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Abstract

We present a transition-based system that
jointly predicts the syntactic structure and
lexical units of a sentence by building
two structures over the input words: a
syntactic dependency tree and a forest of
lexical units including multiword expres-
sions (MWEs). This combined represen-
tation allows us to capture both the syn-
tactic and semantic structure of MWEs,
which in turn enables deeper downstream
semantic analysis, especially for semi-
compositional MWEs. The proposed sys-
tem extends the arc-standard transition
system for dependency parsing with tran-
sitions for building complex lexical units.
Experiments on two different data sets
show that the approach significantly im-
proves MWE identification accuracy (and
sometimes syntactic accuracy) compared
to existing joint approaches.

1 Introduction

Multiword expressions (MWEs) are sequences
of words that form non-compositional semantic
units. Their identification is crucial for semantic
analysis, which is traditionally based on the prin-
ciple of compositionality. For instance, the mean-
ing of cut the mustard cannot be compositionally
derived from the meaning of its elements and the
expression therefore has to be treated as a single
unit. Since Sag et al. (2002), MWEs have attracted
growing attention in the NLP community.
Identifying MWE:s in running text is challeng-
ing for several reasons (Baldwin and Kim, 2010;
Seretan, 2011; Ramisch, 2015). First, MWEs en-
compass very diverse linguistic phenomena, such
as complex grammatical words (in spite of, be-
cause of), nominal compounds (light house), non-
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canonical prepositional phrases (above board),
verbal idiomatic expressions (burn the midnight
oil), light verb constructions (have a bath), multi-
word names (New York), and so on. They can also
be discontiguous in the sense that the sequence can
include intervening elements (John pulled Mary’s
leg). They may also vary in their morphologi-
cal forms (hot dog, hot dogs), in their lexical el-
ements (lose one’s mind/head), and in their syn-
tactic structure (he took a step, the step he took).

The semantic processing of MWEs is further
complicated by the fact that there exists a contin-
uum between entirely non-compositional expres-
sions (piece of cake) and almost free expressions
(traffic light). Many MWEs are indeed semi-
compositional. For example, the compound white
wine denotes a type of wine, but the color of the
wine is not white, so the expression is only par-
tially transparent. In the light verb construction
take a nap, nap keeps its usual meaning but the
meaning of the verb take is bleached. In addition,
the noun can be compositionally modified as in
take a long nap. Such cases show that MWEs may
be decomposable and partially analyzable, which
implies the need for predicting their internal struc-
ture in order to compute their meaning.

From a syntactic point of view, MWEs often
have a regular structure and do not need special
syntactic annotation. Some MWEs have an irreg-
ular structure, such as by and large which on the
surface is a coordination of a preposition and an
adjective. They are syntactically as well as seman-
tically non-compositional and cannot be repre-
sented with standard syntactic structures, as stated
in Candito and Constant (2014). Many of these
irregular MWEs are complex grammatical words
like because of, in spite of and in order to — fixed
(grammatical) MWEs in the sense of Sag et al.
(2002). In some treebanks, these are annotated us-
ing special structures and labels because they can-
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not be modified or decomposed. We hereafter use
the term fixed MWE to refer to either fixed or ir-
regular MWEs.

In this paper, we present a novel representation
that allows both regular and irregular MWEs to be
adequately represented without compromising the
syntactic representation. We then show how this
representation can be processed using a transition-
based system that is a mild extension of a standard
dependency parser. This system takes as input a
sentence consisting of a sequence of tokens and
predicts its syntactic dependency structure as well
as its lexical units (including MWESs). The result-
ing structure combines two factorized substruc-
tures: (i) a standard tree representing the syntactic
dependencies between the lexical elements of the
sentence and (ii) a forest of lexical trees including
MWE:s identified in the sentence. Each MWE is
represented by a constituency-like tree, which per-
mits complex lexical units like MWE embeddings
(for example, [[Los Angeles | Lakers], I will [take
a [rain check]]). The syntactic and lexical struc-
tures are factorized in the sense that they share lex-
ical elements: both tokens and fixed MWEs.

The proposed parsing model is an extension of
a classical arc-standard parser, integrating specific
transitions for MWE detection. In order to deal
with the two linguistic dimensions separately, it
uses two stacks (instead of one). It is synchro-
nized by using a single buffer, in order to handle
the factorization of the two structures. It also in-
cludes different hard constraints on the system in
order to reduce ambiguities artificially created by
the addition of new transitions. To the best of our
knowledge, this system is the first transition-based
parser that includes a specific mechanism for han-
dling MWE:s in two dimensions. Previous related
research has usually proposed either pipeline ap-
proaches with MWE identification performed ei-
ther before or after dependency parsing (Kong et
al., 2014; Vincze et al., 2013a) or workaround
joint solutions using off-the-shelf parsers trained
on dependency treebanks where MWEs are an-
notated by specific subtrees (Nivre and Nilsson,
2004; Eryigit et al., 2011; Vincze et al., 2013b;
Candito and Constant, 2014; Nasr et al., 2015).

2 Syntactic and Lexical Representations

A standard dependency tree represents syntactic
structure by establishing binary syntactic relations
between words. This is an adequate representa-

tion of both syntactic and lexical structure on the
assumption that words and lexical units are in a
one-to-one correspondence. However, as argued
in the introduction, this assumption is broken by
the existence of MWESs, and we therefore need to
distinguish lexical units as distinct from words.

In the new representation, each lexical unit —
whether a single word or an MWE — is asso-
ciated with a lexical node, which has linguistic
attributes such as surface form, lemma, part-of-
speech tag and morphological features. With an
obvious reuse of terminology from context-free
grammar, lexical nodes corresponding to MWEs
are said to be non-terminal, because they have
other lexical nodes as children, while lexical nodes
corresponding to single words are terminal (and
do not have any children).

Some lexical nodes are also syntactic nodes,
that is, nodes of the syntactic dependency tree.
These nodes are either non-terminal nodes corre-
sponding to (complete) fixed MWEs or terminal
nodes corresponding to words that do not belong
to a fixed MWE. Syntactic nodes are connected
into a tree structure by binary, asymmetric depen-
dency relations pointing from a head node to a de-
pendent node.

Figure 1 shows the representation of the sen-
tence the prime minister made a few good de-
cisions. It contains three non-terminal lexical
nodes: one fixed MWE (a few), one contigu-
ous non-fixed MWE (prime minister) and one
discontiguous non-fixed MWE (made decisions).
Of these, only the first is also a syntactic node.
Note that, for reasons of clarity, we have sup-
pressed the lexical children of the fixed MWE in
Figure 1. (The non-terminal node correspond-
ing to a few has the lexical children a and few.)
For the same reason, we are not showing the
linguistic attributes of lexical nodes. For ex-
ample, the node made-decisions has the follow-
ing set of features: surface-form=‘made deci-
sions’, lemma="‘make decision’, POS=‘V’. Non-
fixed MWESs have regular syntax and their compo-
nents might have some autonomy. For example,
in the light verb construction made-decisions, the
noun decisions is modified by the adjective good
that is not an element of the MWE.

The proposed representation of fixed MWEs is
an alternative to using special dependency labels
as has often been the case in the past (Nivre and
Nilsson, 2004; Eryigit et al., 2011). In addition
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Figure 1: Representation of syntactic and lexical structure.

took-rain-check

took rain check
= | LM

Figure 2: Lexical structure of embedded MWE:s.

to special labels, MWEs are then represented as a
flat subtree of the syntactic tree. The root of the
subtree is the left-most or right-most element of
the MWE, and all the other elements are attached
to this root with dependencies having special la-
bels. Despite the special labels, these subtrees
look like ordinary dependency structures and may
confuse a syntactic parser. In our representation,
fixed MWEs are instead represented by nodes that
are atomic with respect to syntactic structure (but
complex with respect to lexical structure), which
makes it easier to store linguistic attributes that
belong to the fixed MWE and cannot be derived
from its components. The new representation also
allows us to represent the hierarchical structure of
embedded MWEs. Figure 2 provides an analysis
of she took a rain check that includes such an em-
bedding. The lexical node took-rain-check corre-
sponds to a light verb construction where the ob-
jectis a compound noun that keeps its semantic in-
terpretation whereas the verb has a neutral value.
One of its children is the lexical node rain-check
corresponding to a compound noun.

Let us now define the representation formally.
Given a sentence z = x1, ..., T, consisting of n
tokens, the syntactic and lexical representation is
a quadruple (V, F, N, A), where

1. V is the set of terminal nodes, corresponding

one-to-one to the tokens x 1, ..., Ty,

2. F'is a set of n-ary trees on V, with each
tree corresponding to a fixed MWE and the
root labeled with the part-of-speech tag for
the MWE,

3. N is aset of n-ary trees on F', with each tree
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corresponding to a non-fixed MWE and the
root labeled with the part-of-speech tag for
the MWE,

4. Ais asetof labeled dependency arcs defining
a tree over F'.

This is a generalization of the standard definition
of a dependency tree (see, for example, Kiibler et
al. (2009)), where the dependency structure is de-
fined over an intermediate layer of lexical nodes
(F) instead of directly on the terminal nodes (V),
with an additional layer of non-fixed MWEs added
on top. To exemplify the definition, here are the
formal structures corresponding to the representa-
tion visualized in Figure 1.

bz

Terminal nodes are represented by integers corre-
sponding to token positions, while trees are repre-
sented by n-ary terms ¢(cy, ..., c,), where ¢ is a
part-of-speech tag and cy, . . ., ¢, are the subtrees
immediately dominated by the root of the tree.
The total set of lexical nodesis L =V UF U N,
where V' contains the terminal and (FUN) — V
the non-terminal lexical nodes. The set of syntac-
tic nodes is simply F'.

It is worth noting that the representation im-
poses some limitations on what MWEs can be rep-
resented. In particular, we can only represent over-
lapping MWE:s if they are cases of embedding,
that is, cases where one MWE is properly con-
tained in the other. For example, in an example
like she took a walk then a bath, it might be ar-
gued that rook should be part of two lexical units:
took-walk and took-bath. This cannot currently be
represented. By contrast, we can accommodate
cases where two lexical units are interleaved, as
in the French example il prend un cachet et demi,
with the two units prend-cachet and un-et-demi,
which occur in the crossed pattern A1 B1 A2 B2.
However, while these cases can be represented in



principle, the parsing model we propose will not
be capable of processing them.

Finally, it is worth noting that, although our rep-
resentation in general allows lexical nodes with ar-
bitrary branching factor for flat MWEs, it is often
convenient for parsing to assume that all trees are
binary (Crabbé, 2014). For the rest of the paper,
we therefore assume that non-binary trees are al-
ways transformed into equivalent binary trees us-
ing either right or left binarization. Such transfor-
mations add intermediate temporary nodes that are
only used for internal processing.

3 Transition-Based Model

A transition-based parser is based on three compo-
nents: a transition system for mapping sentences
to their representation, a model for scoring differ-
ent transition sequences (derivations), and a search
algorithm for finding the highest scoring transition
sequence for a given input sentence. Following
Nivre (2008), we define a transition system as a
quadruple S = (C, T, cs, C;) where:

1. C'is a set of configurations,

2. T is a set of transitions, each of which is a
partial function ¢ : C' — C,

3. ¢, is an initialization function that maps each
input sentence x to an initial configuration
cs(x) € C,

4. Cy C C'is a set of terminal configurations.

A transition sequence for a sentence x is a se-
quence of configurations Co ,,, = co, ..., Cy, such
that ¢ = cs(x), ¢ € Cy, and for every ¢;
(0 < i < m) there is some transition ¢t € 1" such
that ¢(¢;) = c¢;4+1. Every transition sequence de-
fines a representation for the input sentence.
Training a transition-based parser means train-
ing the model for scoring transition sequences.
This requires an oracle that determines what is
an optimal transition sequence given an input sen-
tence and the correct output representation (as
given by treebank). Static oracles define a single
unique transition sequence for each input-output
pair. Dynamic oracles allow more than one opti-
mal transition sequence and can also score non-
optimal sequences (Goldberg and Nivre, 2013).
Once a scoring model has been trained, parsing
is usually performed as best-first search under this
model, using greedy search or beam search.
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3.1 Arc-Standard Dependency Parsing

Our starting point is the arc-standard transition
system for dependency parsing first defined in
Nivre (2004) and represented schematically in
Figure 3. A configuration in this system consists
of a triple ¢ = (o, 3, A), where o is a stack con-
taining partially processed nodes, 3 is a buffer
containing remaining input nodes, and A is a set of
dependency arcs. The initialization function maps
xr = T1,...,2p 0 cs(z) = ([,[1,...,n],{}),
and the set C'; of terminal configurations contains
any configuration of the form ¢ = ([i], [], A). The
dependency tree defined by such a terminal con-
figuration is ({1,...,n}, A). There are three pos-
sible transitions:

e Shift takes the first node in the buffer and
pushes it onto the stack.

Right-Arc(k) adds a dependency arc (i, k, j)
to A, where j is the first and 4 the second el-
ement of the stack, and removes j from the
stack.

Left-Arc(k) adds a dependency arc (j, k, )
to A, where j is the first and ¢ the second el-
ement of the stack, and removes 7 from the
stack.

A transition sequence in the arc-standard system
builds a projective dependency tree over the set of
terminal nodes in V. The tree is built bottom-up
by attaching dependents to their head and remov-
ing them from the stack until only the root of the
tree remains on the stack.

3.2 Joint Syntactic and Lexical Analysis

To perform joint syntactic and lexical analysis we
need to be able to build structure in two parallel di-
mensions: the syntactic dimension, represented by
a dependency tree, and the lexical dimension, rep-
resented by a forest of (binary) trees. The two di-
mensions share the token-level representation, as
well as the level of fixed MWEs, but the syntactic
tree and the non-fixed MWEs are independent.
We extend the parser configuration to use two
stacks, one for each dimension, but only one
buffer. In addition, we need not only a set of de-
pendency arcs, but also a set of lexical units. A
configuration in the new system therefore consists
of a quintuple ¢ (01,092,0,A,L), where o1
and oy are stacks containing partially processed
nodes (which may now be complex MWEs), [ is
a buffer containing remaining input nodes (which



Initial: ([1,00,...,n,{})

Terminal: ([i,11,A)

Shift: (0,ilB,4) = (oi,B,4)
Right-Arc(k):  (olilj, 8,A) = (oli, 3, AU{(i,k,5)})
Left-Arc(k):  (olilj,8,4) = (0l5,8,AU{(j,k, )}

Figure 3: Arc-standard transition system.

Initial: ([]7[]7[07"‘771]7{}7
Terminal: ([z], [, 1], A, L)
Shift: 01702:i|67A7L)

Right-Arc(k):
Left-Arc(k):

01|x|y7 0-2’/37 A7 L)
O'1|l'|y, 02, 55 Aa L)

o~~~ o~ o~ —~

{h

Merger(t): o1lz|y, o)y, B, A, L)
Merge v (1): o1,02lzly, B, A, L)
Complete: o1,020z, 6, A, L)

oili,o2li, 8, A, L)

o1lz, 02,8, AU{(z,k,y)}, L)
o1ly, o2, 8, AU{(y, k,2)}, L)
oi|t(z,y), o2lt(z,y), 58, A, L)
o1,02|t(x,y), B8, A, L)
o1,02,8,A, LU{zx})

R

o~~~ o~ o~ —~

Figure 4: Transition system for joint syntactic and lexical analysis.

are always tokens), A is a set of dependency arcs,
and L is a set of lexical units (tokens or MWESs).
The initialization function maps * = x1,..., %,
tocs(z) = ([],[],[L,...,n],{ },{}), and the set
C, of terminal configurations contains any config-
uration of the form ¢ = ([z],[ ],[ ], A, L). The
dependency tree defined by such a terminal con-
figuration is (F, A), and the set of lexical units is
V U L. Note that the set F' of syntactic nodes is
not explicitly represented in the configuration but
is implicitly defined by A. Similarly, the set L
only contains F'U V.

The new transition system is shown in Figure 4.
There are now six possible transitions:

o Shift takes the first node in the buffer and
pushes it onto both stacks. This guarantees
that the two dimensions are synchronized at
the token level.

Right-Arc(k) adds a dependency arc
(z,k,y) to A, where y is the first and x the
second element of the syntactic stack (o7),
and removes y from this stack. It does not
affect the lexical stack (o2).!

Left-Arc(k) adds a dependency arc (y, k, z)
to A, where y is the first and x the second ele-

ment of the syntactic stack (o), and removes
x from this stack. Like Right-Arc(k), it does

"'We use the variables « and y, instead of i and j, because
the stack elements can now be complex lexical units as well
as simple tokens.
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not affect the lexical stack (o2).

Merger(t) applies in a configuration where
the two top elements = and y are identical on
both stacks and combines these elements into
a tree t(x, y) representing a fixed MWE with
part-of-speech tag ¢. Since it operates on both
stacks, the new element will be a syntactic
node as well as a lexical node.

Merge(t) combines the two top elements
x and y on the lexical stack (o9) into a tree
t(z,y) representing a non-fixed MWE with
part-of-speech tag t. Since it only operates
on the lexical stack, the new element will not
be a syntactic node.

Complete moves the top element x on the
lexical stack (o2) to L, making it a final lex-
ical unit in the output representation. Note
that x can be a simple token, a fixed MWE
(created on both stacks), or a non-fixed MWE
(created only on the lexical stack).

A transition sequence in the new system derives
the set of lexical nodes and simultaneously builds
a projective dependency tree over the set of syntac-
tic nodes. By way of example, Figure 5 shows the
transition sequence for the example in Figure 1.

3.3 Implicit Completion

The system presented above has one potential
drawback: it needs a separate Complete transi-
tion for every lexical unit, even in the default case



Transition Configuration

( ]7 []7 [17273747576777817140 = { }7LO - { })
Shift = ( 1]5 [1}»[2, ,4,5,6,7, 8}7A07L0)
Complete = ([1,[],12,3,4,5,6,7,8], Ao, L1 = Lo U {1})
Shift = ( 17213[2]7[37455767778}7A07L1)
Shift = ([1,2,3],[2,3],[4,5,6,7,8], Ao, L1)
MergeN(N) = ( 17273}’ [N(273)]v [43576775 8]7A15L1)
Complete = ([1,2,3],]],[4,5,6,7,8], Ao, L2 = L1 U{N(2,3)})
Left-Arc(mod) = ([1,3],[],[4,5,6,7,8], A1 = Ag U {(3,mod, 2)}, L2)
Left-Arc(det) =  ([3],]],[4,5,6,7,8], A = A; U {(3,det, 1)}, L»)
Shift = (374]7[4]7[ 765778]7A27L2
Left-Arc(subj) = ([4],[4],[5,6,7,8], A3 = A5 U {(4, subj, 3)}, Lo)
Shift = ([4,5],[4,5],]6,7,8], As, L)
Shift = ( 47576}1 [475> }7[778}114371’2)
Merger(A) = ( 47A(576)]7 [47A(576)]7 [77 8]7A37L2)
Complete = ( 4, A(5a 6)]7 [4]7 [77 ]7 A37 Ls=LxU {A(57 6)})
Shift = ( 47A(576)77}7[47 ]7 [8]5A37L3)
Complete = ( 4, A(5a 6)7 7}, [4]7 [ ]7 A37 Ly=LszU {7})
Shift = (47A(576)7758]7 478}7[]7A37L4)
Left-Arc(mod) = ([4,A(5,6),8],[4,8],[], A2 = A3 U {(8,mod, 7)}, L4)
Left-Arc(mod) = ([4,8],[4,8],[], As = A4 U {(8,mod, A(5,6))}, L4)
MergeN(V) = ( 478]7 [V(478)]7 H?A57L4)
Complete = ([4,8],[1,[],A4s,Ls = L4 U{V(4,8)})
Right-Arc(obj)) = ([4],[],[], A6 = As U {(4,0b},8)}, Ls)

Figure 5: Transition sequence for joint syntactic and lexical analysis.

when a lexical unit is just a token. This makes
sequences much longer and increases the inherent
ambiguity. One way to deal with this problem is
to make the Complete transition implicit and de-
terministic, so that it is not scored by the model
(or predicted by a classifier in the case of deter-
ministic parsing) but is performed as a side effect
of the Right-Arc and Left-Arc transitions. Every
time we apply one of these transitions, we check
whether the dependent x of the new arc is part of
a unit y on the lexical stack satisfying one of the
following conditions: (i) x = y; (ii) = is a lexi-
cal child of y and every lexical node z in y either
has a syntactic head in A or is the root of the de-
pendency tree. If (i) or (ii) is satisfied, we move y
from the lexical stack to the set L of lexical units
as a side effect of the arc transition.

4 Experiments

This section provides experimental results ob-
tained with a simple implementation of our sys-
tem using a greedy search parsing algorithm and a
linear model trained with an averaged perceptron
with shuffled examples and a static oracle. More
precisely, the static oracle is defined using the fol-
lowing transition priorities: Merger > Mergey >
Complete > LeftArc > RightArc > Shift. Ateach
state of the training phase, the static oracle selects
the valid transition that has the higher priority.
We evaluated the two variants of the system,
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namely Explicit and Implicit, with explicit and im-
plicit completion, respectively. They were com-
pared against the joint approach proposed in Can-
dito and Constant (2014) that we applied to an arc-
standard parser, instead of a graph-based parser.
The parser is trained on a treebank where MWE
status and grammatical function are concatenated
in arc labels. We consider it as the Baseline.
We used classical transition-based parsing fea-
tures consisting of patterns combining linguistic
attributes of nodes on the stacks and the buffer, as
well as processed subtrees and transition history.
We can note that the joint systems do not contain
features sharing elements of both stacks. Prelimi-
nary tuning experiments did not show gains when
using such features.

We also compared these systems against weaker
ones, obtained by disabling some transitions and
using one stack only. Two systems, namely
Syntactic-baseline and Syntactic only predict the
syntactic nodes and the dependency structure by
using respectively a baseline parser and our system
where neither the lexical stack nor the Merge 5y and
Complete transitions are used. The latter one is an
implementation of the proposal in Nivre (2014).
Two systems are devoted only to the lexical layer:
Lexical only recognizes the lexical units (only the
lexical stack and the Merge ; and Complete transi-
tions are activated); Fixed only identifies the fixed
expressions.



Corpus 'EWT ‘ FTB

Train Test Train Dev Test
# sent. 3,312 500 14,759 1,235 2,541
#tokens | 48,408 7,171 | 443,113 38,820 75,216
#MWEs | 2,996 401 23,556 2,119 4,043
# fixed - - 10,987 925 1,992

Table 1: Dataset statistics.

We also implemented pipeline systems where:
(1) fixed MWE:s are identified by applying only the
Fixed system; (ii) elements of predicted MWEs
are merged into single tokens; (iii) the retokenized
text is parsed using the Baseline or Implicit sys-
tems trained on a dataset where fixed MWESs con-
sist of single tokens.

We carried out our experiments on two differ-
ent datasets annotating both the syntactic struc-
ture and the MWEs: the French Treebank [FTB]
(Abeillé et al., 2003) and the STREUSLE corpus
(Schneider et al., 2014b) combined with the En-
glish Web Treebank [EWT] (Bies et al., 2012).
They are commonly used for evaluating the most
recent MWE-aware dependency parsers and su-
pervised MWE identification systems. Concern-
ing the FTB, we used the dependency version de-
veloped in Candito and Constant (2014) derived
from the SPMRL shared task version (Seddah et
al., 2013). Fixed and non-fixed MWEs are dis-
tinguished, but are limited to contiguous ones
only. The STREUSLE corpus (Schneider et al.,
2014b) corresponds to a subpart of the English
Web Treebank (EWT). It consists of reviews and
is comprehensively annotated in contiguous and
discontiguous MWEs. Fixed and non-fixed ex-
pressions are not distinguished though the distinc-
tion between non-compositional and collocational
MWEs is made. This implies that the Merger
transition is not used on this dataset. Practi-
cally, we used the LTH converter (Johansson and
Nugues, 2007) to obtain the dependency version
of the EWT constituent version. We also used
the predicted linguistic attributes used in Constant
and Le Roux (2015) and in Constant et al. (2016).
Both datasets include predicted POS tags, lem-
mas and morphology, as well as features computed
from compound dictionary lookup. None of them
is entirely satisfying with respect to our model, but
they allow us to evaluate the feasibility of the ap-
proach. Statistics on the two datasets are provided
in Table 1.

Results are provided in Table 2 for French and
in Table 3 for English. In order to evaluate the syn-
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tactic layer, we used classical UAS and LAS met-
rics. Before evaluation, merged units were auto-
matically decomposed in the form of flat subtrees
using specific arcs as in Seddah et al. (2013), so all
systems can be evaluated and compared at the to-
ken level. MWE identification is evaluated with
the F-score of the MWE segmentation, namely
MWE for all MWEs and FMWE for fixed MWEs
only. An MWE segment corresponds to the set
of its component positions in the input token se-
quence.

First, results show that our joint system consis-
tently and significantly outperforms the baseline
in terms of MWE identification on both datasets.
The merge transitions play a key role. In terms of
syntax, the Explicit system does not have any pos-
itive impact (on par or degraded scores), whereas
the Implicit system allows us to obtain slightly bet-
ter results on French and a significant improve-
ment on English. The very good performances
on English might be explained by the fact that
it contains a non-negligeable set of discontiguous
MWEs which complicates the prediction of ex-
plicit Complete transitions.

When compared with weaker systems, we can
see that the addition of the lexical layer helps im-
prove the prediction of the syntactic layer, which
confirms results on symbolic parsing (Wehrli,
2014). The syntactic layer does not seem to im-
pact the lexical layer prediction: we observe com-
parable results. This might be due to the fact
that syntax is helpful for long-distance disconti-
guity only, which does not appear in our datasets
(the English dataset contains MWEs with small
gaps). Another explanation could also be that syn-
tactic parsing accuracy is rather low due to the
use of a simple greedy algorithm. Developing
more advanced transition-based parsing methods
like beam-search may help improve both syntactic
parsing accuracy and MWE identification. When
comparing joint systems with pipeline ones, we
can see that preidentifying fixed MWESs seems to
help MWE identification whereas syntactic pars-
ing accuracy tends to be slightly lower. One hy-
pothesis could be that Merger transitions may
confuse the prediction of Merge  transitions.

When compared with existing state-of-the-art
systems, we can see that the proposed systems
achieve MWE identification scores that are com-
parable with the pipeline and joint approaches
used in Candito and Constant (2014) with a graph-



DEV TEST

System UAS LAS MWE FMWE | UAS LAS MWE FMWE
Baseline 86.28 83.67 772 83.2 84.85 82.67 755 81.9
Explicit 86.36 83.77  79.7 86.0 8498 8279 793 84.8
Implicit 86.61 84.10 80.0 86.2 85.04 8293 784 84.3
Syntactic only -Baseline 86.31 83.69 - 83.5 84.89  82.70 - 82.0
Syntactic only 86.39  83.77 - 85.0 85.02 82.84 - 83.8
Lexical only - - 80.0 - - - 79.5 -
Fixed only - - - 85.7 - - - 85.7
Pipeline (Fixed only — Baseline) 8533 8329  80.6 85.7 84.86 82.86 80.4 85.7
Pipeline (Fixed only — Implicit) 8549 8350  81.8 85.7 84.84 82.80 81.1 85.7
graph-based (Candito and Constant, 2014) 89.7 87.5 77.6 854 89.21 86.92  77.0 85.1
CRF+graph-based (Candito and Constant, 2014) | 89.8 87.4 79.0 85.0 86.97 89.24 78.6 86.3
CRF (SPMRL) (Le Roux et al., 2014) - - 82.4 - - - 80.5 -

Table 2: Results on the FTB. To reduce bias due to training with shuffled examples, scores are averages

of 3 different training/parsing runs.

TRAIN Cross-validation TEST

System UAS LAS MWE | UAS LAS MWE
Baseline 86.16 81.76 49.6 86.31 82.02 46.8
Explicit 86.25 82.09 52.9 86.05 81.68 534
Tmplicit 86.81 82.68 55.0 87.05 83.14 51.6
Syntactic only 86.35 82.23 - 86.41 82.20 -
Lexical only - - 54.5 - - 53.6
(Schneider et al., 2014a) - - - - 53.85

Table 3: Results on the reviews part of the English Web Treebank, via cross-validation on the training

set with 8 splits, and simple validation on the test set.

based parser for French, and the base sequence
tagger using a perceptron model with rich MWE-
dedicated features of Schneider et al. (2014a) for
English. It reaches lower scores than the best sim-
ple CRF-based MWE tagging system of Le Roux
et al. (2014). These scores are obtained on the
SPMRL shared task version, though they are not
entirely comparable with our system as they do not
distinguish fixed from non-fixed MWEs.

5 Related work

The present paper proposes a new representation
for lexical and syntactic analysis in the framework
of syntactic dependency parsing. Most existing
MWE-aware dependency treebanks represent an
MWE as a flat subtree of the syntactic tree with
special labels, like in the UD treebanks (Nivre et
al., 2016) or in the SPMRL shared task (Seddah et
al., 2013), or in other individual treebanks (Nivre
and Nilsson, 2004; Eryigit et al., 2011). Such rep-
resentation enables MWE discontinuity, but the in-
ternal syntactic structure is not annotated. Can-
dito and Constant (2014) proposed a representa-
tion where the irregular and regular MWEs are
distinguished: irregular MWESs are integrated in
the syntactic tree as above; regular MWEs are an-

notated in their component attributes while their
internal structure is annotated in the syntactic tree.
The Prague Dependency Treebank (Bejcek et al.,
2013) has several interconnected annotation lay-
ers: morphological (m-layer), syntactic (a-layer)
and semantic (#-layer). All these layers are trees
that are interconnected. MWEs are annotated on
the t-layer and are linked to an MWE lexicon
(Bejcek and Strandk, 2010). Constant and Le
Roux (2015) proposed a dependency representa-
tion of lexical segmentation allowing annotations
of deeper phenomena like MWE nesting. More
details on MWE-aware treebanks (including con-
stituent ones) can be found in Rosén et al. (2015).

Statistical MWE-aware dependency parsing has
received a growing interest since Nivre and Nils-
son (2004). The main challenge resides in find-
ing the best orchestration strategy. Past research
has explored either pipeline or joint approaches.
Pipeline strategies consist in positioning the MWE
recognition either before or after the parser it-
self, as in Nivre and Nilsson (2004), Eryigit et
al. (2011), Constant et al. (2013), and Kong et
al. (2014) for pre-identification and as in Vincze
et al. (2013a) for post-identification. Joint strate-
gies have mainly consisted in using off-the-shelf
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parsers and integrating MWE annotation in the
syntactic structure, so that MWE identification is
blind for the parser (Nivre and Nilsson, 2004;
Eryigit et al., 2011; Seddah et al., 2013; Vincze
et al., 2013b; Candito and Constant, 2014; Nasr et
al., 2015).

Our system includes a special treatment of
MWEs using specific transitions in a classical
transition-based system, in line with the proposal
of Nivre (2014). Constant et al. (2016) also
proposed a two-dimensional representation in the
form of dependency trees anchored by the same
words. The annotation of fixed MWE:s is redun-
dant on both dimensions, while they are shared
in our representation. They propose, along with
this representation, an adaptation of an easy-first
parser able to predict both dimensions. Contrary
to our system, there are no special mechanisms for
treating MWEs.

The use of multiple stacks to capture partly in-
dependent dimensions is inspired by the multipla-
nar dependency parser of Gémez-Rodriguez and
Nivre (2013). Our parsing strategy for (hierar-
chical) MWE:s is very similar to the deterministic
constituency parsing method of Crabbé (2014).

6 Conclusion

This paper proposes a transition-based system that
extends a classical arc-standard parser to handle
both lexical and syntactic analysis. It is based on
a new representation having two linguistic layers
sharing lexical nodes. Experimental results show
that MWE identification is greatly improved with
respect to the mainstream joint approach. This can
be a useful starting point for several lines of re-
search: implementing more advanced transition-
based techniques (beam search, dynamic oracles,
deep learning); extending other classical transition
systems like arc-eager and hybrid as well as han-
dling non-projectivity.
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