste a lot of effort on labeling trivial
dependencies which can be well handled by cur-
rent statistical models (Flannery and Mori, 2015).

Recently, researchers report promising results
with AL based on partial annotation (PA) for de-
pendency parsing (Sassano and Kurohashi, 2010;
Mirroshandel and Nasr, 2011; Majidi and Crane,
2013; Flannery and Mori, 2015). They find
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that smaller units rather than sentences provide
more flexibility in choosing potentially informa-
tive structures to annotate.

Beyond previous work, this paper endeavors to
more thoroughly study this issue, and has made
substantial progress from the following perspec-
tives.

(1) This is the first work that applies a state-
of-the-art probabilistic parsing model to AL
for dependency parsing. The CRF-based
dependency parser on the one hand allows
us to use probabilities of trees or marginal
probabilities of single dependencies for un-
certainty measurement, and on the other hand
can directly learn parameters from partially
annotated trees. Using probabilistic models
may be ubiquitous in AL for relatively sim-
pler tasks like classification and sequence la-
beling, but is definitely novel for dependency
parsing which is dominated by linear models
with perceptron-like training.

(2) Based on the CRF-based parser, we make
systematic comparison among several uncer-
tainty metrics for both FA and PA. Simulation
experiments show that compared with using
FA, AL with PA can greatly reduce annota-
tion effort in terms of dependency number by

62.2% on Chinese and by 74.2% on English.

(3) We build a visualized annotation platform
and conduct human annotation experiments
to compare FA and PA on real annotation
time and quality, where we obtain several

interesting observations and conclusions.

All codes, along with the data from human
annotation experiments, are released at http:
//hlt.suda.edu.cn/~zhli for future re-
search study.

2 Probabilistic Dependency Parsing

Given an input sentence X = wj...wy,, the goal of
dependency parsing is to build a directed depen-
dency treed = {h ~» m : 0 < h < n1 <
m < n}, where |d| = n and h ~ m represents
a dependency from a head word h to a modifier
word m. Figure 1 depicts a partial tree containing
two dependencies.!

"In this work, we follow many previous works to focus

on unlabeled dependency parsing (constructing the skeleton
dependency structure). However, the proposed techniques
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In this work, we for the first time apply a proba-
bilistic CRF-based parsing model to AL for depen-
dency parsing. We adopt the second-order graph-
based model of McDonald and Pereira (2006),
which casts the problem as finding an optimal tree
from a fully-connect directed graph and factors the
score of a dependency tree into scores of pairs of
sibling dependencies.

d” = arg maxgcyx)Score(x,d; w)

2

(h,s,m):h~sed,
h~med

Score(x,d;w) = w - f(x,h,s,m)

(D

where s and m are adjacent siblings both modify-
ing h; f(x, h,s,m) are the corresponding feature
vector; w is the feature weight vector; Y(x) is
the set of all legal trees for x according to the
dependency grammar in hand; d* is the 1-best
parse tree which can be gained efficiently via a
dynamic programming algorithm (Eisner, 2000).
We use the state-of-the-art feature set listed in
Bohnet (2010).

Under the log-linear CRF-based model, the
probability of a dependency tree is:

eS’core(x,d;w)

Zd’e)}(x) eScore(x,d’;w)

p(dlx;w) = (2)

Ma and Zhao (2015) give a very detailed and
thorough introduction to CRFs for dependency
parsing.

2.1 Learning from FA

Under the supervised learning scenario, a labeled
training data D = {(x;,d;)}Y, is provided to
learn w. The objective is to maximize the log
likelihood of D:
L(D;w) = N 1 d;|x;; 3
(Dyw) =3 logp(dilxsw) ()
which can be solved by standard gradient descent
algorithms. In this work, we adopt stochastic gra-

dient descent (SGD) with L2-norm regularization
for all CRF-based parsing models.?

explored in this paper can be easily extended to the case of
labeled dependency parsing.

We borrow the implementation of SGD in
CRFsuite (http://www.chokkan.org/software/
crfsuite/), and use 100 sentences for a batch.



2.2 Marginal Probability of Dependencies

Marcheggiani and Artieres (2014) shows that
marginal probabilities of local labels can be
used as an effective uncertain metric for AL
for sequence labeling problems. In the case of
dependency parsing, the marginal probability of a
dependency is the sum of probabilities of all legal
trees that contain the dependency.

>

deY(x):h~med

p(h ~mlx;w) = p(d|x;w) (4)

Intuitively, marginal probability is a more princi-
pled metric for measuring reliability of a depen-
dency since it considers all legal parses in the
search space, compared to previous methods based
on scores of local classifiers (Sassano and Kuro-
hashi, 2010; Flannery and Mori, 2015) or votes
of n-best parses (Mirroshandel and Nasr, 2011).
Moreover, Li et al. (2014) find strong correlation
between marginal probability and correctness of a
dependency in cross-lingual syntax projection.

3 Active Learning for Dependency
Parsing

This work adopts the standard pool-based AL
framework (Lewis and Gale, 1994; McCallum and
Nigam, 1998). Initially, we have a small set of
labeled seed data £, and a large-scale unlabeled
data pool 4. Then the procedure works as follows.

(1) Train a new parser on the current L.

(2) Parse all sentences in U, and select a set of
the most informative tasks I/’

(3) Manually annotate: U' — L’
(4) Expand labeled data: LU L' — L

The above steps loop for many iterations until a
predefined stopping criterion is met.

The key challenge for AL is how to measure the
informativeness of structures in concern. Follow-
ing previous work on AL for dependency parsing,
we make a simplifying assumption that if the
current model is most uncertain about an output
(sub)structure, the structure is most informative in
terms of boosting model performance.

3.1 Sentence-wise FA

Sentence-wise FA selects K most uncertain sen-
tences in Step (2), and annotates their whole tree
structures in Step (3). In the following, we de-
scribe several uncertainty metrics and investigate
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their practical effects through experiments. Given
an unlabeled sentence x = wj...w,, we use d*
to denote the 1-best parse tree produced by the
current model as in Eq. (1). For brevity, we omit
the feature weight vector w in the equations.

Normalized tree score. Following previous
works that use scores of local classifiers
for uncertainty measurement (Sassano and
Kurohashi, 2010; Flannery and Mori, 2015), we
use Score(x,d*) to measure the uncertainty of x,
assuming that the model is more uncertain about
x if d* gets a smaller score. However, we find that
directly using Score(x,d*) always selects very
short sentences due to the definition in Eq. (1).
Thus we normalize the score with the sentence
length n as follows.?

_ Scorsf);,d ) 5)

Normalized tree probability. The CRF-based
parser allows us, for the first time in AL for de-
pendency parsing, to directly use tree probabilities
for uncertainty measurement. Unlike previous
approximate methods based on k-best parses (Mir-
roshandel and Nasr, 2011), tree probabilities glob-
ally consider all parse trees in the search space,
and thus are intuitively more consistent and proper
for measuring the reliability of a tree. Our initial
assumption is that the model is more uncertain
about x if d* gets a smaller probability. However,
we find that directly using p(d*|x) would select
very long sentences because the solution space
grows exponentially with sentence length. We find
that the normalization strategy below works well.*

Confi(x)

Confi(x) = V/p(d*[x) (6)

Averaged marginal probability. As discussed
in Section 2.2, the marginal probability of a de-
pendency directly reflects its reliability, and thus
can be regarded as another global measurement
besides tree probabilities.In fact, we find that the
effect of sentence length is naturally handled with
the following metric.

(X) _ thmed* ]:L(h s m‘x) (7)

3We have also tried replacing n''® with n (still prefer
short sentences) and n? (bias to long sentences).

*We have also tried p(d*|x) x f(n), where f(n) = logn
or f(n) = +/n, but both work badly.

>We have also tried {‘/Hhmmed* p(h ~ mlx), leading

Confi

to slightly inferior results.



3.2 Single Dependency-wise PA

AL with single dependency-wise PA selects M
most uncertain words from ¢/ in Step (2), and an-
notates the heads of the selected words in Step (3).
After annotation, the newly annotated sentences
with partial trees £’ are added into £. Different
from the case of sentence-wise FA, £’ are also put
back to U4, so that new tasks can be further chosen
from them.

Marcheggiani and Artieres (2014) make sys-
tematic comparison among a dozen uncertainty
metrics for AL with PA for several sequence
labeling tasks. We borrow three effective metrics
according to their results.

Marginal probability max. Suppose h"
arg maxy p(h ~ i|x) is the most likely head for
i. The intuition is that the lower p(h" ~ i) is, the
more uncertain the model is on deciding the head
of the token 1.

Confi(x,i) = p(h® ~ i|x) (8)

Marginal probability gap. Suppose h! =
arg maxj, 20 p(h M i|x) is the second most likely
head for ¢. The intuition is that the smaller the
probability gap is, the more uncertain the model is

about i.

Confi(x,i) = p(h® ~ i|x) — p(h! ~ i|x) (9)

Marginal probability entropy. This metric
considers the entropy of all possible heads for .
The assumption is that the smaller the negative
entropy is, the more uncertain the model is about
1.

Confi(x,i) = Zp(h ~ i|x) log p(h ~ i|x)
' (10)

3.3 Batch Dependency-wise PA

In the framework of single dependency-wise PA,
we assume that the selection and annotation of
dependencies in the same sentence are strictly
independent. In other words, annotators may be
asked to annotate the head of one selected word af-
ter reading and understanding a whole (sometimes
partial) sentence, and may be asked to annotate
another selected word in the same sentence in next
AL iteration. Obviously, frequently switching
sentences incurs great waste of cognitive effort,
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Figure 2: An example parse forest converted from
the partial tree in Figure 1.

and annotating one dependency can certainly help
decide another dependency in practice.

Inspired by the work of Flannery and Mori
(2015), we propose AL with batch dependency-
wise PA, which is a compromise between
sentence-wise FA and single dependency-wise
PA. In Step 2, AL with batch dependency-wise
PA selects K most uncertain sentences from U,
and also determines 7% most uncertain words
from each sentence at the same time. In Step
3, annotators are asked to label the heads of
the selected words in the selected sentences.
We propose and experiment with the following
three strategies based on experimental results of
sentence-wise FA and single dependency-wise
PA.

Averaged marginal probability & gap.
First, select K sentences from {/ using averaged
marginal probability. Second, select % words
using marginal probability gap for each selected
sentence.

Marginal probability gap. First, for each
sentence in U, select % most uncertain words
according to marginal probability gap. Second,
select K sentences from U using the averaged
marginal probability gap of the selected »% words
in a sentence as the uncertainty metric.

Averaged marginal probability. This strategy
is the same with the above strategy, except it
measures the uncertainty of a word 7 according
to the marginal probability of the dependency
pointing to ¢ in d*, i.e., p(j ~ i|x), where j ~
1 e d”.

3.4 Learning from PA

A major challenge for AL with PA is how to learn
from partially labeled sentences, as depicted in
Figure 1. Li et al. (2014) show that a probabilistic
CRF-based parser can naturally and effectively
learn from PA. The basic idea is converting a
partial tree into a forest as shown in Figure 2,



and using the forest as the gold-standard reference
during training, also known as ambiguous labeling
(Riezler et al., 2002; Tackstrom et al., 2013).

For each remaining word without head, we
add all dependencies linking to it as long as the
new dependency does not violate the existing
dependencies. We denote the resulting forest as
Fj, whose probability is naturally the sum of
probabilities of each tree d in F.

p(Flxiw) = p(d]x; w)
deF

Score(x,d;w)
2dcF©

- Zd’e)}(x) eScore(x,d’;w)

(11)

Suppose the partially labeled training data is
D = {(x;,F;)}Y,. Then its log likelihood is:

N
LD;w) =) logp(Filxizw)  (12)
Téckstrom et al. (2013) show that the partial
derivative of the £(D; w) with regard to w (a.k.a
the gradient) in both Equation (3) and (12) can be
efficiently solved with the classic Inside-Outside
algorithm.5

4 Simulation Experiments

We use Chinese Penn Treebank 5.1 (CTB) for
Chinese and Penn Treebank (PTB) for English.
For both datasets, we follow the standard data
split, and convert original bracketed structures into
dependency structures using Penn2Malt with its
default head-finding rules. To be more realis-
tic, we use automatic part-of-speech (POS) tags
produced by a state-of-the-art CRF-based tagger
(94.1% on CTB-test, and 97.2% on PTB-test, n-
fold jackknifing on training data), since POS tags
encode much syntactic annotation. Because AL
experiments need to train many parsing models,
we throw out all training sentences longer than 50
to speed up our experiments. Table 1 shows the
data statistics.

Following previous practice on AL with PA
(Sassano and Kurohashi, 2010; Flannery and
Mori, 2015), we adopt the following AL settings
for both Chinese and English . The first 500
training sentences are used as the seed labeled
data L. In the case of FA, K = 500 new sentences

®This work focuses on projective dependency parsing.
Please refer to Koo et al. (2007), McDonald and Satta (2007),

and Smith and Smith (2007) for building a probabilistic non-
projective parser.
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Train Dev Test

. #Sentences 14,304 803 1,910
Chinese

#Tokens 318,408 | 20,454 | 50,319

. #Sentences 39,115 1,700 | 2,416
English

#Tokens 908,154 | 40,117 | 56,684

Table 1: Data statistics.

are selected and annotated at each iteration. In
the case of single dependency-wise PA, we select
and annotate M = 10,000 dependencies, which
roughly correspond to 500 sentences considering
that the averaged sentence length is about 22.3 in
CTB-train and 23.2 in PTB-train. In the case of
batch dependency-wise PA, we set K = 500, and
r = 20% for Chinese and r = 10% for English,
considering that the parser trained on all data
achieves about 80% and 90% accuracies.

We measure parsing performance using the
standard unlabeled attachment score (UAS)
including punctuation marks. Please note that we
always treat punctuation marks as ordinary words
when selecting annotation tasks and calculating
UAS, in order to make fair comparison between
FA and PA.7

4.1 FA vs. Single Dependency-wise PA

First, we make comparison on the performance of
AL with FA and with single dependency-wise PA.

Results on Chinese are shown in Figure 3.
Following previous work, we use the number of
annotated dependencies (x-axis) as the annotation
cost in order to fairly compare FA and PA. We use
FA with random selection as a baseline. We also
draw the accuracy of the CRF-based parser trained
on all training data, which can be regarded as the
upper bound.

For FA, the curve of the normalized tree score
intertwines with that of random selection. Mean-
while, the performance of normalized tree prob-
ability is very close to that of averaged marginal
probability, and both are clearly superior to the
baseline with random selection.

For PA, the difference among the three uncer-
tainty metrics is small. The marginal probability
gap clearly outperforms the other two metrics be-
fore 50, 000 annotated dependencies, and remains

7 Alternatively, we can exclude punctuation marks for task
selection in AL with PA. Then, to be fair, we have to discard
all dependencies pointing to punctuation marks in the case of
FA. This makes the experiment setting more complicated.
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Figure 3: FA vs. PA on CTB-dev.
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Figure 4: FA vs. PA on PTB-dev.

very competitive at all other points. The marginal
probability max achieves best peak UAS, and even
outperforms the parser trained on all data, which
can be explained by small disturbance during
complex model training. The marginal probability
entropy, although being the most complex metric
among the three, seems inferior all the time.

It is clear that using PA can greatly reduce
annotation effort compared with using FA in terms
of annotated dependencies.

Results on English are shown in Figure 4. The
overall findings are similar to those in Figure 3, ex-
cept that the distinction among different methods
is more clear. For FA, normalized tree score
is consistently better than the random baseline.
Normalized tree probability always outperforms
normalized tree score. Averaged marginal proba-
bility performs best, except being slightly inferior
to normalized tree probability in earlier stages.

For PA, it is consistent that marginal probability
gap is better than marginal probability max, and
marginal probability entropy is the worst.

In summary, based on the results on the de-
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Figure 5: Single vs. batch dependency-wise PA on
CTB-dev.
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Figure 6: Single vs. batch dependency-wise PA on
PTB-dev.

velopment data in Figure 3 and 4, the best AL
method with PA only needs about 38108?008 = 25%
annotated dependencies on Chinese, and about
% = 10% on English, to reach the same per-
formance with parsers trained on all data. More-
over, the PA methods converges much faster than
the FA ones, since for the same x-axis number,
much more sentences (with partial trees) are used

as training data for AL with PA than FA.

4.2 Single vs. Batch Dependency-wise PA

Then we make comparison on AL with single
dependency-wise PA and with the more practical
batch dependency-wise PA.

Results on Chinese are shown in Figure 5. We
can see that the three strategies achieve very sim-
ilar performance and are also very close to single
dependency-wise PA. AL with batch dependency-
wise PA even achieves higher accuracy before
20, 000 annotated dependencies, which should be
caused by the smaller active learning steps (about



2,000 dependencies at each iteration, contrasting
10, 000 for single dependency-wise PA). When the
training data runs out at about 7,300 dependen-
cies, AL with batch dependency-wise PA only lags
behind with single dependency-wise PA by about
0.3%, which we suppose can be reduced if larger
training data is available.

Results on English are shown in Figure 6,
and are very similar to those on Chinese. One
tiny difference is that the marginal probability
gap is slightly worse that the other two metrics.
The three uncertainty metrics have very similar
accuracy curves, which are also very close to the
curve of single dependency-wise PA. In addition,
we also try r 20% and find that results are
inferior to r = 10%, indicating that the extra 10%
annotation tasks are less valuable and contributive.

4.3 Main Results on Test Data

Table 2 shows the results on test data. We compare
our CRF-based parser with ZPar v6.0%, a state-of-
the-art transition-based dependency parser (Zhang
and Nivre, 2011). We train ZPar with default
parameter settings for 50 iterations, and choose
the model that performs best on dev data. We
can see that when trained on all data, our CRF-
based parser outperforms ZPar on both Chinese
and English.

To compare FA and PA, we report the number
of annotated dependencies needed under each AL
strategy to achieve an accuracy lower by about 1%
than the parser trained on all data.”

FA (best) refers to FA with averaged marginal
probability, and it needs 12712311051 — 90.3%
less annotated dependencies than FA with ran-
dom selection on Chinese, and W =
50.0% less on English. 7

PA (single) with marginal probability gap
needs W 65.8% less annotated
dependencies than FA (best) on Chinese, and
%’BS;’MS = 69.0% less on English.

PA (batch) with marginal probability gap needs
slightly more annotation than PA (single) on Chi-
nese but slightly less annotation on English, and
can reduce the amount of annotated dependencies

by g ger " = 62.2% over FA (best) on Chi-

8http ://people.sutd.edu.sg/~yue_zhang/doc/

°The gap 1% is chosen based on the curves on
development data (Figure 3 and 4) with the following two
considerations: 1) larger gap may lead to wrong impression
that AL is weak; 2) smaller gap (e.g., 0.5%) cannot be
reached for the worst AL method (FA: random).
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Chinese English

#Dep labeled | UAS | #Dep labeled | UAS
ZPar 318,408 | 77.97 908,154 | 91.45
This parser 318,408 | 78.36 908,154 | 91.66
FA (random) 187,123 | 77.43 395,199 | 90.67
FA (best) 149,051 | 77.32 197,907 | 90.66
PA (single) 50,958 | 77.22 61,448 | 90.72
PA (batch) 56,389 | 77.38 51,016 | 90.70

Table 2: Results on test data.

197,907-51,016

ot = 74.2% on English.

nese and by

5 Human Annotation Experiments

So far, we measure annotation effort in terms
of the number of annotated dependencies and
assume that it takes the same amount of time
to annotate different words, which is obviously
unrealistic. To understand whether active learning
based on PA can really reduce annotation time
over based on FA in practice, we build a web
browser based annotation system,' and conduct
human annotation experiments on Chinese.

In this part, we use CTB 7.0 which is a newer
and larger version and covers more genres, and
adopt the newly proposed Stanford dependencies
(de Marneffe and Manning, 2008; Chang et al.,
2009) which are more understandable for anno-
tators.!!  Since manual syntactic annotation is
very difficult and time-consuming, we only keep
sentences with length [10,20] in order to better
measure annotation time by focusing on sentences
of reasonable length, which leave us 12, 912 train-
ing sentences under the official data split. Then,
we use a random half of training sentences to
train a CRF-based parser, and select 20% most
uncertain words with marginal probability gap for
each sentence of the left half.

We employ 6 postgraduate students as our an-
notators who are at different levels of familiarity
in syntactic annotation. Before annotation, the
annotators are trained for about two hours by
introducing the basic concepts, guidelines, and il-
lustrating examples. Then, they are asked to prac-
tice on the annotation system for about another
two hours. Finally, all annotators are required to

Ohttp://hlt-service.suda.edu.cn/
syn—dep—-batch. Please try.

""We use Stanford Parser 3.4 (2014-06-16) for constituent-
to-dependency structure conversion.



Time: Sec/Dep Annotation accuracy

FA PA | FA (on 20%) PA (diff)
Annotator #1 | 4.0 7.9 | 84.65 (73.41) | 75.28 (+1.87)
Annotator #2 | 7.5 16.078.90 (72.22) | 62.18 (-10.04)
Annotator #3 | 10.0 22.2169.75 (59.77) | 56.91 (-2.86)
Annotator #4 | 5.1 8.7166.75 (49.19) | 61.77 (+12.58)
Annotator #5 | 7.0 17.3 165.47 (48.50) | 48.39 (-0.11)
Annotator #6 | 7.0 10.6 | 58.05 (43.28) | 48.37 (+5.09)
Overall 6.7 13.670.36 (57.28) | 59.06 (+1.78)

Table 3: Statistics of human annotation.

formally annotate the same 100 sentences. The
system is programed that each sentence has 3
FA submissions and 3 PA submissions. During
formal annotation, the annotators are not allowed
to discuss with each other or look up any guide-
line or documents, which may incur unnecessary
inaccuracy in timing. Instead, the annotators
can only decide the syntactic structures based on
the basic knowledge of dependency grammar and
one’s understanding of the sentence structure. The
annotation process lasts for about 5 hours. On
average, each annotator completes 50 sentences
with FA (763 dependencies) and 50 sentences with
PA (178 dependencies).

Table 3 lists the results in descending order of
an annotator’s experience in syntactic annotation.
The first two columns compare the time needed for
annotating a dependency in seconds. On average,
annotating a dependency in PA takes about twice
as much time as in FA, which is reasonable con-
sidering the words to be annotated in PA may be
more difficult for annotators while the annotation
of some tasks in FA may be very trivial and easy.
Combined with the results in Table 2, we may infer
that to achieve 77.3% accuracy on CTB-test, AL
with FA requires 149,051 x 6.7 = 998,641.7
seconds of annotation, whereas AL with batch
dependency-wise PA needs 56,389 x 13.6 =
766, 890.4 seconds. Thus, we may roughly say
that AL with PA can reduce annotation time over

998,641.7—766,890.4 __
FA by 9986117 = 23.2%. '

We also report annotation accuracy according
to the gold-standard Stanford dependencies con-
verted from bracketed structures.!? Overall, the

accuracy of FA is 70.36 — 59.06 = 11.30% higher

2An anonymous reviewer commented that the direct
comparison between an annotator’s performance on PA and
FA based on accuracy may be misleading since the FA and
PA sentences for one annotator are mutually exclusive.
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than that of PA, which should be due to the trivial
tasks in FA. To be more fair, we compare the
accuracies of FA and PA on the same 20% selected
difficult words, and find that annotators exhibit
different responses to the switch. Annotator #4
achieve 12.58% higher accuracy when under PA
than under FA. The reason may be that under PA,
annotators can be more focused and therefore per-
form better on the few selected tasks. In contrast,
some annotators may perform better under FA.
For example, annotation accuracy of annotator #2
increases by 10.04% when switching from PA to
FA, which may be due to that FA allows annotators
to spend more time on the same sentence and gain
help from annotating easier tasks. Overall, we find
that the accuracy of PA is 59.06 — 57.28 = 1.78%
higher than that of FA, indicating that PA actually
can improve annotation quality.

6 Related Work

Recently, AL with PA attracts much attention in
sentence-wise natural language processing such
as sequence labeling and parsing. For sequence
labeling, Marcheggiani and Artieres (2014) sys-
tematically compare a dozen uncertainty metrics
in token-wise AL with PA (without comparison
with FA), whereas Settles and Craven (2008) in-
vestigate different uncertainty metrics in AL with
FA. Li et al. (2012) propose to only annotate the
most uncertain word boundaries in a sentence for
Chinese word segmentation and show promising
results on both simulation and human annotation
experiments. All above works are based on CRFs
and make extensive use of sequence probabilities
and token marginal probability.

In parsing community, Sassano and Kurohashi
(2010) select bunsetsu (similar to phrases) pairs
with smallest scores from a local classifier, and
let annotators decide whether the pair composes
a dependency. They convert partially annotated
instances into local dependency/non-dependency
classification instances to help a simple shift-
reduce parser. Mirroshandel and Nasr (2011)
select most uncertain words based on votes of n-
best parsers, and convert partial trees into full trees
by letting a baseline parser perform constrained
decoding in order to preserve partial annotation.
Under a different query-by-committee AL frame-
work, Majidi and Crane (2013) select most uncer-
tain words using a committee of diverse parsers,
and convert partial trees into full trees by letting



the parsers of committee to decide the heads of
remaining tokens. Based on a first-order (point-
wise) Japanese parser, Flannery and Mori (2015)
use scores of a local classifier for task selection,
and treat PA as dependency/non-dependency in-
stances (Flannery et al., 2011). Different from
above works, this work adopts a state-of-the-art
probabilistic dependency parser, uses more prin-
cipled tree probabilities and dependency marginal
probabilities for uncertainty measurement, and
learns from PA based on a forest-based training
objective which is more theoretically sound.

Most previous works on AL with PA only con-
duct simulation experiments. Flannery and Mori
(2015) perform human annotation to measure true
annotation time. A single annotator is employed
to annotate for two hours alternating FA and PA
(33% batch) every fifteen minutes. Beyond their
initial expectation, they find that the annotation
time per dependency is nearly the same for FA and
PA (different from our findings) and gives a few
interesting explanations.

Under a non-AL framework, Mejer and Cram-
mer (2012) propose an interesting light feedback
scheme for dependency parsing by letting annota-
tors decide the better one from top-2 parse trees
produced by the current parsing model.

Hwa (1999) pioneers the idea of using PA
to reduce manual labeling effort for constituent
grammar induction. She uses a variant Inside-
Outside re-estimation algorithm (Pereira and Sch-
abes, 1992) to induce a grammar from PA. Clark
and Curran (2006) propose to train a Combina-
torial Categorial Grammar parser using partially
labeled data only containing predicate-argument
dependencies. Tsuboi et al. (2008) extend CRF-
based sequence labeling models to learn from
incomplete annotations, which is the same with
Marcheggiani and Artieres (2014). Li et al. (2014)
propose a CRF-based dependency parser that can
learn from partial tree projected from source-
language structures in the cross-lingual parsing
scenario. Mielens et al. (2015) propose to impute
missing dependencies based on Gibbs sampling in
order to enable traditional parsers to learn from
partial trees.

7 Conclusions

This paper for the first time applies a state-of-
the-art probabilistic model to AL with PA for
dependency parsing. It is shown that the CRF-
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based parser can on the one hand provide tree
probabilities and dependency marginal probabili-
ties as principled uncertainty metrics and on the
other hand elegantly learn from partially annotated
data. We have proposed and compared several un-
certainty metrics through simulation experiments,
and show that AL with PA can greatly reduce
the amount of annotated dependencies by 62.2%
on Chinese 74.2% on English. Finally, we con-
duct human annotation experiments on Chinese to
compare PA and FA on real annotation time and
quality. We find that annotating a dependency in
PA takes about 2 times long as in FA. This sug-
gests that AL with PA can reduce annotation time
by 23.2% over with FA on Chinese. Moreover,
the results also indicate that annotators tend to
perform better under PA than FA.

For future work, we would like to advance this
study in the following directions. The first idea is
to combine uncertainty and representativeness for
measuring informativeness of annotation targets in
concern. Intuitively, it would be more profitable
to annotate instances that are both difficult for
the current model and representative in capturing
common language phenomena. Second, we so far
assume that the selected tasks are equally difficult
and take the same amount of effort for human
annotators. However, it is more reasonable that
human are good at resolving some ambiguities but
bad at others. Our plan is to study which syntactic
structures are more suitable for human annotation,
and balance informativeness of a candidate task
and its suitability for human annotation. Finally,
one anonymous reviewer comments that we may
use automatically projected trees (Rasooli and
Collins, 2015; Guo et al., 2015; Ma and Xia, 2014)
as the initial seed labeled data, which is cheap and
interesting.
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