
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 150–160,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Generalized Transition-based Dependency Parsing
via Control Parameters

Bernd Bohnet, Ryan McDonald, Emily Pitler and Ji Ma
Google Inc.

{bohnetbd,ryanmcd,epitler,maji}@google.com

Abstract

In this paper, we present a generalized
transition-based parsing framework where
parsers are instantiated in terms of a set
of control parameters that constrain tran-
sitions between parser states. This gener-
alization provides a unified framework to
describe and compare various transition-
based parsing approaches from both a the-
oretical and empirical perspective. This
includes well-known transition systems,
but also previously unstudied systems.

1 Introduction

Transition-based dependency parsing is perhaps
the most successful parsing framework in use to-
day (Nivre, 2008). This is due to the fact that it can
process sentences in linear time (Nivre, 2003); is
highly accurate (Zhang and Nivre, 2011; Bohnet
and Nivre, 2012; Weiss et al., 2015); and has el-
egant mechanisms for parsing non-projective sen-
tences (Nivre, 2009). As a result, there have been
numerous studies into different transition systems,
each with varying properties and complexities
(Nivre, 2003; Attardi, 2006; Nivre, 2008; Nivre,
2009; Gómez-Rodrı́guez and Nivre, 2010; Choi
and Palmer, 2011; Pitler and McDonald, 2015).

While connections between these transition sys-
tems have been noted, there has been little work
on developing frameworks that generalize the phe-
nomena parsed by these diverse systems. Such a
framework would be beneficial for many reasons:
It would provide a language from which we can
theoretically compare known transition systems; it
can give rise to new systems that could have fa-
vorable empirical properties; and an implementa-
tion of the generalization allows for comprehen-
sive empirical studies.

In this work we provide such a generalized

transition-based parsing framework. Our frame-
work can be cast as transition-based parsing as it
contains both parser states as well as transitions
between these states that construct dependency
trees. As in traditional transition-based parsing,
the state maintains two data structures: a set of un-
processed tokens (normally called the buffer); and
a set of operative tokens (often called the stack).
Key to our generalization is the notion of active
tokens, which is the set of tokens in which new
arcs can be created and/or removed from consid-
eration. A parser instantiation is defined by a set
of control parameters, which dictate: the types of
transitions that are permitted and their properties;
the capacity of the active token set; and the maxi-
mum arc distance.

We show that a number of different transi-
tion systems can be described via this frame-
work. Critically the two most common systems
are covered – arc-eager and arc-standard (Nivre,
2008). But also Attardi’s non-projective (Attardi,
2006), Kuhlmann’s hybrid system (Kuhlmann et
al., 2011), the directed acyclic graph (DAG) parser
of Sagae and Tsujii (2008), and likely others.
More interestingly, the easy-first framework of
Goldberg and Elhadad (2010) can be described as
an arc-standard system with an unbounded active
token capacity.

We present a number of experiments with an
implementation of our generalized framework.
One major advantage of our generalization (and
its implementation) is that it allows for easy ex-
ploration of novel systems not previously studied.
In Section 5 we discuss some possibilities and pro-
vide experiments for these in Section 6.

2 Related Work

Transition-based dependency parsing can be char-
acterized as any parsing system that maintains a

150

state as well as a finite set of operations that move
the system from one state to another (Nivre, 2008).
In terms of modern statistical models that domi-
nate the discourse today, the starting point is likely
the work of Kudo and Matsumoto (2000) and Ya-
mada and Matsumoto (2003), who adopted the
idea of cascaded chunking from Abney (1991) in
a greedy dependency parsing framework.

From this early work, transition-based pars-
ing quickly grew in scope with the formalization
of the arc-eager versus arc-standard paradigms
(Nivre, 2003; Nivre, 2008), the latter largely being
based on well-known shift-reduce principles in the
phrase-structure literature (Ratnaparkhi, 1999).
The speed and empirical accuracy of these sys-
tems – as evident in the widely used MaltParser
software (Nivre et al., 2006a) – led to the study of
a number of different transition systems.

Many of these new transition systems attempted
to handle phenomena not covered by arc-eager
or arc-standard transition systems, which inher-
ently could only produce projective dependency
trees. The work of Attardi (2006), Nivre (2009),
Gómez-Rodrı́guez and Nivre (2010), Choi and
Palmer (2011), and Pitler and McDonald (2015)
derived transition systems that could parse non-
projective trees. Each of these systems traded-off
complexity for empirical coverage. Additionally,
Sagae and Tsujii (2008) developed transition sys-
tems that could parse DAGs by augmentating the
arc-standard and the arc-eager system. Bohnet and
Nivre (2012) derived a system that could produce
both labeled dependency trees as well as part-of-
speech tags in a joint transition system. Taking
this idea further Hatori et al. (2012) defined a tran-
sition system that performed joint segmentation,
tagging and parsing.

In terms of empirical accuracy, from the early
success of Nivre and colleagues (Nivre et al.,
2006b; Hall et al., 2007; Nivre, 2008), there has
been an succession of improvements in training
and decoding, including structured training with
beam search (Zhang and Clark, 2008; Zhang and
Nivre, 2011), incorporating graph-based rescoring
features (Bohnet and Kuhn, 2012), the aformen-
tioned work on joint parsing and tagging (Bohnet
and Nivre, 2012), and more recently the adoption
of neural networks and feature embeddings (Chen
and Manning, 2014; Weiss et al., 2015; Dyer et al.,
2015; Alberti et al., 2015).

In terms of abstract generalizations of transi-

tion systems, the most relevant work is that of
Gómez-Rodrı́guez and Nivre (2013) – which we
abbreviate GR&N13. In that work, a generalized
framework is defined by first defining a set of base
transitions, and then showing that many transition-
based systems can be constructed via composition
of these base transitions. Like our framework, this
covers common systems such as arc-eager and arc-
standard, as well as easy-first parsing. In partic-
ular, arc construction in easy-first parsing can be
seen as an action composed of a number of shifts,
an arc action, and a number of un-shift actions.
The primary conceptual difference between that
work and the present study is the distinction be-
tween complex actions versus control parameters.
In terms of theoretical coverage, the frameworks
are not equivalent. For instance, our generaliza-
tion covers the system of Attardi (2006), whereas
GR&N13 cover transition systems where multiple
arcs can be created in tandem. In Section 7 we
compare the two generalizations.

3 Generalized Transition-based Parsing

A transition system must define a parser state as
well as a set of transitions that move the system
from one state to the next. Correct sequences
of transitions create valid parse trees. A parser
state is typically a tuple of data structures and
variables that represent the dependency tree con-
structed thus far and, implicitly, possible valid
transitions to the next state.

In order to generalize across the parser states
of transition-based parsing systems, we preserve
their common parts and make the specific parts
configurable. In order to generalize across the
transitions, we divide the transitions into their ba-
sic operations. Each specific transition is then de-
fined by composition of these basic operations. By
defining the properties of the data structures and
the composition of the basic operations, different
transition systems can be defined and configured
within one single unified system. As a conse-
quence, we obtain a generalized parser that is ca-
pable of executing a wide range of different tran-
sition systems by setting a number of control pa-
rameters without changing the specific implemen-
tation of the generalized parser.

3.1 Basic Notation

In the following, we use a directed unlabeled de-
pendency tree T = 〈V,A〉 for a sentence x =

151

This is an example with two arcs

(a) Arc-standard: is and example are eligible for arcs.

This is an example with two arcs

(b) Arc-eager: example and with are eligible for arcs.

This is an example with two arcs

(c) Easy-first: All unreduced tokens are active (bolded).

Figure 1: A partially processed dependency tree
after having just added the arc (example, an) in
the arc-standard, arc-eager, and easy-first systems.
Tokens in the operative token set O are shaded or-
ange, while tokens in the unordered buffer U are
in an unshaded box. The bolded tokens are in
ACTIVE(O) and eligible for arcs (Section 3.4).

w1, ..., wn, where Vx = {1, ..., n} and V r
x =

Vx ∪ {r}, Ax ⊂ V r
x × Vx. r is a placeholder for

the root node and set either to 0 (root to the left
of the sentence) or n + 1 (root to the right). The
definition is mostly equivalent to that of Kübler et
al. (2009) but deviates in the potential handling of
the root on the right (Ballesteros and Nivre, 2013).

The set of nodes Vx index the words of a sen-
tence x and V r

x includes in addition the artificial
root node r. Let A be the arc set, i.e., (i, j) ∈ A
iff there is a dependency from i to j. We use as
alternative notation (i→ j). This is the arc set the
algorithm will create.

For ease of exposition, we will only address un-
labeled parsing. However, for our experiments we
do implement a labeled parsing variant using the
standard convention of composing arc transitions
with corresponding arc labels.

3.2 Generalized Parser State

Let U be an unordered set of buffered unprocessed
tokens. This set is identical to the buffer from
transition-based parsing. Following standard no-
tation, we will use i|U to indicate that i is the left-
most element of the set.

Let O be an ordered set of operative tokens.
Specifically, O is the set of tokens that 1) have
been moved out of U , and 2) are not themselves
reduced. The set O is similar in nature to the tra-
ditional stack of transition-based parsing, but is
not restricted to stack operations. As in transition-

Transitions
“Adds an arc from j to i, both ∈ ACTIVE(O).”
←i,j (O,U,A)⇒ (O,U,A ∪ (j → i))
“Adds an arc from i to j, both ∈ ACTIVE(O).”
→i,j (O,U,A)⇒ (O,U,A ∪ (i→ j))
“Removes token i ∈ ACTIVE(O) from O.”
−i (O...i..., U,A)⇒ (O,U,A)

”Moves the top token from U to the top of O.”
+ (O, i|U,A)⇒ (O|i, U,A)

Figure 2: Base generalized transitions over parser
states.

based parsing we will use the notation O|i to indi-
cate that i is the rightmost element of the set; O[n]
is the n-th rightmost element of the set. Figure 1
shows the set of tokens in O within shaded boxes
and U within unshaded boxes.

3.3 Generalized Transitions

The above discussion describes what a general-
ized transition-based parser state looks like; it does
not describe any transitions between these states,
which is the core of transition-based parsing. In
this section we present a set of basic transitions,
which themselves can be composed to make more
complex transitions (similar to Gómez-Rodrı́guez
and Nivre (2013)).

Let T = {←i,j ,→i,j ,−i,+} be the set of ba-
sic transitions (Figure 2), which have analogues
to standard transition-based parsing. These transi-
tions come with the standard preconditions, i.e., a
root cannot be a modifier; each token can modify
at most one word1; a token can only be reduced if
it has a head; and a shift can only happen if the un-
operative buffer is non-empty. We will often refer
to these as LEFT-ARC (←i,j), RIGHT-ARC (→i,j),
REDUCE (−i), and SHIFT (+). We additionally re-
fer to LEFT-ARC and RIGHT-ARC together as arc-
creation actions.

3.4 Control Parameters

Instantiations of a transition system are defined via
control parameters. We defined two sets of such
parameters. The first, we call global parameters,
dictates system wide behaviour. The second, we
call transition parameters, dictates a specific be-
haviour for each transition.

1This precondition is not needed for DAG transition sys-
tems.

152

Global Control Parameters
We have two parameters for the broader behaviour
of the system.

1. Active token capacity K. The active
set of tokens ACTIVE(O) that can be op-
erated on by the transitions is the set
{O[min(|O|,K)], ..., O[1]}. K additionally
determines the size of O at the start of pars-
ing. E.g., if K = 2, then we populate O
with the first two tokens. This is equivalent to
making SHIFT deterministic while |O| < K.

2. Max arc distance D. I.e., arcs can only be cre-
ated between two active tokens O[i] and O[j]
if |i− j| ≤ D.

Transition Control Paramters
Let M(T) be a multiset of transitions, such that
if t ∈ M(T), then t ∈ T . Note thatM(T) is a
multiset, and thus can have multiple transitions of
the same type. For each t ∈ M(T), our general-
ization requires the following control parameters
to be set (default in bold):

1. Bottom-up: B ∈ {[t]rue, [f]alse}. Whether
creating an arc also reduces it. Specifically
we will have two parameters, BL and BR,
which specify whether LEFT/RIGHT-ARC ac-
tions are bottom up. We use the notation and
say B = true to mean BL = BR = true.
For example BL = true indicates that ←i,j

is immediately followed by a reduce −i.

2. Arc-Shift: S ∈ {[t]rue, [f]alse}. Whether
creating an arc also results in SHIFT. Specif-
ically we will have two parameters, SL and
SR, which specify whether LEFT/RIGHT-
ARC actions are joined with a SHIFT. We
use the notation and say S = true to mean
SL = SR = true. For example SL = true
indicates that ←i,j is immediately followed
by +.

3. Periphery: P ∈ {[l]eft, [r]ight,na}. If a
transition must operate on the left or right pe-
riphery of the active token set ACTIVE(O).
For arc-creation transitions, this means that
at least one of the head or modifier is on the
specified periphery. If the value is na, that
means that the action is not constrained to be
on the periphery. Note, that when K ≤ 2, all
arc-creation actions by default are on the pe-
riphery.

Each of these control parameters has a default
value, which will be assumed if unspecified. Note
that the relevance of these parameters is transition
dependent. E.g., a SHIFT requires no such control
parameters and a REDUCE needs neither B nor S.

These control parameters allow limited com-
positionality of the basic transitions in Figure 2.
Unlike Gómez-Rodrı́guez and Nivre (2013), each
transition includes at most one SHIFT, at most one
REDUCE, and at most one LEFT-ARC or RIGHT-
ARC. I.e., the most compositional transition is a
LEFT/RIGHT-ARC with a REDUCE and/or a SHIFT.
Even with this restriction, all of the transition
systems covered by Gómez-Rodrı́guez and Nivre
(2013) can still be expressed in our generalization.

3.5 Generalized Transition System
To summarize, a generalized transition is defined
as follows:

1. A parser state: Γ = 〈O,U,A〉.
2. A set of basic transitions: T = {←i,j ,
→i,j ,−i,+}.

And each transition system instantiation must fur-
ther define:

1. Values for global control parameters: K and
D.

2. A multiset of valid transitionsM(T), where
∀t ∈M(T), then t ∈ T .

3. For each t ∈M(T) values for B, S, and P .

4 Transition System Instantiations

The instantiation of the transition system consists
of setting the capacityK and distanceD as well as
the transition control parameters. In order to make
the comparison clearer, we will define typical tran-
sition systems using the notation of Kuhlmann et
al. (2011). Here, a parser state is a triple (σ, β,A),
where σ|i is a stack with top element i, j|β is a
buffer whose next element is j, and A the set of
created arcs. To make notation cleaner, we will
drop indexes whenever the context makes it clear.
E.g., if the active token capacity is 2 (K = 2),
then necessarily for ←i,j , i = 2 and j = 1 and
we can write←. When K > 2 or D > 1, a base
arc-creation action can be instantiated into multi-
ple transitions that only differ by the indexes. E.g.,
when K = 3 and D = 2, ← with P = na
can have three instantiations: ←3,2, ←2,1 and

153

←3,1. To keep exposition compact, in such cir-
cumstances we use ? to denote the set of index-
pairs allowed by the given K, D and P values.

4.1 Arc-standard

Arc-standard parsing is a form of shift-reduce
parsing where arc-creations actions happen be-
tween the top two elements on the stack:

LEFT-ARC: (σ|i|j, β,A)⇒
(σ|j, β,A ∪ (j → i))

RIGHT-ARC: (σ|i|j, β,A)⇒
(σ|i, β,A ∪ (i→ j))

SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
This is easily handled in our generalization by hav-
ing only two active tokens. ← and → actions
with default parameter values are used to simulate
LEFT-ARC and RIGHT-ARC respectively, and + is
used to shift tokens from U to O.

M(T) base parameter values
LEFT-ARC ← {default}
RIGHT-ARC → {default}
SHIFT +
capacity K 2
arc distance D 1

Note that when K = 2, arc-creations are by defi-
nition always on the periphery.

4.2 Arc-eager

Arc-eager transition systems have been de-
scribed in various ways. Kuhlmann et al.
(2011) defines it as operations between tokens
at the top of the stack and front of the buffer.

LEFT-ARC: (σ|i, j|β,A)⇒
(σ, j|β,A ∪ (j → i))

RIGHT-ARC: (σ|i, j|β,A)⇒
(σ|i|j, β,A ∪ (i→ j))

REDUCE: (σ|i, β, A)⇒ (σ, β,A)
SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)

In our generalization, we can simulate this by hav-
ing two active tokens on the operative set, repre-
senting the top of the stack and front of the buffer.
SHIFT and LEFT-ARC are handled in the same way
as in the arc-standard system. The RIGHT-ARC ac-
tion is simulated by → with modified parameters
to account for the fact that the action keeps the
modifier in O and also shifts a token from U to
O. The REDUCE action is handled by − with the
periphery set to left so as to remove the second
rightmost token from O.

M(T) base parameter values
LEFT-ARC ← {default}
RIGHT-ARC → {B = f, S = t}
REDUCE − {P = l}
SHIFT +
K 2
D 1

Note that the artificial root must be on the right of
the sentence to permit the reduce to operate at the
left periphery of the active token set.

4.3 Easy-first

For easy-first parsing (Goldberg and Elhadad,
2010), the number of active tokens is infinite or,
more precisely, equals to the number of tokens in
the input sentence, and arc-creation actions can
happen between any two adjacent tokens.

M(T) base parameter values
LEFT-ARC ←? {default}
RIGHT-ARC →? {default}
K ∞
D 1

Note here ? denotes the set of indexes {(i, j)|i ≤
|O|, j ≥ 1, i = j + 1}. Thus, at each time step
there are 2∗|O| actions that need to be considered.
Additionally, reduce is always composed with arc-
creation and since K = ∞, then there is never
a SHIFT operation as O is immediately populated
with all tokens on the start of parsing.

4.4 Kuhlmann et al. (2011)

Kuhlmann et al. present a ‘hybrid’ transition sys-
tem where the RIGHT-ARC action is arc-standard
in nature, but LEFT-ARC actions is arc-eager in na-
ture, which is equivalent to the system of Yamada
and Matsumoto (2003). We can get the same ef-
fect as their system by allowing three active to-
kens, representing the top two tokens of the stack
and the front of the buffer. Transitions can be han-
dled similarly as the arc-standard system where
only the periphery parameter need to be changed
accordingly. This change also requires the root to
be on the right of the sentence.

M(T) base parameter values
LEFT-ARC ← {P = r}
RIGHT-ARC → {P = l}
SHIFT +
K 3
D 1

154

4.5 Sagae and Tsujii (2008)

Sagae and Tsuji present a model for projective
DAG parsing by modifying the LEFT-ARC and
RIGHT-ARC transitions of the arc-eager system.
In their system, the LEFT-ARC transition does not
remove the dependent, and RIGHT-ARC transition
does not shift any token from the input to the stack.

LEFT-ARC: (σ|i, j|β,A)⇒
(σ|i, j|β,A ∪ (j → i))

RIGHT-ARC: (σ|i, j|β,A)⇒
(σ|i, j|β,A ∪ (i→ j))

REDUCE: (σ|i, β, A)⇒ (σ, β,A)
SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
This can be easily simulated by modifying arc-

eager system mentioned in Sec. 4.2 such that both
the LEFT-ARC and RIGHT-ARC transition keep the
stack/buffer untouched.

M(T) base parameter values
LEFT-ARC ← {B = f}
RIGHT-ARC → {B = f}
REDUCE − {P = l}
SHIFT +
K 2
D 1

4.6 Attardi (2006)

Now we show how our framework can extend to
non-projective systems. This is primarily con-
trolled by the arc-distance parameter D.

The base of the Attardi non-projective transition
system is the arc-standard system. Attardi mod-
ifies RIGHT/LEFT-ARC actions that operate over
larger contexts in the stack. For simplicity of ex-
position below we model the variant of the Attardi
system described in Cohen et al. (2011).

RIGHT-ARCN: (σ|i1+N | . . . |i2|i1, β, A)⇒
(σ|iN | . . . |i2|i1, β, A ∪ (i1 → i1+N))

LEFT-ARCN: (σ|i1+N | . . . |i2|i1, β, A)⇒
(σ|i1+N | . . . |i2, β, A ∪ (i1+N → i1))

SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
Conceptually the Attardi system can be gener-
alized to any value of N2, and Attardi specif-
ically allows N=1,2,3. Actions that create arcs
between non-adjacent tokens permit limited non-
projectivity.

Thus, for Attardi, we set the number of active
tokens to N+1, to simulate the top N+1 tokens
of the stack, and set the max distance D to N to

2Attardi (2006) also introduces Extract/Insert actions to a
temporary buffer that he argues generalizes to all values of N.
We don’t account for that specific generalization here.

indicate that tokens up to N positions below the
top of the stack can add arcs with the top of the
stack.

M(T) base parameter values
LEFT-ARC ←? {P = r}
RIGHT-ARC →? {P = r}
K N + 1
D N (3 for Attardi (2006))

The critical parameter for each arc action is
that P = r. This means that the right pe-
ripheral active token always must participate in
the action, as does the right-most token of the
stack for the original Attardi. Here ? denotes
{(i, j)|j = 1, i− j ≤ D}.

5 Novel Transition Systems

Any valid setting of the control parameters could
theoretically define a new transition system, how-
ever not all such combinations will be empirically
reasonable. We outline two potential novel transi-
tion systems suggested by our framework, which
we will experiment with in Section 6. This is a
key advantage of our framework (and implemen-
tation) – it provides an easy experimental solution
to explore novel transition systems.

5.1 Bounded Capacity Easy-first

Easy-first and arc-standard are similar since they
are both bottom-up and both create arcs between
adjacent nodes. The main difference lies in the ca-
pacity K, which is 2 for arc-standard and ∞ for
easy-first. In addition, the shift action is needed
by the arc-standard system. Each system has some
advantages: arc-standard is faster, and somewhat
easier to train, while easy-first can be more accu-
rate (under identical learning settings). Seen this
way, it is natural to ask: what happens if the ac-
tive token range K is set to k, with 2 < k < ∞?
We explore various values in the region between
arc-standard and easy-first in Section 6.

M(T) base parameter values
LEFT-ARC ←? {default}
RIGHT-ARC →? {default}
SHIFT +
K k
D 1

5.2 Non-projective Easy-first

A simple observation is that by allowing D >
1 makes any transition system naturally non-

155

projective. One example would be a non-
projective variant of easy-first parsing:

M(T) base parameter values
LEFT-ARC ←? {default}
RIGHT-ARC →? {default}
K ∞
D any value of N

Here N denotes the maximum arc-creation dis-
tance.

We also note that one could potentially vary
both K and D simultaneously, giving a non-
projective limited capacity easy-first system.

6 Implementation and Experiments

Our implementation uses a linear model
∑

yi∈y w ·
f(x, y1, . . . , yi) to assign a score to a sequence y =
y1, y2, . . . ym of parser transitions, given sentence
x. Model parameters are trained using the struc-
tured perceptron with “early update” (Collins and
Roark, 2004) and features follow that of Zhang
and Nivre (2011).

For the arc-standard and arc-eager transition
systems, we use the static oracle to derive a single
gold sequence for a given sentence and its gold
tree. For systems where there is no such static
oracle, for example the easy-first system, we use
the method proposed by Ma et al. (2013) to se-
lect a gold sequence such that, for each update,
the condition w · f(x, ŷk) < w · f(x, yk) always
holds, which is required for perceptron conver-
gence. Here ŷk denotes the length k prefix of a
correct sequence and yk denotes the highest scor-
ing sequence in the beam.

We carry out the experiments on the Wall Street
Journal using the standard splits for the training
set (section 2-21), development set (section 22)
and test set (section 23). We converted the con-
stituency trees to Stanford dependencies version
3.3.0 (de Marneffe et al., 2006). We used a CRF-
based Part-of-Speech tagger to generate 5-fold
jack-knifed Part-of-Speech tag annotation of the
training set and used predicted tags on the devel-
opment and test set. The tagger reaches accuracy
scores similar to the Stanford tagger (Toutanova et
al., 2003) with 97.44% on the test set. The unla-
beled and labeled accuracy scores exclude punctu-
ation marks.

Obviously, there are many interesting instantia-
tions for the generalized transition system. In par-
ticular, it would be interesting to investigate pars-
ing performance of systems with different active

0 10 20 30 40 50 60 70

88

89

90

91

92

K

UAS

LAS

Figure 3: Labeled/unlabeled attachment scores
with respect to the active capacity K.

token size and arc-distance. Before we investigate
these system in the next subsections, we present
the performance on standard systems.

6.1 Common Systems
The results for arc-standard, arc-eager and easy-
first (bottom of Table 1) show how standard sys-
tems perform within our framework. Easy-first’s
labeled attachment score (LAS) is 0.46 higher than
the LAS of arc-eager when using the same feature
set. These results are competitive with the state-
of-the-art linear parsers, but below recent work on
neural network parsers. A future line of work is to
adopt such training into our generalization.

System UAS LAS b
Dyer et al. (2015) 93.10 90.90 –
Weiss et al. (2015) 93.99 92.05 –
Alberti et al. (2015) 94.23 92.23 8

Zhang and Nivre (2011)? 92.92 90.88 32
Zhang and McDonald (2014) 93.22 91.02 –

Arc-standard (gen.) 92.81 90.68 32
Arc-eager (gen.) 92.88 90.73 32
Easy-first (gen.) 93.31 91.19 32

Table 1: State-of-the-art comparison. ? denotes
our own re-implementation. The systems in the
first block on the top use neural networks.

6.2 Bounded Capacity Easy-first
Table 1 shows that easy-first is more accurate than
arc-standard. However, it is also more computa-
tionally expensive. By varying the number of ac-
tive tokens, we can investigate whether there is a
sweet spot in the accuracy vs. speed trade-off.

Figure 3 shows labeled/unlabeled accuracy
scores on the development set for active token

156

sizes ranging from 2 to 32, all with beam size
1. Different from the original easy-first system
where all tokens are initialized as active tokens,
in the bounded capacity system, a token can be ac-
tive only after it has been shifted from U to O.
We observe that the accuracy score increases re-
markably by over a point when active token ca-
pacity gets increased from 2 to 3, and peaks at a
active token capacity of 4. Generally, more active
tokens allows the parser to delay “difficult” deci-
sions to later steps and choose the “easy” ones at
early steps. Such behavior has the effect of limit-
ing the extent of error propagation. The result also
suggests that a modification as simple as adding
one more active token to the arc-standard system
can yield significant improvement.

With a larger active token capacity, we see a
slight drop of accuracy. This is likely related to
the parser having to predict when to perform a
shift transition. In comparison, the vanilla easy-
first parser does not need to model this.

6.3 Non-projective Easy-first
For the experiments with non-projective easy-first,
we use the Dutch and Danish CoNLL 2006 cor-
pora. To assess the performance, we applied the
evaluation rules of the 2006 shared task. In order
to make the non-projective systems perform well,
we added to all feature templates the arc-distance
D. In these experiments, we included in the train-
ing an artificial root node on the right since Dutch
as well a few sentences of the Danish corpus have
more than one root node.

In the experiments, we use the easy-first setting
with infinite set of active tokens K and increase
stepwise the arc-distance D. For training, we fil-
ter out the sentences which contain non-projective
arcs not parseable with the selected setting. Ta-
ble 2 provides an overview of the performance
with increasing arc-distance. At the bottom of the
table, we added accuracy scores for the bounded
capacity non-projective easy-first parser since we
think these settings provide attractive trade-offs
between accuracy and complexity.

The original easy-first performs O(n) feature
extractions and has a runtime of O(n log(n)) as-
suming a heap is used to extract the argmax at each
step and feature extraction is done over local con-
texts only (Goldberg and Elhadad, 2010). For the
non-projective variant of easy-first with D = d,
O(dn) feature extractions are required. Thus, for
the unrestricted variant where K = D = ∞,

Danish Dutch
D K UAS LAS CUR NPS UAS LAS CUR NPS
1 ∞ 90.22 85.51 41.30 84.37 79.11 75.41 32.45 63.55
2 ∞ 90.28 85.85 59.78 96.91 84.73 81.01 70.59 92.44
3 ∞ 90.68 86.07 65.22 98.82 85.03 81.65 77.99 99.01
4 ∞ 90.58 85.53 69.57 99.69 85.99 82.73 76.85 99.89
5 ∞ 90.84 86.11 65.22 99.88 85.21 81.93 76.09 99.96
6 ∞ 90.78 86.31 68.48 99.94 84.57 81.13 75.90 100.0
7 ∞ 90.64 85.91 63.04 100.0 85.07 82.01 77.04 100.0
4 5 90.74 85.87 66.30 99.69 86.51 82.91 76.66 99.89
5 6 91.00 86.21 72.83 99.88 86.03 82.73 76.09 99.96

Table 2: Experiments with non-projective easy-
first and bounded capacity easy-first with D the
arc-distance, K the active token capacity (∞ = all
tokens of a sentence), UAS and LAS are the un-
labeled and labeled accuracy scores, CUR is the
recall of crossing edges and NPS shows the per-
centage of sentences covered in the training set
where 100% means all non-projective (and projec-
tive) sentences in the training can be parsed and
are included in training.

O(n2) feature extractions are required. Table 2
explored more practical settings: when K = ∞,
D ≤ 7, the number of feature extractions is back
to O(n) with a runtime of O(n log(n)), matching
the original easy-first complexity. When both K
and D are small constants as in the lower portion
of Table 2, the runtime is O(n).

7 Comparison with GR&N13

The work most similar to ours is that of Gómez-
Rodrı́guez and Nivre (2013) (GR&N13). They de-
fine a divisible transition system with the principle
to divide the transitions into elementary transitions
and then to compose from these elementary transi-
tions complex transitions. GR&N13 identified the
following five elementary transitions:

SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
UNSHIFT: (σ|i, β, A)⇒ (σ, i|β,A)
REDUCE: (σ|i, β, A)⇒ (σ, β,A)
LEFT-ARC: (σ|i, j|β,A)⇒

(σ|i, j|β,A ∪ (j → i))
RIGHT-ARC: (σ|i, j|β,A)⇒

(σ|i, j|β,A ∪ (i→ j))
The notion of function composition is used to

combine the elementary transitions to the complex
ones. For instance, arc-standard would have three
actions: SHIFT; RIGHT-ARC ⊕REDUCE; LEFT-
ARC ⊕REDUCE.

The first difference we can note is the GR&N13
cannot instantiate transition systems that produce
non-projective trees. This is surely a superficial

157

difference, as GR&N13 could easily add transi-
tions with larger arc-distance or even SWAP ac-
tions (Nivre, 2009).

However, a less superficial difference is that
our generalization uses control parameters to con-
struct instantiations of transition systems, instead
of solely via transition composition like GR&N13.
Through this, our generalization results in a min-
imal departure from ‘standard’ representations of
these systems. While this may seem like a nota-
tional difference, this is particularly a benefit with
respect to implementation, as previous techniques
for classification and feature extraction can largely
be reused.

For example, in GR&N13, the definition of
the easy-first transition system (Goldberg and El-
hadad, 2010) is complex, e.g., a RIGHT-ARC at
position i requires a compositional transition of i
SHIFT actions, a RIGHT-ARC, a SHIFT, a REDUCE,
then i UNSHIFT actions. Note, that this means in
any implementation of this generalization, the out-
put space for a classifier will be very large. Fur-
thermore, the feature space would ultimately need
to take the entire sentence into consideration, con-
sidering that all compositional actions are centered
on the same state.

In our transition system, on the other hand,
easy-first operates almost as it does in its native
form, where n LEFT-ARC and n RIGHT-ARC ac-
tions are ranked relative to each other. There are
only two actions, each instantiated for every loca-
tion in the state. Thus the output space and feature
extraction are quite natural.

This leads to straight-forward implementations
allowing for easy experimentation and discovery.
Unlike GR&N13, we present empirical results for
both known transition systems as well as some
novel systems (Section 6).

8 Conclusion

We presented a generalized transition system that
is capable of representing and executing a wide
range of transition systems within one single im-
plementation. These transition systems include
systems such as arc-standard, arc-eager, easy-first.

Transitions can be freely composed of elemen-
tary operations. The transition system shows per-
fect alignment between the elementary operations
on one hand and their preconditions and the oracle
on the other hand. We adjust the transition system
to work on a stack in a uniform way starting at a

node on the stack and ending with the top node of
the stack. The results produced by this system are
more comparable as they can be executed with the
same classifier and feature extraction system.

Finally, we would like to highlight two insights
that the experiments provide. First, a few more ac-
tive tokens than two can boost the accuracy level
of an arc-standard transition system towards the
level of an easy-first transition system. These pars-
ing systems maintain very nicely the linear com-
plexity of the arc-standard transition system while
they provide a higher accuracy similar to those
of easy-first. Second, non-projective trees can be
parsed by allowing a larger arc-distance which is
a simple way to allow for non-projective edges.

We think that the transition systems with more
active tokens or the combination with edges that
span over more words provide very attractive tran-
sition systems for possible future parsers.

Acknowledgments

We would like to thank the anonymous reviewers,
Slav Petrov and Michael Collins for valuable com-
ments on earlier versions of this manuscript.

References

Steven Abney. 1991. Parsing by chunks. In Robert
Berwick, Steven Abney, and Carol Tenny, editors,
Principle-Based Parsing, pages 257–278. Kluwer.

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved transition-based parsing
and tagging with neural networks. In Proceedings
of EMNLP 2015.

Giuseppe Attardi. 2006. Experiments with a multi-
language non-projective dependency parser. In Pro-
ceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 166–
170.

Miguel Ballesteros and Joakim Nivre. 2013. Going
to the roots of dependency parsing. Computational
Linguistics, 39(1):5–13.

Bernd Bohnet and Jonas Kuhn. 2012. The best of
both worlds – a graph-based completion model for
transition-based parsers. In Proceedings of the 13th
Conference of the European Chpater of the Associ-
ation for Computational Linguistics (EACL), pages
77–87.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical

158

Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 1455–1465.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing.

Jinho D Choi and Martha Palmer. 2011. Getting the
most out of transition-based dependency parsing. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2.

Shay B Cohen, Carlos Gómez-Rodrı́guez, and Giorgio
Satta. 2011. Exact inference for generative proba-
bilistic non-projective dependency parsing. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1234–1245.

Michael Collins and Brian Roark. 2004. Incremen-
tal parsing with the perceptron algorithm. In Pro-
ceedings of the 42nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
112–119.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC).

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL 2015, pages
334–343. Association for Computational Linguis-
tics.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL HLT), pages 742–750.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1492–1501.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2013.
Divisible transition systems and multiplanar de-
pendency parsing. Computational Linguistics,
39(4):799–845.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen
Eryiğit, Beáta Megyesi, Mattias Nilsson, and
Markus Saers. 2007. Single malt or blended? A
study in multilingual parser optimization. In Pro-
ceedings of the CoNLL Shared Task of EMNLP-
CoNLL 2007, pages 933–939.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach
to word segmentation, pos tagging, and dependency
parsing in chinese. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 1045–1053.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Morgan and Claypool.

Taku Kudo and Yuji Matsumoto. 2000. Japanese de-
pendency structure analysis based on support vec-
tor machines. In Proceedings of the Joint SIGDAT
Conference on Empirical Methods in NLP and Very
Large Corpora, pages 18–25.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
673–682.

Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013.
Easy-first pos tagging and dependency parsing with
beam search. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 110–114,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006a.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the 5th In-
ternational Conference on Language Resources and
Evaluation (LREC), pages 2216–2219.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen
Eryiğit, and Svetoslav Marinov. 2006b. Labeled
pseudo-projective dependency parsing with support
vector machines. In Proceedings of the 10th Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 221–225.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34:513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP (ACL-
IJCNLP), pages 351–359.

Emily Pitler and Ryan McDonald. 2015. A linear-
time transition system for crossing interval trees. In
Human Language Technologies: The 2015 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL
HLT), pages 662–671.

159

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
Learning, 34:151–175.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce
dependency DAG parsing. In Proceedings of the
22nd International Conference on Computational
Linguistics (COLING), pages 753–760.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 173–180, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
ACL 2015, pages 323–333.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT), pages
195–206.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
562–571.

Hao Zhang and Ryan McDonald. 2014. Enforcing
structural diversity in cube-pruned dependency pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 656–661, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
parsing with rich non-local features. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics (ACL).

160

