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Abstract

Neural networks are among the state-of-
the-art techniques for language modeling.
Existing neural language models typically
map discrete words to distributed, dense
vector representations. After information
processing of the preceding context words
by hidden layers, an output layer estimates
the probability of the next word. Such ap-
proaches are time- and memory-intensive
because of the large numbers of parame-
ters for word embeddings and the output
layer. In this paper, we propose to com-
press neural language models by sparse
word representations. In the experiments,
the number of parameters in our model in-
creases very slowly with the growth of the
vocabulary size, which is almost imper-
ceptible. Moreover, our approach not only
reduces the parameter space to a large ex-
tent, but also improves the performance in
terms of the perplexity measure.1

1 Introduction

Language models (LMs) play an important role
in a variety of applications in natural language
processing (NLP), including speech recognition
and document recognition. In recent years, neu-
ral network-based LMs have achieved signifi-
cant breakthroughs: they can model language
more precisely than traditional n-gram statistics
(Mikolov et al., 2011); it is even possible to gen-
erate new sentences from a neural LM, benefit-
ing various downstream tasks like machine trans-
lation, summarization, and dialogue systems (De-
vlin et al., 2014; Rush et al., 2015; Sordoni et al.,
2015; Mou et al., 2015b).

1Code released on https://github.com/chenych11/lm

Existing neural LMs typically map a discrete
word to a distributed, real-valued vector repre-
sentation (called embedding) and use a neural
model to predict the probability of each word
in a sentence. Such approaches necessitate a
large number of parameters to represent the em-
beddings and the output layer’s weights, which
is unfavorable in many scenarios. First, with a
wider application of neural networks in resource-
restricted systems (Hinton et al., 2015), such ap-
proach is too memory-consuming and may fail to
be deployed in mobile phones or embedded sys-
tems. Second, as each word is assigned with a
dense vector—which is tuned by gradient-based
methods—neural LMs are unlikely to learn mean-
ingful representations for infrequent words. The
reason is that infrequent words’ gradient is only
occasionally computed during training; thus their
vector representations can hardly been tuned ade-
quately.

In this paper, we propose a compressed neural
language model where we can reduce the number
of parameters to a large extent. To accomplish this,
we first represent infrequent words’ embeddings
with frequent words’ by sparse linear combina-
tions. This is inspired by the observation that, in a
dictionary, an unfamiliar word is typically defined
by common words. We therefore propose an op-
timization objective to compute the sparse codes
of infrequent words. The property of sparseness
(only 4–8 values for each word) ensures the effi-
ciency of our model.

Based on the pre-computed sparse codes, we
design our compressed language model as follows.
A dense embedding is assigned to each common
word; an infrequent word, on the other hand, com-
putes its vector representation by a sparse combi-
nation of common words’ embeddings. We use
the long short term memory (LSTM)-based recur-
rent neural network (RNN) as the hidden layer of
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our model. The weights of the output layer are
also compressed in a same way as embeddings.
Consequently, the number of trainable neural pa-
rameters is a constant regardless of the vocabulary
size if we ignore the biases of words. Even con-
sidering sparse codes (which are very small), we
find the memory consumption grows impercepti-
bly with respect to the vocabulary.

We evaluate our LM on the Wikipedia corpus
containing up to 1.6 billion words. During train-
ing, we adopt noise-contrastive estimation (NCE)
(Gutmann and Hyvärinen, 2012) to estimate the
parameters of our neural LMs. However, dif-
ferent from Mnih and Teh (2012), we tailor the
NCE method by adding a regression layer (called
ZRegressoion) to predict the normalization
factor, which stabilizes the training process. Ex-
perimental results show that, our compressed LM
not only reduces the memory consumption, but
also improves the performance in terms of the per-
plexity measure.

To sum up, the main contributions of this paper
are three-fold. (1) We propose an approach to rep-
resent uncommon words’ embeddings by a sparse
linear combination of common ones’. (2) We pro-
pose a compressed neural language model based
on the pre-computed sparse codes. The memory
increases very slowly with the vocabulary size (4–
8 values for each word). (3) We further introduce a
ZRegression mechanism to stabilize the NCE
algorithm, which is potentially applicable to other
LMs in general.

2 Background

2.1 Standard Neural LMs

Language modeling aims to minimize the joint
probability of a corpus (Jurafsky and Martin,
2014). Traditional n-gram models impose a
Markov assumption that a word is only depen-
dent on previous n − 1 words and independent of
its position. When estimating the parameters, re-
searchers have proposed various smoothing tech-
niques including back-off models to alleviate the
problem of data sparsity.

Bengio et al. (2003) propose to use a feed-
forward neural network (FFNN) to replace the
multinomial parameter estimation in n-gram mod-
els. Recurrent neural networks (RNNs) can also be
used for language modeling; they are especially
capable of capturing long range dependencies in
sentences (Mikolov et al., 2010; Sundermeyer et

Figure 1: The architecture of a neural network-
based language model.

al., 2015).
In the above models, we can view that a neural

LM is composed of three main parts, namely the
Embedding, Encoding, and Prediction
subnets, as shown in Figure 1.

The Embedding subnet maps a word to a
dense vector, representing some abstract features
of the word (Mikolov et al., 2013). Note that this
subnet usually accepts a list of words (known as
history or context words) and outputs a sequence
of word embeddings.

The Encoding subnet encodes the history of a
target word into a dense vector (known as context
or history representation). We may either leverage
FFNNs (Bengio et al., 2003) or RNNs (Mikolov
et al., 2010) as the Encoding subnet, but RNNs
typically yield a better performance (Sundermeyer
et al., 2015).

The Prediction subnet outputs a distribu-
tion of target words as

p(w = wi|h) =
exp(s(h,wi))∑
j exp(s(h,wj))

, (1)

s(h,wi) =W>
i h+ bi, (2)

where h is the vector representation of con-
text/history h, obtained by the Encoding subnet.
W = (W1,W2, . . . ,WV ) ∈ RC×V is the output
weights of Prediction; b = (b1, b2, . . . , bV ) ∈
RC is the bias (the prior). s(h,wi) is a scoring
function indicating the degree to which the context
h matches a target word wi. (V is the size of vo-
cabulary V; C is the dimension of context/history,
given by the Encoding subnet.)

2.2 Complexity Concerns of Neural LMs
Neural network-based LMs can capture more pre-
cise semantics of natural language than n-gram
models because the regularity of the Embedding
subnet extracts meaningful semantics of a word
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and the high capacity of Encoding subnet en-
ables complicated information processing.

Despite these, neural LMs also suffer from sev-
eral disadvantages mainly out of complexity con-
cerns.

Time complexity. Training neural LMs is typi-
cally time-consuming especially when the vocab-
ulary size is large. The normalization factor in
Equation (1) contributes most to time complex-
ity. Morin and Bengio (2005) propose hierar-
chical softmax by using a Bayesian network so
that the probability is self-normalized. Sampling
techniques—for example, importance sampling
(Bengio and Senécal, 2003), noise-contrastive es-
timation (Gutmann and Hyvärinen, 2012), and tar-
get sampling (Jean et al., 2014)—are applied to
avoid computation over the entire vocabulary. In-
frequent normalization maximizes the unnormal-
ized likelihood with a penalty term that favors nor-
malized predictions (Andreas and Klein, 2014).

Memory complexity and model complexity. The
number of parameters in the Embedding and
Prediction subnets in neural LMs increases
linearly with respect to the vocabulary size, which
is large (Table 1). As said in Section 1, this is
sometimes unfavorable in memory-restricted sys-
tems. Even with sufficient hardware resources, it
is problematic because we are unlikely to fully
tune these parameters. Chen et al. (2015) pro-
pose the differentiated softmax model by assign-
ing fewer parameters to rare words than to fre-
quent words. However, their approach only han-
dles the output weights, i.e., W in Equation (2);
the input embeddings remain uncompressed in
their approach.

In this work, we mainly focus on memory and
model complexity, i.e., we propose a novel method
to compress the Embedding and Prediction
subnets in neural language models.

2.3 Related Work

Existing work on model compression for neural
networks. Buciluǎ et al. (2006) and Hinton et al.
(2015) use a well-trained large network to guide
the training of a small network for model compres-
sion. Jaderberg et al. (2014) compress neural mod-
els by matrix factorization, Gong et al. (2014) by
quantization. In NLP, Mou et al. (2015a) learn an
embedding subspace by supervised training. Our
work resembles little, if any, to the above methods
as we compress embeddings and output weights
using sparse word representations. Existing model

Sub-nets RNN-LSTM FFNN

Embedding V E V E
Encoding 4(CE + C2 + C) nCE + C
Prediction V (C + 1) V (C + 1)
TOTAL† O((C + E)V ) O((E + C)V )

Table 1: Number of parameters in different neural
network-based LMs. E: embedding dimension;
C: context dimension; V : vocabulary size. †Note
that V � C (or E).

compression typically works with a compromise
of performance. On the contrary, our model im-
proves the perplexity measure after compression.

Sparse word representations. We leverage
sparse codes of words to compress neural LMs.
Faruqui et al. (2015) propose a sparse coding
method to represent each word with a sparse vec-
tor. They solve an optimization problem to ob-
tain the sparse vectors of words as well as a dic-
tionary matrix simultaneously. By contrast, we do
not estimate any dictionary matrix when learning
sparse codes, which results in a simple and easy-
to-optimize model.

3 Our Proposed Model

In this section, we describe our compressed lan-
guage model in detail. Subsection 3.1 formal-
izes the sparse representation of words, serving
as the premise of our model. On such a basis,
we compress the Embedding and Prediction
subnets in Subsections 3.2 and 3.3, respectively.
Finally, Subsection 3.4 introduces NCE for pa-
rameter estimation where we further propose
the ZRegression mechanism to stabilize our
model.

3.1 Sparse Representations of Words
We split the vocabulary V into two disjoint subsets
(B and C). The first subset B is a base set, con-
taining a fixed number of common words (8k in
our experiments). C = V\B is a set of uncommon
words. We would like to use B’s word embeddings
to encode C’s.

Our intuition is that oftentimes a word can be
defined by a few other words, and that rare words
should be defined by common ones. Therefore,
it is reasonable to use a few common words’ em-
beddings to represent that of a rare word. Follow-
ing most work in the literature (Lee et al., 2006;
Yang et al., 2011), we represent each uncommon
word with a sparse, linear combination of com-
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mon ones’ embeddings. The sparse coefficients
are called a sparse code for a given word.

We first train a word representation model like
SkipGram (Mikolov et al., 2013) to obtain a set of
embeddings for each word in the vocabulary, in-
cluding both common words and rare words. Sup-
pose U = (U1,U2, . . . ,UB) ∈ RE×B is the
(learned) embedding matrix of common words,
i.e., Ui is the embedding of i-th word in B. (Here,
B = |B|.)

Each word in B has a natural sparse code (de-
noted as x): it is a one-hot vector withB elements,
the i-th dimension being on for the i-th word in B.

For a wordw ∈ C, we shall learn a sparse vector
x = (x1, x2, . . . , xB) as the sparse code of the
word. Provided that x has been learned (which
will be introduced shortly), the embedding of w is

ŵ =
B∑
j=1

xjUj = Ux, (3)

To learn the sparse representation of a certain
word w, we propose the following optimization
objective

min
x
‖Ux−w‖22 + α‖x‖1 + β|1>x− 1|
+ γ1>max{0,−x}, (4)

where max denotes the component-wise maxi-
mum; w is the embedding for a rare word w ∈ C.

The first term (called fitting loss afterwards)
evaluates the closeness between a word’s coded
vector representation and its “true” representation
w, which is the general goal of sparse coding.

The second term is an `1 regularizer, which en-
courages a sparse solution. The last two regular-
ization terms favor a solution that sums to 1 and
that is nonnegative, respectively. The nonnegative
regularizer is applied as in He et al. (2012) due to
psychological interpretation concerns.

It is difficult to determine the hyperparameters
α, β, and γ. Therefore we perform several tricks.
First, we drop the last term in the problem (4), but
clip each element in x so that all the sparse codes
are nonnegative during each update of training.

Second, we re-parametrize α and β by balanc-
ing the fitting loss and regularization terms dy-
namically during training. Concretely, we solve
the following optimization problem, which is
slightly different but closely related to the concep-
tual objective (4):

min
x

L(x) + αtR1(x) + βtR2(x), (5)

where L(x) = ‖Ux −w‖22, R1(x) = ‖x‖1, and
R2(x) = |1>x−1|. αt and βt are adaptive param-
eters that are resolved during training time. Sup-
pose xt is the value we obtain after the update of
the t-th step, we expect the importance of fitness
and regularization remain unchanged during train-
ing. This is equivalent to

αtR1(xt)
L(xt)

= wα ≡ const, (6)

βtR2(xt)
L(xt)

= wβ ≡ const. (7)

or

αt =
L(xt)
R1(xt)

wα and βt =
L(xt)
R2(xt)

wβ,

where wα and wβ are the ratios between the regu-
larization loss and the fitting loss. They are much
easier to specify than α or β in the problem (4).

We have two remarks as follows.
• To learn the sparse codes, we first train the

“true” embeddings by word2vec2 for both
common words and rare words. However,
these true embeddings are slacked during our
language modeling.
• As the codes are pre-computed and remain

unchanged during language modeling, they
are not tunable parameters of our neural
model. Considering the learned sparse codes,
we need only 4–8 values for each word on av-
erage, as the codes contain 0.05–0.1% non-
zero values, which are almost negligible.

3.2 Parameter Compression for the
Embedding Subnet

One main source of LM parameters is the
Embedding subnet, which takes a list of words
(history/context) as input, and outputs dense, low-
dimensional vector representations of the words.

We leverage the sparse representation of words
mentioned above to construct a compressed
Embedding subnet, where the number of param-
eters is independent of the vocabulary size.

By solving the optimization problem (5) for
each word, we obtain a non-negative sparse code
x ∈ RB for each word, indicating the degree to
which the word is related to common words in
B. Then the embedding of a word is given by
ŵ = Ux.

2https://code.google.com/archive/p/word2vec
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We would like to point out that the embedding
of a word ŵ is not sparse becauseU is a dense ma-
trix, which serves as a shared parameter of learn-
ing all words’ vector representations.

3.3 Parameter Compression for the
Prediction Subnet

Another main source of parameters is the
Prediction subnet. As Table 1 shows, the out-
put layer contains V target-word weight vectors
and biases; the number increases with the vocabu-
lary size. To compress this part of a neural LM, we
propose a weight-sharing method that uses words’
sparse representations again. Similar to the com-
pression of word embeddings, we define a base set
of weight vectors, and use them to represent the
rest weights by sparse linear combinations.

Without loss of generality, we let D = W:,1:B

be the output weights of B base target words, and
c = b1:B be bias of the B target words.3 The goal
is to use D and c to represent W and b. How-
ever, as the values ofW and b are unknown before
the training of LM, we cannot obtain their sparse
codes in advance.

We claim that it is reasonable to share the
same set of sparse codes to represent word vec-
tors in Embedding and the output weights in
the Prediction subnet. In a given corpus, an
occurrence of a word is always companied by
its context. The co-occurrence statistics about a
word or corresponding context are the same. As
both word embedding and context vectors cap-
ture these co-occurrence statistics (Levy and Gold-
berg, 2014), we can expect that context vec-
tors share the same internal structure as embed-
dings. Moreover, for a fine-trained network, given
any word w and its context h, the output layer’s
weight vector corresponding to w should spec-
ify a large inner-product score for the context h;
thus these context vectors should approximate the
weight vector of w. Therefore, word embed-
dings and the output weight vectors should share
the same internal structures and it is plausible to
use a same set of sparse representations for both
words and target-word weight vectors. As we shall
show in Section 4, our treatment of compressing
the Prediction subnet does make sense and
achieves high performance.

Formally, the i-th output weight vector is esti-
mated by

Ŵi = Dxi, (8)
3W:,1:B is the first B columns of W .

Figure 2: Compressing the output of neural LM.
We apply NCE to estimate the parameters of the
Prediction sub-network (dashed round rectan-
gle). The SpUnnrmProb layer outputs a sparse,
unnormalized probability of the next word. By
“sparsity,” we mean that, in NCE, the probability
is computed for only the “true” next word (red)
and a few generated negative samples.

The biases can also be compressed as

b̂i = cxi. (9)

where xi is the sparse representation of the i-th
word. (It is shared in the compression of weights
and biases.)

In the above model, we have managed to com-
pressed a language model whose number of pa-
rameters is irrelevant to the vocabulary size.

To better estimate a “prior” distribution of
words, we may alternatively assign an indepen-
dent bias to each word, i.e., b is not compressed.
In this variant, the number of model parameters
grows very slowly and is also negligible because
each word needs only one extra parameter. Exper-
imental results show that by not compressing the
bias vector, we can even improve the performance
while compressing LMs.

3.4 Noise-Contrastive Estimation with
ZRegression

We adopt the noise-contrastive estimation (NCE)
method to train our model. Compared with the
maximum likelihood estimation of softmax, NCE
reduces computational complexity to a large de-
gree. We further propose the ZRegression
mechanism to stablize training.

NCE generates a few negative samples for each
positive data sample. During training, we only
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need to compute the unnormalized probability of
these positive and negative samples. Interested
readers are referred to (Gutmann and Hyvärinen,
2012) for more information.

Formally, the estimated probability of the word
wi with history/context h is

P (w|h;θ) =
1
Zh
P 0(wi|h;θ)

=
1
Zh

exp(s(wi, h;θ)), (10)

where θ is the parameters and Zh is a context-
dependent normalization factor. P 0(wi|h;θ) is
the unnormalized probability of the w (given by
the SpUnnrmProb layer in Figure 2).

The NCE algorithm suggests to take Zh as pa-
rameters to optimize along with θ, but it is in-
tractable for context with variable lengths or large
sizes in language modeling. Following Mnih and
Teh (2012), we set Zh = 1 for all h in the base
model (without ZRegression).

The objective for each occurrence of con-
text/history h is

J(θ|h) = log
P (wi|h;θ)

P (wi|h;θ) + kPn(wi)
+

k∑
j=1

log
kPn(wj)

P (wj |h;θ) + kPn(wj)
,

where Pn(w) is the probability of drawing a nega-
tive samplew; k is the number of negative samples
that we draw for each positive sample.

The overall objective of NCE is

J(θ) = Eh[J(θ|h)] ≈ 1
M

M∑
i=1

J(θ|hi),

where hi is an occurrence of the context and M is
the total number of context occurrences.

Although setting Zh to 1 generally works well
in our experiment, we find that in certain sce-
narios, the model is unstable. Experiments show
that when the true normalization factor is far away
from 1, the cost function may vibrate. To com-
ply with NCE in general, we therefore propose a
ZRegression layer to predict the normalization
constant Zh dependent on h, instead of treating it
as a constant.

The regression layer is computed by

Z−1
h = exp(W>

Z h+ bZ),

Partitions Running words

Train (n-gram) 1.6 B
Train (neural LMs) 100 M
Dev 100 K
Test 5 M

Table 2: Statistics of our corpus.

whereWZ ∈ RC and bZ ∈ R are weights and bias
for ZRegression. Hence, the estimated proba-
bility by NCE with ZRegression is given by

P (w|h) = exp(s(h,w)) · exp(W>
Z h+ bZ).

Note that the ZRegression layer does not
guarantee normalized probabilities. During val-
idation and testing, we explicitly normalize the
probabilities by Equation (1).

4 Evaluation

In this part, we first describe our dataset in Subsec-
tion 4.1. We evaluate our learned sparse codes of
rare words in Subsection 4.2 and the compressed
language model in Subsection 4.3. Subsection 4.4
provides in-depth analysis of the ZRegression
mechanism.

4.1 Dataset
We used the freely available Wikipedia4 dump
(2014) as our dataset. We extracted plain sen-
tences from the dump and removed all markups.
We further performed several steps of preprocess-
ing such as text normalization, sentence splitting,
and tokenization. Sentences were randomly shuf-
fled, so that no information across sentences could
be used, i.e., we did not consider cached language
models. The resulting corpus contains about 1.6
billion running words.

The corpus was split into three parts for train-
ing, validation, and testing. As it is typically time-
consuming to train neural networks, we sampled a
subset of 100 million running words to train neu-
ral LMs, but the full training set was used to train
the backoff n-gram models. We chose hyperpa-
rameters by the validation set and reported model
performance on the test set. Table 2 presents some
statistics of our dataset.

4.2 Qualitative Analysis of Sparse Codes
To obtain words’ sparse codes, we chose 8k com-
mon words as the “dictionary,” i.e., B = 8000.

4http://en.wikipedia.org
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Figure 3: The sparse representations of selected
words. The x-axis is the dictionary of 8k common
words; the y-axis is the coefficient of sparse cod-
ing. Note that algorithm, secret, and debate are
common words, each being coded by itself with a
coefficient of 1.

We had 2k–42k uncommon words in different set-
tings. We first pretrained word embeddings of
both rare and common words, and obtained 200d
vectors U and w in Equation (5). The dimension
was specified in advance and not tuned. As there
is no analytic solution to the objective, we opti-
mized it by Adam (Kingma and Ba, 2014), which
is a gradient-based method. To filter out small co-
efficients around zero, we simply set a value to 0
if it is less than 0.015 ·max{v ∈ x}. wα in Equa-
tion (6) was set to 1 because we deemed fitting loss
and sparsity penalty are equally important. We set
wβ in Equation (7) to 0.1, and this hyperparameter
is insensitive.

Figure 3 plots the sparse codes of a few selected
words. As we see, algorithm, secret, and debate
are common words, and each is (sparsely) coded
by itself with a coefficient of 1. We further notice
that a rare word like algorithms has a sparse rep-
resentation with only a few non-zero coefficient.

Moreover, the coefficient in the code of al-
gorithms—corresponding to the base word algo-
rithm—is large (∼ 0.6), showing that the words
algorithm and algorithms are similar. Such phe-
nomena are also observed with secret and debate.

The qualitative analysis demonstrates that our
approach can indeed learn a sparse code of a word,
and that the codes are meaningful.

4.3 Quantitative Analysis of Compressed
Language Models

We then used the pre-computed sparse codes to
compress neural LMs, which provides quantita-
tive analysis of the learned sparse representations
of words. We take perplexity as the performance
measurement of a language model, which is de-

fined by

PPL = 2−
1
N

∑N
i=1 log2 p(wi|hi)

where N is the number of running words in the
test corpus.

4.3.1 Settings
We leveraged LSTM-RNN as the Encoding sub-
net, which is a prevailing class of neural networks
for language modeling (Sundermeyer et al., 2015;
Karpathy et al., 2015). The hidden layer was 200d.
We used the Adam algorithm to train our neural
models. The learning rate was chosen by valida-
tion from {0.001, 0.002, 0.004, 0.006, 0.008}. Pa-
rameters were updated with a mini-batch size of
256 words. We trained neural LMs by NCE, where
we generated 50 negative samples for each pos-
itive data sample in the corpus. All our model
variants and baselines were trained with the same
pre-defined hyperparameters or tuned over a same
candidate set; thus our comparison is fair.

We list our compressed LMs and competing
methods as follows.
• KN3. We adopted the modified Kneser-Ney

smoothing technique to train a 3-gram LM;
we used the SRILM toolkit (Stolcke and oth-
ers, 2002) in out experiment.
• LBL5. A Log-BiLinear model introduced in

Mnih and Hinton (2007). We used 5 preced-
ing words as context.
• LSTM-s. A standard LSTM-RNN language

model which is applied in Sundermeyer et al.
(2015) and Karpathy et al. (2015). We im-
plemented the LM ourselves based on Theano
(Theano Development Team, 2016) and also
used NCE for training.
• LSTM-z. An LSTM-RNN enhanced with

the ZRegression mechanism described in
Section 3.4.
• LSTM-z,wb. Based on LSTM-z, we com-

pressed word embeddings in Embedding
and the output weights and biases in
Prediction.
• LSTM-z,w. In this variant, we did not com-

press the bias term in the output layer. For
each word in C, we assigned an independent
bias parameter.

4.3.2 Performance
Tables 3 shows the perplexity of our compressed
model and baselines. As we see, LSTM-based
LMs significantly outperform the log-bilinear
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Vocabulary 10k 22k 36k 50k

KN3† 90. 4 125.3 146.4 159.9
LBL5 116. 6 167.0 199.5 220.3
LSTM-s 107. 3 159.5 189.4 222.1
LSTM-z 75. 1 104.4 119.6 130.6
LSTM-z,wb 73. 7 103.4 122.9 138.2
LSTM-z,w 72. 9 101.9 119.3 129.2

Table 3: Perplexity of our compressed language
models and baselines. †Trained with the full cor-
pus of 1.6 billion running words.

Vocabulary 10k 22k 36k 50k

LSTM-z,w 17.76 59.28 73.42 79.75
LSTM-z,wb 17.80 59.44 73.61 79.95

Table 4: Memory reduction (%) by our proposed
methods in comparison with the uncompressed
model LSTM-z. The memory of sparse codes are
included.

Figure 4: Fine-grained plot of performance
(perplexity) and memory consumption (including
sparse codes) versus the vocabulary size.

model as well as the backoff 3-gram LM, even if
the 3-gram LM is trained on a much larger cor-
pus with 1.6 billion words. The ZRegression
mechanism improves the performance of LSTM
to a large extent, which is unexpected. Subsec-
tion 4.4 will provide more in-depth analysis.

Regarding the compression method proposed
in this paper, we notice that LSTM-z,wb and
LSTM-z,w yield similar performance to LSTM-z.
In particular, LSTM-z,w outperforms LSTM-z in
all scenarios of different vocabulary sizes. More-
over, both LSTM-z,wb and LSTM-z,w can reduce
the memory consumption by up to 80% (Table 4).

We further plot in Figure 4 the model perfor-
mance (lines) and memory consumption (bars) in
a fine-grained granularity of vocabulary sizes. We
see such a tendency that compressed LMs (LSTM-
z,wb and LSTM-z,w, yellow and red lines) are
generally better than LSTM-z (black line) when

we have a small vocabulary. However, LSTM-
z,wb is slightly worse than LSTM-z if the vocabu-
lary size is greater than, say, 20k. The LSTM-z,w
remains comparable to LSTM-z as the vocabulary
grows.

To explain this phenomenon, we may imagine
that the compression using sparse codes has two
effects: it loses information, but it also enables
more accurate estimation of parameters especially
for rare words. When the second factor dominates,
we can reasonably expect a high performance of
the compressed LM.

From the bars in Figure 4, we observe that tra-
ditional LMs have a parameter space growing lin-
early with the vocabulary size. But the number
of parameters in our compressed models does not
increase—or strictly speaking, increases at an ex-
tremely small rate—with vocabulary.

These experiments show that our method can
largely reduce the parameter space with even per-
formance improvement. The results also verify
that the sparse codes induced by our model indeed
capture meaningful semantics and are potentially
useful for other downstream tasks.

4.4 Effect of ZRegression

We next analyze the effect of ZRegression for
NCE training. As shown in Figure 5a, the training
process becomes unstable after processing 70% of
the dataset: the training loss vibrates significantly,
whereas the test loss increases.

We find a strong correlation between unsta-
bleness and the Zh factor in Equation (10), i.e.,
the sum of unnormalized probability (Figure 5b).
Theoretical analysis shows that theZh factor tends
to be self-normalized even though it is not forced
to (Gutmann and Hyvärinen, 2012). However,
problems would occur, should it fail.

In traditional methods, NCE jointly estimates
normalization factor Z and model parameters
(Gutmann and Hyvärinen, 2012). For language
modeling, Zh dependents on context h. Mnih
and Teh (2012) propose to estimate a separate Zh
based on two history words (analogous to 3-gram),
but their approach hardly scales to RNNs because
of the exponential number of different combina-
tions of history words.

We propose the ZRegression mechanism in
Section 3.4, which can estimate the Zh factor well
(Figure 5d) based on the history vector h. In
this way, we manage to stabilize the training pro-
cess (Figure 5c) and improve the performance by
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(a) Training/test loss vs. training time w/o
ZRegression.

(b) The validation perplexity and normalization factor Zh w/o
ZRegression.

(c) Training loss vs. training time w/
ZRegression of different runs.

(d) The validation perplexity and normalization factor Zh w/
ZRegression.

Figure 5: Analysis of ZRegression.

a large margin, as has shown in Table 3.
It should be mentioned that ZRegression is

not specific to model compression and is generally
applicable to other neural LMs trained by NCE.

5 Conclusion

In this paper, we proposed an approach to repre-
sent rare words by sparse linear combinations of
common ones. Based on such combinations, we
managed to compress an LSTM language model
(LM), where memory does not increase with the
vocabulary size except a bias and a sparse code
for each word. Our experimental results also show
that the compressed LM has yielded a better per-
formance than the uncompressed base LM.
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