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Abstract

Natural language understanding often re-
quires deep semantic knowledge. Ex-
panding on previous proposals, we suggest
that some important aspects of semantic
knowledge can be modeled as a language
model if done at an appropriate level of ab-
straction. We develop two distinct mod-
els that capture semantic frame chains
and discourse information while abstract-
ing over the specific mentions of predi-
cates and entities. For each model, we in-
vestigate four implementations: a ‘“‘stan-
dard” N-gram language model and three
discriminatively trained “neural” language
models that generate embeddings for se-
mantic frames. The quality of the se-
mantic language models (SemLM) is eval-
uated both intrinsically, using perplexity
and a narrative cloze test and extrinsically
— we show that our SemLLM helps improve
performance on semantic natural language
processing tasks such as co-reference res-
olution and discourse parsing.

1 Introduction

Natural language understanding often necessitates
deep semantic knowledge. This knowledge needs
to be captured at multiple levels, from words
to phrases, to sentences, to larger units of dis-
course. At each level, capturing meaning fre-
quently requires context sensitive abstraction and
disambiguation, as shown in the following exam-
ple (Winograd, 1972):

Ex.1 [Kevin] was robbed by [Robert]. [He] was

arrested by the police.

Ex.2 [Kevin] was robbed by [Robert]. [He] was

rescued by the police.

In both cases, one needs to resolve the pronoun
“he” to either “Robert” or “Kevin”. To make
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the correct decisions, one needs to know that the
subject of “rob” is more likely than the object
of “rob” to be the object of “arrest” while the
object of “rob” is more likely to be the object of
“rescue”. Thus, beyond understanding individual
predicates (e.g., at the semantic role labeling
level), there is a need to place them and their
arguments in a global context.

However, just modeling semantic frames is not
sufficient; consider a variation of Ex.1:

Ex.3 Kevin was robbed by Robert, but the police
mistakenly arrested him.

In this case, “him” should refer to “Kevin” as
the discourse marker “but” reverses the meaning,
illustrating that it is necessary to take discourse
markers into account when modeling semantics.

In this paper we propose that these aspects of
semantic knowledge can be modeled as a Seman-
tic Language Model (SemLLM). Just like the “stan-
dard” syntactic language models (LM), we de-
fine a basic vocabulary, a finite representation lan-
guage, and a prediction task, which allows us to
model the distribution over the occurrence of el-
ements in the vocabulary as a function of their
(well-defined) context. In difference from syn-
tactic LMs, we represent natural language at a
higher level of semantic abstraction, thus facilitat-
ing modeling deep semantic knowledge.

We propose two distinct discourse driven lan-
guage models to capture semantics. In our first se-
mantic language model, the Frame-Chain SemLM,
we model all semantic frames and discourse mark-
ers in the text. Each document is viewed as a sin-
gle chain of semantic frames and discourse mark-
ers. Moreover, while the vocabulary of discourse
markers is rather small, the number of different
surface form semantic frames that could appear in
the text is very large. To achieve a better level of
abstraction, we disambiguate semantic frames and
map them to their PropBank/FrameNet represen-
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tation. Thus, in Ex.3, the resulting frame chain
is “rob.01 — but — arrest.01” (“01” indicates the
predicate sense).

Our second semantic language model is called
Entity-Centered SemLM. Here, we model a se-
quence of semantic frames and discourse mark-
ers involved in a specific co-reference chain. For
each co-reference chain in a document, we first
extract semantic frames corresponding to each
co-referent mention, disambiguate them as be-
fore, and then determine the discourse markers
between these frames. Thus, each unique frame
contains both the disambiguated predicate and the
argument label of the mention. In Ex.3, the re-
sulting sequence is “rob.0l#obj — but — ar-
rest.01#obj” (here “obj” indicates the argument la-
bel for “Kevin” and “him” respectively). While
these two models capture somewhat different se-
mantic knowledge, we argue later in the paper that
both models can be induced at high quality, and
that they are suitable for different NLP tasks.

For both models of SemLM, we study four
language model implementations: N-gram, skip-
gram (Mikolov et al., 2013b), continuous bag-
of-words (Mikolov et al., 2013a) and log-bilinear
language model (Mnih and Hinton, 2007). Each
model defines its own prediction task. In total, we
produce eight different SemLMs. Except for N-
gram model, others yield embeddings for semantic
frames as they are neural language models.

In our empirical study, we evaluate both the
quality of all SemL.Ms and their application to co-
reference resolution and shallow discourse parsing
tasks. Following the traditional evaluation stan-
dard of language models, we first use perplexity
as our metric. We also follow the script learning
literature (Chambers and Jurafsky, 2008b; Cham-
bers and Jurafsky, 2009; Rudinger et al., 2015) and
evaluate on the narrative cloze test, i.e. randomly
removing a token from a sequence and test the sys-
tem’s ability to recover it. We conduct both eval-
uations on two test sets: a hold-out dataset from
the New York Times Corpus and gold sequence
data (for frame-chain SemLMs, we use Prop-
Bank (Kingsbury and Palmer, 2002); for entity-
centered SemL.Ms, we use Ontonotes (Hovy et
al., 2006) ). By comparing the results on these
test sets, we show that we do not incur noticeable
degradation when building SemLMs using prepro-
cessing tools. Moreover, we show that SemL.Ms
improves the performance of co-reference resolu-

291

tion, as well as that of predicting the sense of dis-
course connectives for both explicit and implicit
ones.

The main contributions of our work can be
summarized as follows: 1) The design of two
novel discourse driven Semantic Language mod-
els, building on text abstraction and neural em-
beddings; 2) The implementation of high quality
SemLMs that are shown to improve state-of-the-
art NLP systems.

2 Related Work

Our work is related to script learning. Early
works (Schank and Abelson, 1977; Mooney
and Delong, 1985) tried to construct knowledge
bases from documents to learn scripts. Recent
work focused on utilizing statistical models to
extract high-quality scripts from large amounts
of data (Chambers and Jurafsky, 2008a; Bejan,
2008; Jans et al., 2012; Pichotta and Mooney,
2014; Granroth-Wilding et al., 2015; Pichotta and
Mooney, 2016). Other works aimed at learning
a collection of structured events (Chambers, 2013;
Cheung et al., 2013; Cheung et al., 2013; Balasub-
ramanian et al., 2013; Bamman and Smith, 2014;
Nguyen et al., 2015), and several works have
employed neural embeddings (Modi and Titov,
2014b; Modi and Titov, 2014a; Frermann et al.,
2014; Titov and Khoddam, 2015).

In our work, the semantic sequences in the
entity-centered SemLMs are similar to narrative
schemas (Chambers and Jurafsky, 2009). How-
ever, we differ from them in the following aspects:
1) script learning does not generate a probabilis-
tic model on semantic frames'; 2) script learning
models semantic frame sequences incompletely as
they do not consider discourse information; 3)
works in script learning rarely show applications
to real NLP tasks.

Some prior works have used scripts-related
ideas to help improve NLP tasks (Irwin et al.,
2011; Rahman and Ng, 2011; Peng et al., 2015b).
However, since they use explicit script schemas
either as features or constraints, these works suf-
fer from data sparsity problems. In our work, the
SemLM abstract vocabulary ensures a good cov-
erage of frame semantics.

'Some works may utilize a certain probabilistic frame-
work, but they mainly focus on generating high-quality
frames by filtering.



Table 1: Comparison of vocabularies between
frame-chain (FC) and entity-centered (EC)
SemL.Ms. “F-Sen” stands for frames with pred-
icate sense information while “F-Arg” stands
for frames with argument role label information;
“Conn” means discourse marker and “Per” means
period. “Seq/Doc” represents the number of se-
quence per document.

F-Sen | F-Arg | Conn | Per | Seq/Doc
FC | YES NO | YES | YES | Single
EC | YES | YES | YES | NO | Multiple

3 Two Models for SemLLM

In this section, we describe how we capture se-
quential semantic information consisted of seman-
tic frames and discourse markers as semantic units
(i.e. the vocabulary).

3.1 Semantic Frames and Discourse Markers

Semantic Frames A semantic frame is composed
of a predicate and its corresponding argument par-
ticipants. Here we require the predicate to be dis-
ambiguated to a specific sense, and we need a cer-
tain level of abstraction of arguments so that we
can assign abstract labels. The design of Prop-
Bank frames (Kingsbury and Palmer, 2002) and
FrameNet frames (Baker et al., 1998) perfectly fits
our needs. They both have a limited set of frames
(in the scale of thousands) and each frame can be
uniquely represented by its predicate sense. These
frames provide a good level of generalization as
each frame can be instantiated into various surface
forms in natural texts. We use these frames as part
of our vocabulary for SemLLMs. Formally, we use
the notation f to represent a frame. Also, we de-
note fa = f# Arg when referring to an argument
role label (Arg) inside a frame (f).

Discourse Markers We use discourse markers
(connectives) to model discourse relationships be-
tween frames. There is only a limited number of
unique discourse markers, such as and, but, how-
ever, etc. We get the full list from the Penn Dis-
course Treebank (Prasad et al., 2008) and include
them as part of our vocabulary for SemLLMs. For-
mally, we use dis to denote the discourse marker.
Note that discourse relationships can exist with-
out an explicit discourse marker, which is also a
challenge for discourse parsing. Since we cannot
reliably identify implicit discourse relationships,
we only consider explicit ones here. More impor-
tantly, discourse markers are associated with ar-
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guments (Wellner and Pustejovsky, 2007) in text
(usually two sentences/clauses, sometimes one).
We only add a discourse marker in the semantic
sequence when its corresponding arguments con-
tain semantic frames which belong to the same se-
mantic sequence. We call them frame-related dis-
course markers. Details on generating semantic
frames and discourse markers to form semantic se-
quences are discussed in Sec. 5.

3.2 Frame-Chain SemLM

For frame-chain SemLLM, we model all seman-
tic frames and discourse markers in a document.
We form the semantic sequence by first includ-
ing all semantic frames in the order they appear
in the text: [f1,fo,f3,...]. Then we add frame-
related discourse markers into the sequence by
placing them in their order of appearance. Thus
we get a sequence like [fy,disy, fo, f3,diso, .. .].
Note that discourse markers do not necessarily
exist between all semantic frames. Additionally,
we treat the period symbol as a special discourse
marker, denoted by “0”. As some sentences con-
tain more than one semantic frame (situations like
clauses), we get the final semantic sequence like
this:
[fl, diSl, f2, o, fg, 0, diSQ, ey O]

3.3 Entity-Centered SemLM

We generate semantic sequences according to
co-reference chains for entity-centered SemLM.
From co-reference resolution, we can get a se-
quence like [m;, mg, ms, . . .|, where mentions ap-
pear in the order they occur in the text. Each
mention can be matched to an argument inside a
semantic frame. Thus, we replace each mention
with its argument label inside a semantic frame,
and get [fa;, fag, fas,...]. We then add discourse
markers exactly in they way we do for frame-chain
SemLM, and get the following sequence:

[fal, disl, faz, fag, diSQ, .. ]

The comparison of vocabularies between
frame-chain and entity-centered SemLLMs is sum-
marized in Table 1.

4 Implementations of SemLLM

In this work, we experiment with four language
model implementations: N-gram (NG), Skip-
Gram (SG), Continuous Bag-of-Words (CBOW)
and Log-bilinear (LB) language model. For ease



of explanation, we assume that a semantic unit se-
quence is s = [wy, wa, w3, . .., Wk|.
4.1 N-gram Model

For an n-gram model, we predict each token based
on its n — 1 previous tokens, i.e. we directly model
the following conditional probability (in practice,
we choose n = 3, Tri-gram (TRI) ):

p(wip2|we, wetr).
Then, the probability of the sequence is

k—2
p(s) = p(w1)p(wz|w) H P(wiya|we, wig1).
t=1

To compute p(ws|wy) and p(w;), we need to
back off from Tri-gram to Bi-gram and Uni-gram.
4.2 Skip-Gram Model

The SG model was proposed in Mikolov et al.
(2013b). It uses a token to predict its context, i.e.
we model the following conditional probability:

p(c € c(wy)|we, 9).

Here, c(w;) is the context for w; and 6 denotes the
learned parameters which include neural network
states and embeddings. Then the probability of the
sequence is computed as

k
H H p(clwy, 0).

t=1 cec(wy)

4.3 Continuous Bag-of-Words Model

In contrast to skip-gram, CBOW (Mikolov et al.,
2013a) uses context to predict each token, i.e. we
model the following conditional probability:

p(wile(wt), ).
In this case, the probability of the sequence is

k

[ p(wile(w), 0).
t=1
4.4 Log-bilinear Model

LB was introduced in Mnih and Hinton (2007).
Similar to CBOW, it also uses context to predict
each token. However, LB associates a token with
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three components instead of just one vector: a tar-
get vector v(w), a context vector v’(w) and a bias
b(w). So, the conditional probability becomes:

exp(v(we)Tu(c(wy)) + b(wy))

Plurdeltn)) = 53 oy exp(ofu)Tute(w) + b))

Here, V denotes the vocabulary and we define

u(c(wr)) = eiectr) @ © v'(ci). Note that ©

represents element-wise multiplication and g; is a

vector that depends only on the position of a token

in the context, which is a also a model parameter.
So, the overall sequence probability is

k

[ p(wile(w).

t=1
5 Building SemLLMs from Scratch

In this section, we explain how we build SemLLMs
from un-annotated plain text.

5.1 Dataset and Preprocessing

Dataset We use the New York Times Corpus’
(from year 1987 to 2007) for training. It contains
a bit more than 1.8M documents in total.
Preprocessing We pre-process all documents with
semantic role labeling (Punyakanok et al., 2004)
and part-of-speech tagger (Roth and Zelenko,
1998). We also implement the explicit dis-
course connective identification module in shal-
low discourse parsing (Song et al., 2015). Ad-
ditionally, we utilize within document entity co-
reference (Peng et al., 2015a) to produce co-
reference chains. To obtain all annotations, we
employ the Illinois NLP tools?>.

5.2 Semantic Unit Generation

FrameNet Mapping We first directly derive se-
mantic frames from semantic role labeling anno-
tations. As the Illinois SRL package is built upon
PropBank frames, we do a mapping to FrameNet
frames via VerbNet senses (Schuler, 2005), thus
achieving a higher level of abstraction. The map-
ping file* defines deterministic mappings. How-
ever, the mapping is not complete and there are
remaining PropBank frames. Thus, the generated
vocabulary for SemLMs contains both PropBank
and FrameNet frames. For example, “place” and

Zhttps://catalog.ldc.upenn.edu/LDC2008T19
3http://cogcomp.cs.illinois.edu/page/software/
*http://verbs.colorado.edu/verb-index/fn/vn-fn.xml



“put” with the VerbNet sense id “9.1-2” are con-
verted to the same FrameNet frame “Placing”.

Augmenting to Verb Phrases We apply three
heuristic modifications to augment semantic
frames defined in Sec. 3.1: 1) if a preposition
immediately follows a predicate, we append the
preposition to the predicate e.g. “take over”; 2)
if we encounter the semantic role label AM-PRD
which indicates a secondary predicate, we also ap-
pend this secondary predicate to the main predi-
cate e.g. “be happy”’; 3) if we see the semantic role
label AM-NEG which indicates negation, we ap-
pend “not” to the predicate e.g. “not like”. These
three augmentations can co-exist and they allow us
to model more fine-grained semantic frames.

Verb Compounds We have observed that if two
predicates appear very close to each other, e.g.
“eat and drink”, “decide to buy”, they actually rep-
resent a unified semantic meaning. Thus, we con-
struct compound verbs to connect them together.
We apply the rule that if the gap between two pred-
icates is less than two tokens, we treat them as
a unified semantic frame defined by the conjunc-
tion of the two (augmented) semantic frames, e.g.
“eat.01-drink.01” and “decide.01-buy.01”.

Argument Labels for Co-referent Mentions To
get the argument role label information for co-
referent mentions, we need to match each mention
to its corresponding semantic role labeling argu-
ment. If a mention head is inside an argument, we
regard it as a match. We do not consider singleton
mentions.

Vocabulary Construction After generating all se-
mantic units for (augmented and compounded) se-
mantic frames and discourse markers, we merge
them together as a tentative vocabulary. In order
to generate a sensible SemLLM, we filter out rare
tokens which appear less than 20 times in the data.
We add the Unknown token (UNK) and End-of-
Sequence token (EOS) to the eventual vocabulary.

Statistics on the eventual SemLLM vocabular-
ies and semantic sequences are shown in Table 2.
We also compare frame-chain and entity-centered
SemLMs to the usual syntactic language model
setting. The statistics in Table 2 shows that they
are comparable both in vocabulary size and in the
total number of tokens for training. Moreover,
entity-centered SemLMs have shorter sequences
then frame-chain SemlLLMs. We also provide sev-
eral examples of high-frequency augmented com-
pound semantic frames in our generated SemLM

Table 2: Statistics on SemLM vocabularies and
sequences. “F-s” stands for single frame while
“F-c” stands for compound frame; “Conn” means
discourse marker. “#seq” is the number of se-
quences, and “#token” is the total number of to-
kens (semantic units). We also compute the av-
erage token in a sequence i.e. “#t/s”. We com-
pare frame-chain (FC) and entity-centered (EC)
SemLMs to the usual syntactic language model
setting i.e. “LM”.

Vocabulary Size Sequence Size
F-s F-c Conn | #seq | #token #t/s
FC | 14857 | 7269 44 1.2M | 25.4M 21
EC 8758 | 2896 44 3.4M | 18.6M 5
LM ~20k ~3M | ~38M | 10-15

vocabularies. All are very intuitive:
want.01-know.01,
try.01-get.01, decline.02-comment.0l,
wait.01-see.0l, make.02-feel.01,
want.01(not)-give.08(up)

agree.0l-pay.0l,

5.3 Language Model Training

NG We implement the N-gram model using the
SRILM toolkit (Stolcke, 2002). We also employ
the well-known KneserNey Smoothing (Kneser
and Ney, 1995) technique.

SG & CBOW We utilize the word2vec package to
implement both SG and CBOW. In practice, we set
the context window size to be 10 for SG while set
the number as 5 for CBOW (both are usual settings
for syntactic language models). We generate 300-
dimension embeddings for both models.

LB We use the OxLLM toolkit (Paul et al., 2014)
with Noise-Constrastive Estimation (Gutmann and
Hyvarinen, 2010) for the LB model. We set
the context window size to 5 and produce 150-
dimension embeddings.

6 Evaluation

In this section, we first evaluate the quality of
SemLMs through perplexity and a narrative cloze
test. More importantly, we show that the proposed
SemLMs can help improve the performance of co-
reference resolution and shallow discourse pars-
ing. This further proves that we successfully cap-
ture semantic sequence information which can po-
tentially benefit a wide range of semantic related
NLP tasks.

We have designed two models for SemLM:
frame-chain (FC) and entity-centered (EC). By
training on both types of sequences respectively,
we implement four different language models:
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TRI, SG, CBOW, LB. We focus the evaluation
efforts on these eight SemLMs.

6.1 Quality Evaluation of SemLMs

Datasets We use three datasets. We first randomly
sample 10% of the New York Times Corpus doc-
uments (roughly two years of data), denoted the
NYT Hold-out Data. All our SemLMs are trained
on the remaining NYT data and tested on this
hold-out data. We generate semantic sequences
for the training and test data using the methodol-
ogy described in Sec. 5.

We use PropBank data with gold frame annota-
tions as another test set. In this case, we only gen-
erate frame-chain SemLM sequences by apply-
ing semantic unit generation techniques on gold
frames, as described in Sec 5.2. When we test on
Gold PropBank Data with Frame Chains, we use
frame-chain SemLMs trained from all NYT data.

Similarly, we use Ontonotes data (Hovy et al.,
2006) with gold frame and co-reference annota-
tions as the third test set, Gold Ontonotes Data
with Coref Chains. We only generate entity-
centered SemL.Ms by applying semantic unit gen-
eration techniques on gold frames and gold co-
reference chains, as described in Sec 5.2.
Baselines We use Uni-gram (UNI) and Bi-gram
(BG) as two language model baselines. In ad-
dition, we use the point-wise mutual informa-
tion (PMI) for token prediction. Essentially, PMI
scores each pair of tokens according to their co-
occurrences. It predicts a token in the sequence by
choosing the one with the highest total PMI with
all other tokens in the sequence. We use the or-
dered PMI (OP) as our baseline, which is a vari-
ation of PMI by considering asymmetric count-
ing (Jans et al., 2012).

6.1.1 Perplexity

As SemLMs are language models, it is natural to
evaluate the perplexity, which is a measurement of
how well a language model can predict sequences.

Results for SemLLM perplexities are presented
in Table 3. They are computed without consider-
ing end token (EOS). We apply tri-gram Kneser-
Ney Smoothing to CBOW, SG and LB. LB con-
sistently shows the lowest perplexities for both
frame-chain and entity-centered SemL.Ms across
all test sets. Similar to syntactic language mod-
els, perplexities are fast decreasing from UNI, BI
to TRI. Also, CBOW and SG have very close per-
plexity results which indicate that their language
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Table 3: Perplexities for SemLMs. UNI, BG,
TRI, CBOW, SG, LB are different language model
implementations while “FC” and “EC” stand for
the two SemLM models studied, respectively.
“FC-FM” and “EC-FM” indicate that we removed
the “FrameNet Mapping” step (Sec. 5.2). LB con-
sistently produces the lowest perplexities for both
frame-chain and entity-centered SemLM:s.

Baselines SemLMs
UNI BG TRI CBOW SG LB

NYT Hold-out Data

FC 952.1 1783 | 119.2 1154 114.1 108.5
EC 914.7 1544 | 1149 111.8 113.8 109.7
Gold PropBank Data with Frame Chains

FC-FM | 9929 213.7 | 139.1 1356 1284 121.8
FC 970.0 191.2 | 132.7 1264 1235 1154
Gold Ontonotes Data with Coref Chains

EC-FM | 9564 187.7 | 121.1 1156 1172 113.7
EC 923.8 163.2 | 120.5 113.7 115.0 109.3

modeling abilities are at the same level.

We can compare the results of our frame-chain
SemLM on NYT Hold-out Data and Gold Prop-
Bank Data with Frame Chains, and our entity-
centered SemLLM on NYT Hold-out Data and Gold
Ontonotes Data with Coref Chains. While we see
differences in the results, the gap is narrow and
the relative ranking of different SemLMs does not
change. This indicates that the automatic SRL and
Co-reference annotations added some noise but,
more importantly, that the resulting SemLLMs are
robust to this noise as we still retain the language
modeling ability for all methods.

Additionally, our ablation study removes the
“FrameNet Mapping” step in Sec. 5.2 (“FC-FM”
and “EC-FM” rows), resulting in only using Prop-
Bank frames in the vocabulary. The increase in
perplexities shows that “FrameNet Mapping” does
produce a higher level of abstraction, which is use-
ful for language modeling.

6.1.2 Narrative Cloze Test

We follow the Narrative Cloze Test idea used in
script learning (Chambers and Jurafsky, 2008b;
Chambers and Jurafsky, 2009). As Rudinger et
al. (2015) points out, the narrative cloze test can
be regarded as a language modeling evaluation. In
the narrative cloze test, we randomly choose and
remove one token from each semantic sequence
in the test set. We then use language models to
predict the missing token and evaluate the correct-
ness. For all SemlLMs, we use the conditional
probabilities defined in Sec. 4 to get token predic-
tions. We also use ordered PMI as an additional
baseline. The narrative cloze test is conducted on



Table 4: Narrative cloze test results for SemL.Ms. UNI, BG, TRI, CBOW, SG, LB are different lan-
guage model implementations while “FC” and “EC” stand for our two SemLLM models, respectively.
“FC-FM” and “EC-FM” mean that we remove the FrameNet mappings. “w/o DIS” indicates the removal
of discourse makers in SemLMs. “Rel-Impr” indicates the relative improvement of the best performing
SemLM over the strongest baseline. We evaluate on two metrics: mean reciprocal rank (MRR)/recall at
30 (Recall@30). LB outperforms other methods for both frame-chain and entity-centered SemLMs.

Baselines SemLMs Rel-Impr
OP UNI BG TRI CBOW  SG LB
MRR
NYT Hold-out Data
FC 0.121 0.236 0.225 | 0.249 0.242 0.247 0.276 8.5%
EC 0.126 0.235 0.210 | 0.242 0.249 0.249 0.261 5.9%
EC w/o DIS 0.092 0.191 0.188 | 0.212 0.215 0.216 0.227 18.8%
Rudinger et al. (2015)* | 0.083 0.186 0.181 | — — —  0.223 19.9%
Gold PropBank Data with Frame Chains
FC 0.106 0.215 0.212 | 0.232 0.228 0.229 0.254 18.1%
FC-FM 0.098 0.201 0.204 | 0.223 0.218 0.220 0.243
Gold Ontonotes Data with Coref Chains
EC 0.122 0.228 0.213 | 0.239 0.247 0.246 0.257 12.7%
EC-FM 0.109 0.215 0.208 | 0.230 0.237 0.239 0.254
Recall@30
NYT Hold-out Data
FC 332 468 453 | 473 46.6 475 554 18.4%
EC 204 437 41.6 | 4438 46.5 46.6  52.0 19.0%
Gold PropBank Data with Frame Chains
FC 26.3 395 38.1 | 455 43.6 438 539 36.5%
FC-FM 244 373 373 | 428 41.9 42.1 482 | ——
Gold Ontonotes Data with Coref Chains
EC 306 421 39.7 | 464 48.3 48.1 515 22.3%
EC-FM 26.6 399 37.6 | 454 46.7 46.2  49.8 _

the same test sets as the perplexity evaluation. We
use mean reciprocal rank (MRR) and recall at 30
(Recall@30) to evaluate.

Results are provided in Table 4. Consistent with
the results in the perplexity evaluation, LB out-
performs other methods for both frame-chain and
entity-centered SemLMs across all test sets. It is
interesting to see that UNI performs better than
BG in this prediction task. This finding is also
reflected in the results reported in Rudinger et al.
(2015). Though CBOW and SG have similar per-
plexity results, SG appears to be stronger in the
narrative cloze test. With respect to the strongest
baseline (UNI), LB achieves close to 20% rela-
tive improvement for Recall@30 metric on NYT
hold-out data. On gold data, the frame-chain
SemLMs get a relative improvement of 36.5%
for Recall@30 while entity-centered SemLMs get
22.3%. For MRR metric, the relative improvement
is around half that of the Recall@30 metric.
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In the narrative cloze test, we also carry out an
ablation study to remove the “FrameNet Mapping”
step in Sec. 5.2 (“FC-FM” and “EC-FM” rows).
The decrease in MRR and Recall@30 metrics
further strengthens the argument that “FrameNet
Mapping” is important for language modeling as
it improves the generalization on frames.

We cannot directly compare with other re-
lated works (Rudinger et al., 2015; Pichotta and
Mooney, 2016) because of the differences in data
and evaluation metrics. Rudinger et al. (2015) also
use the NYT portion of the Gigaword corpus, but
with Concrete annotations; Pichotta and Mooney
(2016) use the English Wikipedia as their data, and
Stanford NLP tools for pre-processing while we
use the Illinois NLP tools. Consequently, the even-
tual chain statistics are different, which leads to
different test instances.” We counter this difficulty

SRudinger et al. (2015) is similar to our entity-centered
SemIlLM without discourse information. So, in Table 4, we



Table 5: Co-reference resolution results with
entity-centered SemLLM features. “EC” stands
for the entity-centered SemLM. “TRI” is the tri-
gram model while “LB” is the log-bilinear model.
“p.” means conditional probability features and
“em” represents frame embedding features. “w/o
DIS” indicates the ablation study by removing all
discourse makers for SemLMs. We conduct the
experiments by adding SemLLM features into the
base system. We outperform the state-of-art sys-
tem (Wiseman et al., 2015), which reports the best
results on CoNLL12 dataset. The improvement
achieved by “EC_LB (p.+em)” over the base sys-
tem is statistically significant.

ACEO4 CoNLLI12

Wiseman et al. (2015) — 63.39
Base (Peng et al., 2015a)  71.20 63.03
Base+EC-TRI (p.) 71.31 63.14
Base+EC-TRI w/o DIS 71.08 62.99
Base+EC-LB (p.) 71.71 63.42
Base+EC-LB (p. +em) 71.79 63.46
Base+EC-LB w/o DIS 71.12 63.00

by reporting results on “Gold PropBank Data” and
“Gold Ontonotes Data”. We hope that these two
gold annotation datasets can become standard test
sets. Rudinger et al. (2015) does share a common
evaluation metric with us: MRR. If we ignore the
data difference and make a rough comparison, we
find that the absolute values of our results are bet-
ter while Rudinger et al. (2015) have higher rela-
tive improvement (“Rel-Impr” in Table 4). This
means that 1) the discourse information is very
likely to help better model semantics 2) the dis-
course information may boost the baseline (UNI)
more than it does for the LB model.

6.2 Evaluation of SemLLM Applications

6.2.1 Co-reference Resolution

Co-reference resolution is the task of identifying
mentions that refer to the same entity. To help im-
prove its performance, we incorporate SemLM in-
formation as features into an existing co-reference
resolution system. We choose the state-of-art Illi-
nois Co-reference Resolution system (Peng et al.,
2015a) as our base system. It employs a su-
pervised joint mention detection and co-reference
framework. We add additional features into the
mention-pair feature set.

Given a pair of mentions (m1,my) where m;

make a rough comparison between them.
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appears before mso, we first extract the correspond-
ing semantic frame and the argument role label of
each mention. We do this by following the proce-
dures in Sec. 5. Thus, we can get a pair of semantic
frames with argument information (fa;, fas). We
may also get an additional discourse marker be-
tween these two frames, e.g. (fap,dis, fag). Now,
we add the following conditional probability as the
feature from SemLMs:

Pc = p(fa2|fa1, dlS)

We also add p?, /Pe and 1/p, as features. To get
the value of p., we follow the definitions in Sec. 4,
and we only use the entity-centered SemLM here
as its vocabulary covers frames with argument la-
bels. For the neural language model implementa-
tions (CBOW, SG and LB), we also include frame
embeddings as additional features.

We evaluate the effect of the added SemLM
features on two co-reference benchmark datasets:
ACEO4 (NIST, 2004) and CoNLL12 (Pradhan et
al., 2012). We use the standard split of 268 train-
ing documents, 68 development documents, and
106 testing documents for ACE04 data (Culotta
et al., 2007; Bengtson and Roth, 2008). For
CoNLL12 data, we follow the train and test doc-
ument split from CoNLL-2012 Shared Task. We
report CoNLL AVG for results (average of MUC,
B3, and CEAF, metrics), using the v7.0 scorer
provided by the CoNLL-2012 Shared Task.

Co-reference resolution results with entity-
centered SemLM features are shown in Table 5.
Tri-grams with conditional probability features
improve the performance by a small margin, while
the log-bilinear model achieves a 0.4-0.5 F1 points
improvement. By employing log-bilinear model
embeddings, we further improve the numbers and
we outperform the best reported results on the
CoNLL12 dataset (Wiseman et al., 2015).

In addition, we carry out ablation studies to re-
move all discourse makers during the language
modeling process. We re-train our models and
study their effects on the generated features. Ta-
ble 5 (“w/o DIS” rows) shows that without dis-
course information, the SemLM features would
hurt the overall performance, thus proving the ne-
cessity of considering discourse for semantic lan-
guage models.

6.2.2 Shallow Discourse Parsing

Shallow discourse parsing is the task of identi-
fying explicit and implicit discourse connectives,



Table 6: Shallow discourse parsing results with frame-chain SemLLM features. “FC” stands for the

frame-chain SemLM. “TRI” is the tri-gram model while “LB” is the log-bilinear model.

13 G

pC , €M

ER]

are conditional probability and frame embedding features, resp. “w/o DIS” indicates the case where we
remove all discourse makers for SemLMs. We do the experiments by adding SemL.M features to the base
system. The improvement achieved by “FC-LB (p. + em)” over the baseline is statistically significant.

CoNLL16 Test CoNLL16 Blind
Explicit | Implicit | Overall | Explicit | Implicit | Overall
Base (Song et al., 2015) 89.8 35.6 60.4 75.8 319 523
Base + FC-TRI (g.) 90.3 35.8 60.7 76.4 32.5 52.9
Base + FC-TRI w/o DIS 89.2 353 60.0 75.5 31.6 52.0
Base + FC-LB (q.) 90.9 36.2 61.3 76.8 32.9 53.4
Base + FC-LB (q. + em) 91.1 36.3 61.4 71.3 33.2 53.8
Base + FC-LB w/o DIS 90.1 35.7 60.6 76.9 33.0 53.5

determine their senses and their discourse argu-
ments. In order to show that SemLLM can help im-
prove shallow discourse parsing, we evaluate on
identifying the correct sense of discourse connec-
tives (both explicit and implicit ones).

We choose Song et al. (2015), which uses a su-
pervised pipeline approach, as our base system.
The system extracts context features for potential
discourse connectives and applies the discourse
connective sense classifier. Consider an explicit
connective “dis”; we extract the semantic frames
that are closest to it (left and right), resulting in the
sequence [f1, dis, f2] by following the procedures
described in Sec. 5. We then add the following
conditional probabilities as features. Compute

qe = p(dis|fy, fa).

and, similar to what we do for co-reference resolu-
tion, we add g, g2, V/@c» 1/qc as conditional prob-
ability features, which can be computed following
the definitions in Sec. 4. We also include frame
embeddings as additional features. We only use
frame-chain SemLMs here.

We evaluate on CoNLL16 (Xue et al., 2015)
test and blind sets, following the train and devel-
opment document split from the Shared Task, and
report F1 using the official shared task scorer.

Table 6 shows the results for shallow discourse
parsing with SemLM features. Tri-gram with con-
ditional probability features improve the perfor-
mance for both explicit and implicit connective
sense classifiers. Log-bilinear model with condi-
tional probability features achieves even better re-
sults, and frame embeddings further improve the
numbers. SemLMs improve relatively more on ex-
plicit connectives than on implicit ones.

We also show an ablation study in the same
setting as we did for co-reference, i.e. removing
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discourse information (“w/o DIS” rows). While
our LB model can still exhibit improvement over
the base system, its performance is lower than the
proposed discourse driven version, which means
that discourse information improves the expres-
siveness of semantic language models.

7 Conclusion

The paper builds two types of discourse driven se-
mantic language models with four different lan-
guage model implementations that make use of
neural embeddings for semantic frames. We use
perplexity and a narrative cloze test to prove that
the proposed SemLMs have a good level of ab-
straction and are of high quality, and then ap-
ply them successfully to the two challenging tasks
of co-reference resolution and shallow discourse
parsing, exhibiting improvements over state-of-
the-art systems. In future work, we plan to apply
SemLMs to other semantic related NLP tasks e.g.
machine translation and question answering.
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