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Abstract

Event extraction from texts aims to de-
tect structured information such as what
has happened, to whom, where and when.
Event extraction and visualization are typ-
ically considered as two different tasks. In
this paper, we propose a novel approach
based on probabilistic modelling to joint-
ly extract and visualize events from tweet-
s where both tasks benefit from each oth-
er. We model each event as a joint dis-
tribution over named entities, a date, a lo-
cation and event-related keywords. More-
over, both tweets and event instances are
associated with coordinates in the visual-
ization space. The manifold assumption
that the intrinsic geometry of tweets is a
low-rank, non-linear manifold within the
high-dimensional space is incorporated in-
to the learning framework using a regu-
larization. Experimental results show that
the proposed approach can effectively deal
with both event extraction and visualiza-
tion and performs remarkably better than
both the state-of-the-art event extraction
method and a pipeline approach for event
extraction and visualization.

1 Introduction

Event extraction, one of the important and chal-
lenging tasks in information extraction, aims to
detect structured information such as what has
happened, to whom, where and when. The out-
puts of event extraction could be beneficial for
downstream applications such as summarization
and personalized news systems. Data visualiza-
tion, an important exploratory data analysis task,
provides a simple way to reveal the relationships
among data (Nakaji and Yanai, 2012).
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Although event extraction and visualization are
two different tasks and typically studied separately
in the literature, these two tasks are highly related.
Documents which are close to each other in the
low-dimensional visualization space are likely to
describe the same event. Events in nearby loca-
tions in the visualization space are likely to share
similar event elements. Therefore, jointly learn-
ing the two tasks could potentially bring benefits
to each other. However, it is not straightforward
to learn event extraction and visualization jointly
since event extraction usually relies on semantic
parsing results (McClosky et al., 2011) while vi-
sualization is accomplished by dimensionality re-
duction (Iwata et al., 2007; Loépez-Rubio et al.,
2002).

In this paper, we propose a novel probabilistic
model, called Latent Event Extraction & Visual-
ization (LEEV) model, for joint event extraction
and visualization on Twitter. It is partly inspired
by the Latent Event Model (LEM) (Zhou et al.,
2015) where each tweet is assigned to one even-
t instance and each event is modeled as a join-
t distribution over named entities, a date/time, a
location and the event-related keywords. Going
beyond LEM, we assume that each event is not
only modeled as the joint distribution over event
elements as in (Zhou et al., 2015), but also asso-
ciate with coordinates in the visualization space.
The Euclidean distance between a tweet and each
events determines which event the tweet should
be assigned to. Furthermore, the manifold as-
sumption that the intrinsic geometry of tweets is
a low-rank, non-linear manifold within the high-
dimensional space, is incorporated in the learning
framework using a regularization. Experimental
results show that the proposed approach can effec-
tively deal with both event extraction and visual-
ization tasks and performs remarkably better than
both the state-of-the-art event extraction method
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and a pipeline approach for event extraction and
visualization.

2 Related Work

Our proposed work is related to two lines of re-
search, event extraction and joint topic modeling
and visualization.

2.1 Event Extraction

Research on event extraction of tweets can be cat-
egorized into domain-specific and open domain
approaches. Domain-specific approaches usual-
ly have target events in mind and aim to extract
events from a particular location or for emergen-
cy response during natural disasters. Anantharam
et al. (2015) focused on extracting city events by
solving a sequence labeling problem. Evaluation
was carried out on a real-world dataset consist-
ing of event reports and tweets collected over four
months from San Francisco Bay Area. TSum4act
(Nguyen et al., 2015) was designed for emergency
response during disasters and was evaluated on a
dataset containing 230,535 tweets.

Most of open domain approaches focused on
extracting a summary of events discussed in so-
cial media. For example Benson et al. (2011)
proposed a structured graphical model which si-
multaneously analyzed individual messages, clus-
tered, and induced a canonical value for each even-
t. Capdevila et al. (2015) proposed a model named
Tweet-SCAN based on the hierarchical Dirichlet
process to detect events from geo-located tweet-
s. To extract more information, a system called
SEEFT (Wang et al., 2015) used links in tweets
and combined tweets and linked articles to identi-
fy events. Zhou et al. (2014; 2015) proposed an
unsupervised Bayesian model called latent event
model (LEM) for event extraction from Twitter by
assuming that each tweet message is assigned to
one event instance and each event is modeled as a
joint distribution over named entities, a date/time,
a location and the event-related keywords. Our
proposed method is partly inspired by (Zhou et al.,
2015). However, different from previous methods,
our approach not only extracts the structured rep-
resentation of events, but also learns the coordi-
nates of events and tweets simultaneously.

2.2 Joint Topic Modeling and Visualization

Since our proposed approach can be considered as
a variant of topic model, we also review the relat-
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ed work of joint topic modeling and visualization
here.

Traditionally, topic modeling and visualization
are considered as two disjoint tasks and can be
combined for pipeline processing. For example,
probabilistic latent semantic analysis (Hofmann,
1999) can be first performed followed by para-
metric embedding (Iwata et al., 2007). Another
pipeline approach (Millar et al., 2009) is based
on latent Dirichlet allocation followed by self-
organizing maps (L6pez-Rubio et al., 2002).

Jointly modeling topics and visualization is a
new problem explored in very few works. The
state-of-the-art is a joint approach proposed in (I-
wata et al., 2008). In this model, both documents
and topics are assumed to have latent coordinates
in a visualization space. The topic proportions of
a document are determined by the distances be-
tween the document and the topics in the visual-
ization space, and each word is drawn from one of
the topics according to the document’s topic pro-
portions. A visualization was obtained by fitting
the model to a given set of documents using the
EM algorithm. Following the same line, by con-
sidering the local consistency in terms of the in-
trinsic geometric structure of the document mani-
fold, an unsupervised probabilistic model, called
SEMAFORE, was proposed in (Le and Lauw,
2014a) by preserving the manifold in the lower
dimensional space. In (Le and Lauw, 2014b), a
semantic visualization model is learned by asso-
ciating each document a coordinate in the visu-
alization space, a multinomial distribution in the
topic space, and a directional vector in a high-
dimensional unit hypersphere in the word space.

Our work is partly inspired by (Le and Lauw,
2014a). However, our proposed approach differ-
s from (Le and Lauw, 2014a) in that events, in-
stead of topics, are modelled as the joint distribu-
tion over event elements. Both tweets and events
are associate with coordinates in the visualization
space.

3 Methodology

We follow the same pre-processing steps de-
scribed in (Zhou et al., 2015) to filter out non-
event-related tweets and extract dates, locations,
and named entities by temporal resolution, part-
of-speech (POS) tagging and named entity recog-
nition. The pre-processed tweets are then fed into
our proposed model for event extraction and visu-



Table 1: Definition of Notations.

Notation Definition

e event index, e € {1..E}

W = {wp} | tweets, m € {1..M}

Z ={zm} | eventlabels for tweets

Ny number of named entities in w,,
Npd number of dates in w,,

N number of locations in w,,,

Nk number of keywords in w,

Ocy probability of named entity ¥ in event e
Ped probability of date d in event e

Yer probability of location [ in event e
Wek probability of keyword k in event e
By, m, A Dirichlet hyperparameters

X, 0 Normal hyperparameters

G dimension of visualization space

alization. We describe our model in more details
below.

3.1 Latent Event Extraction & Visualization
(LEEV) Model

We propose an unsupervised latent variable mod-
el called the Latent Event Extraction & Visualiza-
tion (LEEV) model which simultaneously extracts
events from tweets and generates a visualization
of the events. Table 1 lists notations used in this
paper.

In LEEV, each tweet message w.,,, m €
{1...M} is associated with a latent coordinate x,
in the visualization space. Each evente € {1...E'}
is also associated with a coordinate ¢.. Assum-
ing that each tweet message wy,, m € {1...M} is
assigned to one event instance z,, = e and e is
modeled as a joint distribution over named entities
vy, the date d when e happened, the location [ and
the event-related keywords k, the generative pro-
cess of the model is described as follows:

e For each event e € {1..F}, draw multino-
mial distributions 6. ~ Dirichlet(3), ¢, ~

Dirichlet(y), . ~ Dirichlet(n), w, ~
Dirichlet()\), draw event coordinate ¢, ~
Normal(0, x~11);
e For each tweet w,,,m € {1..M}
* Choose tweet coordinate: 1z, ~
Normal(0, §~11);
* Choose an event z,, = ~

Multinomial({ P(e|xm, ®)Z_;});
* For each named entity in the tweet

Wy, choose a named entity y
Multinomial (6, );

~
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Figure 1: Latent Event Extraction & Visualization
(LEEV) Model.

* For each date in the tweet w,,,, choose a
date d ~ Multinomial (e );

* For each location in the tweet w,,,
choose a location [ ~ Multinomial (¢ );

* For other words in the tweet w,,,, choose
a word k ~ Multinomial (w,).

Here, 3,7,7n, A, x, 0 are priors, [ is an identi-
ty matrix, and P(e|x,,, ®) is the probability of
the tweet w,,, with coordinate x,, belonging to the
event e. It is defined as,

o lf)
(=3 @ = 6o 1)

exp(—3 || zm —

Ple|zm,P) = (1)

E
e/=1 exXp

>

It is calculated as the normalized Euclidean dis-
tance between a tweet w,,, and an event e. Us-
ing this equation, when the Euclidean distance be-
tween a tweet w,, and and an event e is small,
the probability that tweet w,, belongs to event e
becomes large. The graphical model of LEEV is
shown in Figure 1.

The parameters to be learned are ©
{0c, 0oy e, we |, tweets’ coordinates X
{2, }M_, and events’ coordinates ® = {¢.}E ;,

which are collectively denoted as B = (O, X, D).
Let
Ny Nind
H(wm,e) = P(ynle) TT Pdalee)
n=1 n=1
N. N,

ml

[T 7

n

(L) H

(knlwe).

[



The log likelihood of B given tweets W is,
M B

LBW) = Z log { ZP(e\xm,qJ) X H(w,me)}
m=1 e=1
M B

+ 3 lon(Plem) + 3 log(P(6.)

=1

+ Z{log

@

) * P(pe) * P(te) * P(we))}

For the events’ coordinate ¢. and tweets’ coordi-
nate x,,, we use a Gaussian prior with a zero mean
and a spherical covariance:

p(o) = (52)% exp(=3 | 6 )
pen) = ()T exp(—2 || am |1

21
3.2 LEEV with Manifold Regularization

Recent studies suggest that the intrinsic geome-
try of textual data is a low-rank, non-linear man-
ifold lying in the high dimensional space (Cai et
al., 2008; Zhang et al., 2005). We therefore as-
sume that when two tweets w; and w; are close
in the intrinsic geometry of the manifold Y, their
low-rank representations should be close as well.
To capture this assumption, we consider Lapla-
cian Figenmaps (LE) (Belkin and Niyogi, 2003)
which has been commonly used in manifold learn-
ing algorithms (Le and Lauw, 2014a). It constructs
a k-nearest neighbors graph to represent data re-
siding on a low-dimensional manifold embedded
in a higher-dimensional space. In this paper, we
use LE to incorporate neighborhood information
of tweets. We construct a manifold graph with
edges connecting two data points w; and w;. Set
the edge weight v;; = 1 if w; is one of the k-
nearest neighbors of w;; Otherwise v;; = 0. That
makes LEEV an special case when & 0. We
represent each tweet as a word-count vector, i.e.,
each element of a vector is weighted by its corre-
sponding term frequency, and use cosine similari-
ty metric to measure the distance between tweets
when constructing the manifold graph. We also
tried vectors with the TFIDF weighting strategy
to represent tweets and found word-count vectors
give better results.

We apply a regularization framework to incor-
porate a manifold structure into a learning model.
The new regularized log-likelihood function L is

¢
SRBIY).

L(B|W,T) = L(B]W) — 3 3)
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where £ is the regularization parameter. The sec-
ond component R is a regularization function,
which consists of two parts:

R(B|T) = R4+(B|T) + R-(B|T), (4
M
RyBIT) = > vy Flwi,wy), (5)
4,j=1i#]
1—y
~(B|T) = Z —— (6
i j=L5i#j F(wi, wy) +

where F is a distance function that operates on the
low rank space. We define F as the squared Eu-
clidean distance of coordinates in the visualization
space. F(wj, w;)is computed as follows:

Flwi,wy) = @i —j |*. )
Minimizing R+ leads to minimizing the distance
between neighbors and minimizing R_ leads to
maximizing the distance between non-neighbors.
By enforcing manifold learning, we capture the
spirit of keeping neighbors close and keeping
none-neighbors apart.

3.3 Parameter Estimation

As in Equation 2, the presence of the sum over
e prevents the logarithm form directly acting on
the joint distribution. Assuming that the corre-
sponding latent event z, of each tweet w,, is
known, {W, Z} is called the complete data. Max-
imizing the log likelihood of the complete data,
log P(W, Z|B), can be easily done. However, in
practice we don’t observe the latent variables Z
and only have the incomplete data WW. There-
fore, the expectation maximization (EM) algorith-
m is employed to handle the incomplete data. EM
involves an efficient iterative procedure to com-
pute the Maximum Likelihood estimation of prob-
abilistic models with unobserved latent variables
involved.

The class posterior probability of the m!" tweet
under the current parameter values B, P(zy =
e|m, B), is given as follows:

P(zy, = elm,B) =
Pz = €|, ©,B) x H(wpy,,e)
25,21 P(zm = € |2, ®,B) X H(wp,€')’

®)

which corresponds to the E-step in EM algorithm.



In M-step, model parameters B are updated by
maximizing the regularized conditional expecta-
tion of the complete data log likelihood with priors
defined as follows:

Q(B|B) =

Z Z{P Zm = €lm, B)

m=1e=1

x log[P(e|Tm,P) X H(wm,e)|}
+ Z log(P(zm)) + Zlog(P(d) )

+ Z{log

*P (Pe) *P(’l/Je) *P(w€))}

where P(z,, = e|m, B) is calculated in E-step.
By maximizing Q(B|B) W.r.t Ocy, Ped, Vel Wek
the next estimates are given as follows,

M Nmy ~
> X Iymn =y)P(zm = elm,B) + 8
0 _ m=1 n=1
ey y M Nmy ’
Zl El Zl I(ymn = y)P(zm = elm, B) +YpB
y=1m=1 n=
M
Z I(dmn = d)P(zm = e|m, B) +~
m=1 n=1
Ped = D s
2 S B Hdyn = AP (em = elm, B) + Dry
d=1m=1 n=1
M Ny R
21 > I(lmn =D)P(zm = elm,B) +1
Yer = =S

L Noy ’
> Z Z I(lmn = )P(zm = e|m, B) + Ln
I=1m=1n=1

M Np,

> Z I(kmn = k)P(zm = e|lm, B) + A
m=1 n=1

M

K Nmk

55 Ikmn = K)P(zm = c|m, B) + Kn
k=1m=1 n=1

where Y, D, L, K are the total numbers of distinc-
t named entities, dates, locations, and words ap-

peared in the whole Twitter corpus, respectively.
¢, and x,, cannot be solved in a closed form,

and are estimated by maximizing Q(B|B) using

quasi-Newton method. The gradients of Q(B|B)
W.I.t ¢, and x,,, are as follows:

00
a¢e :7712:1 ( |m B ( ( ‘m'rrw )_1)(¢€_‘rm)
— XPe,
Bccm _ZP elm, B)(p(elm, ®) = 1)(@m — ¢c)
§ OR(B|T)
_5x"L N 5 axm ’

where the gradient of R(B|Y) w.r.t. x,, is com-
puted as follows:

T)
aR B| Z 2U'm] Tm — x])
j=1,7#m
M
1 — Umi
S e — ) m
= Flamay) 71
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We set the parameter Y = 0.00005, § = 0.05,
8 =~ =mn= A= 0.1 and run EM algorithm
for 50 iterations. Finally we select an entity y, a
date d, a location [ and two keywords k& with the
highest probabilities to form a tuple (y,d, [, k) to
represent each potential event.

3.4 Post-processing

In order to filter out spurious events, we calculate
the correlation coefficient of each event element.
Remove the event element if its correlation coef-
ficient is less than a threshold C, and remove the
event if the sum of the correlation coefficients of
all its four event elements is less than C;.
For an event element A, its correlation coeffi-
cient is calculated below:
>.Beq #(A, B)
B#£A

#(A4)

where () is the set of the four event elements
(y,d, 1, k) and #(z) indicates the number of times
x appeared in the whole corpus. We empirically
set C, to 0.4 and C} to 4.

Cy =log 0)

?

4 Experiments

In this section, we firstly describe the datasets used
in our experiments and then present the experi-
mental results.

4.1 Setup

We choose two datasets for model evaluation. The
first one is the First Story Detection (FSD) dataset
(Petrovic et al., 2013) (Dataset I) which contains
2,499 tweets published between 7th July and 12th
September 2011. These tweets have been man-
ually annotated with 27 events, covering a wide
range of topics from accidents to science discover-
ies and from disasters to celebrity news. We filter
out events mentioned in less than 15 tweets since
events mentioned in very few tweets are less likely
to be significant. The final dataset contains 2,453
tweets annotated with 20 events. This dataset has
been previously used for evaluating event extrac-
tion models and the state-of-the-art results have
been achieved using LEM (Zhou et al., 2015).
We also create another dataset, called Dataset 1I,
by manually annotating 1,000 tweets published in
December 2010. A total of 20 events are annotat-
ed.

We compare our model with LEM (Zhou et al.,
2015), which also extracts events as 4-tuples (



y.d,Lk ). The main difference between LEM and
our model is that LEM directly estimates the event
distribution from the sampled latent event labels,
while we derive the distribution from coordinates
of tweets and events x,,, .. We re-implemented
the system described in (Zhou et al., 2015) and
used the same evaluation metrics such as preci-
sion, recall and F-measure. Precision is defined
as the proportion of the correctly identified events
out of the system returned events. Recall is de-
fined as the proportion of correctly identified true
events. For calculating the precision of the 4-tuple
(y,d,l, k), we use following criteria:

e Do the entity y, location [, date d and key-
word k that we have extracted refer to the
same event?

o If the extracted representation contains key-
words, are they informative enough to tell us
what happened?

As mentioned in Section 2, PE (Iwata et al.,
2007) is a nonlinear visualization method which
takes a set of class posterior vectors as input and
embeds samples in a low-dimensional Euclidean
space. By minimizing the sum of Kullback-
Leibler divergences, PE tries to preserve the poste-
rior structure in the embedding space. In order to
evaluate the visualization results, we compare our
proposed method with a pipeline approach, even-
t extraction using LEM (Zhou et al., 2015) fol-
lowed by event visualization using PE (Iwata et
al., 2007), named as LEM+PE.

4.2 Event Extraction Results

Table 2 shows the event extraction results on the
two datasets. LEEV+R is LEEV with manifold
regularization incorporated, in which the model
parameters are estimated by the EM algorithm de-
scribed in Section 3.3. For LEEV and LEEV+R,
the number of events, F, is set to 50 for both
datasets. For LEEV+R, the number of neighbor-
hood size k is set to 10 and the regularization pa-
rameter £ is set to 1. For LEM, E is set to 25 for
both datasets following the suggestion in (Zhou et
al., 2015).

We ran our experiments on a server equipped
with 3.40 GHz Intel Corel i7 CPU and 8 GB mem-
ory. The average running time of LEEV is 2328.1
seconds on Dataset I and 940.7 seconds on Dataset
IT for one iteration. The average running time
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Figure 2: Experimental results of LEEV+R in 10
different runs.

of LEEV+R is 2612.7 seconds on Dataset I and
1296.4 seconds on Dataset II for one iteration.

Table 2: Comparison of the event extraction re-
sults on the two datasets.

Dataset 1
Method Prec. (%) | Rec. (%) | F-measure (%)
LEM 84.00 76.19 80.35
LEEV 92.10 80.00 85.62
LEEV+R 91.91 88.50 89.88
Dataset I1
Method Prec. (%) | Rec. (%) | F-measure (%)
LEM 80.00 90.00 84.70
LEEV 83.33 95.00 88.78
LEEV+R 86.18 92.50 89.19

It can be observed that both LEEV and
LEEV+R outperforms the state-of-the-art result-
s achieved by LEM on Dataset I. In particular,
LEEV improves upon LEM by over 5% in F-
measure and with regularization, LEEV-R further
improves upon LEEV by over 4%. A similar trend
is observed on Dataset II where both LEEV and
LEEV+R outperforms LEM and the best perfor-
mance is given by LEEV+R. This shows the ef-
fectiveness of using regularization in LEEV. We
will further demonstrate its importance in visual-
ization results. Overall, we see superior perfor-
mance of LEEV+R over the other two models,
with the F-measure of over 89% being achieved
on both datasets.

As described in Section 3.1, the coordinates of
tweets and events are randomly initialized. There-
fore, we would like to see whether the perfor-
mance of event extraction is influenced heavily by
random initialization. We repeat the experiments
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Figure 3: The performance of LEEV+R with dif-
ferent number of events E.

on the two datasets for 10 times using LEEV+R.
The experimental results are shown in Figure 2. It
can be observed that the performance of LEEV+R
is quite stable on both datasets. The standard
deviation of F-measure on both Dataset I and I-
I'is 0.036, which shows that random initialization
does not have significant impact on the final per-
formance of the model.

4.3 Impact of Number of Events

We need to pre-set the number of events E' in the
proposed approach. Figure 3 shows the perfor-
mance of event extraction based on LEEV+R ver-
sus different values of F on the two datasets. It
can be observed that the performance of the pro-
posed approach improves with the increased value
of £ and when E goes beyond 50, we notice a
more balanced precision/recall values and a rela-
tively stable F-measure. This shows that the pro-
posed approach is less sensitive to the number of
events E so long as F is set to a relatively larger
value.

4.4 Impact of Neighborhood Size

As described in Section 3.2, the neighborhood in-
formation of tweets is incorporated into the learn-
ing framework. A manifold graph with edges con-
necting two tweets (or data points) w; and w; is
constructed by setting the edge weight v;; = 1
if w; is among the k-nearest neighbors of w; and
v;; = 0 otherwise. Therefore, it is crucial to see
whether the performance of LEEV+R heavily de-
pends on the setting of k. Figure 4 shows the per-
formance of our proposed approach with different
neighborhood size k. It can be observed that the
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Figure 4: The performance of LEEV+R with dif-
ferent neighborhood size k.

performance of LEEV+R is quite stable and inde-
pendent of the & value.

4.5 Visualization Results

We show the visualization results produced by d-
ifferent approaches on the two datasets in Fig-
ure 5 and 6 respectively. We compare LEEV and
LEEV+R with the pipeline approach LEM+PE. In
the figures, each point represents a tweet and d-
ifferent shapes and colors represent the different
events they are associated with. Each red cross
represents an extracted event with coordinate ¢.
For Dataset I, it can be observed from Fig-
ure 5(a) that the visualization result generated
by LEM+PE is not informative. Tweets from d-
ifferent events are mixed together and events are
evenly distributed across the whole visualization
space. Thus, this visualization does not provide
any sensible information about the relationships
between tweets and events. The result generated
by LEEV without manifold Regularization unit R
seems better than that from LEM+PE, as shown in
Figure 5(b). However, a large amount of tweets
crowded together at the center, which makes it d-
ifficult to reveal the relations between tweets and
events. The best visualization result is given by
LEEV+R as shown in Figure 5(c) that differen-
t events are well separated and related events are
located nearby. For example, the three events en-
closed by ared circle represent “people died in ter-
rorist attacks in Delhi, Oslo and Norway” respec-
tively, while three events in the blue circle rep-
resent “riots in Ealing, Totteham and Croydon”,
respectively. And two events in the black cir-
cle represent “American credit rating” and “House
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Figure 5: Visualization results on Dataset I.
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Figure 6: Visualization results on Dataset II.

debt bill”, respectively. It shows that LEEV+R
with manifold learning incorporated significantly
improved upon LEEV without regularization and
gives better visualization results. The relationship-
s of events are directly reflected in the distances
between their coordinates in the visualization s-
pace.

Similar visualization results have been obtained
on Dataset II. Figure 6(a) and 6(b) failed to convey
the semantic relations between different events.
LEEV+R in Figure 6(c) is good at separating
tweets from different events. The events in the
red circle are the government activities of the U-
nited States. The events in the blue circle are cat-
egorized as traffic accidents. They are “ Trans-
port chaos caused by heavy snow ”, “Train to Paris
crushed ” and “Demonstrators attacked car carry-
ing Prince Charles ”. Compared to LEM+PE and
LEEV, LEEV+R gives much more informative vi-
sualization results.

To further analyze the visualization results in
more detail, the 4 representative events and their
corresponding tweets in the red circle of Fig-
ure 6(c) are visualized in Figure 7. These four
events are “Senate vote on repealing gay ban”,
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“US state governor plan to visit North Korea”,
“Send letter to President Obama to stop tax cut
deal” and “Congress passed the Child Nutrition
Bill”. Their corresponding tweets are denoted as
green */\’, blue '0°, green 'O’ and blue *+’ in-
dividually in Figure 7. It can be observed that
these four events are all about government activ-
ities of the United States, and they are located
close to each other in the low-dimensional visu-
alization space. Moreover, the tweets describing
the same event are located close to each other and
center around their corresponding events, while
the tweets describing different events are far away
from each other.

5 Conclusions

In this paper, we have proposed an unsupervised
Bayesian model, called Latent Event Extraction &
Visualization (LEEV) model, to extract the struc-
tured representations of events from social me-
dia and simultaneously visualize them in a two-
dimensional Euclidean space. The proposed ap-
proach has been evaluated on two datasets. Exper-
imental results show that the proposed approach
outperforms the previously reported best result on
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Figure 7: Four representative events and their corresponding tweets in the red circle of Figure 6(c).

Dataset I by nearly 10% in F-measure. Visual-
ization results show that the proposed approach
with manifold regularization can significantly im-
prove the quality of event visualization. These re-
sults show that by jointly learning event extrac-
tion and visualization, our proposed approach is
able to give better results on both tasks. In fu-
ture work, we will investigate scalable and paral-
lel model learning to explore the performance of
our model for large-scale real-time event extrac-
tion and visualization.
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