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Abstract

We use Bayesian optimization to learn
curricula for word representation learning,
optimizing performance on downstream
tasks that depend on the learned represen-
tations as features. The curricula are mod-
eled by a linear ranking function which is
the scalar product of a learned weight vec-
tor and an engineered feature vector that
characterizes the different aspects of the
complexity of each instance in the training
corpus. We show that learning the curricu-
lum improves performance on a variety of
downstream tasks over random orders and
in comparison to the natural corpus order.

1 Introduction

It is well established that in language acquisition,
there are robust patterns in the order by which
phenomena are acquired. For example, prototypi-
cal concepts are acquired earlier; concrete words
tend to be learned before abstract ones (Rosch,
1978). The acquisition of lexical knowledge in
artificial systems proceeds differently. In gen-
eral, models will improve during the course of pa-
rameter learning, but the time course of acquisi-
tion is not generally studied beyond generaliza-
tion error as a function of training time or data
size. We revisit this issue of choosing the order
of learning—curriculum learning—framing it as
an optimization problem so that a rich array of
factors—including nuanced measures of difficulty,
as well as prototypicality and diversity—can be
exploited.

Prior research focusing on curriculum strate-
gies in NLP is scarce, and has conventionally been
following a paradigm of “starting small” (Elman,
1993), i.e., initializing the learner with “simple”
examples first, and then gradually increasing data
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complexity (Bengio et al., 2009; Spitkovsky et
al.,, 2010). In language modeling, this prefer-
ence for increasing complexity has been realized
by curricula that increase the entropy of training
data by growing the size of the training vocabu-
lary from frequent to less frequent words (Ben-
gio et al., 2009). In unsupervised grammar in-
duction, an effective curriculum comes from in-
creasing length of training sentences as training
progresses (Spitkovsky et al., 2010). These case
studies have demonstrated that carefully designed
curricula can lead to better results. However, they
have relied on heuristics in selecting curricula or
have followed the intuitions of human and animal
learning (Kail, 1990; Skinner, 1938). Had differ-
ent heuristics been chosen, the results would have
been different. In this paper, we use curriculum
learning to create improved word representations.
However, rather than testing a small number of
curricula, we search for an optimal curriculum us-
ing Bayesian optimization. A curriculum is de-
fined to be the ordering of the training instances,
in our case it is the ordering of paragraphs in which
the representation learning model reads the cor-
pus. We use a linear ranking function to conduct
a systematic exploration of interacting factors that
affect curricula of representation learning models.
We then analyze our findings, and compare them
to human intuitions and learning principles.

We treat curriculum learning as an outer loop in
the process of learning and evaluation of vector-
space representations of words; the iterative pro-
cedure is (1) predict a curriculum; (2) train word
embeddings; (3) evaluate the embeddings on tasks
that use word embeddings as the sole features.
Through this model we analyze the impact of cur-
riculum on word representation models and on ex-
trinsic tasks. To quantify curriculum properties,
we define three groups of features aimed at analyz-
ing statistical and linguistic content and structure
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of training data: (1) diversity, (2) simplicity, and
(3) prototypicality. A function of these features is
computed to score each paragraph in the training
data, and the curriculum is determined by sorting
corpus paragraphs by the paragraph scores. We
detail the model in §2. Word vectors are learned
from the sorted corpus, and then evaluated on part-
of-speech tagging, parsing, named entity recog-
nition, and sentiment analysis (§3). Our exper-
iments confirm that training data curriculum af-
fects model performance, and that models with op-
timized curriculum consistently outperform base-
lines trained on shuffled corpora (§4). We analyze
our findings in §5.

The contributions of this work are twofold.
First, this is the first framework that formulates
curriculum learning as an optimization problem,
rather then shuffling data or relying on human in-
tuitions. We experiment with optimizing the cur-
riculum of word embeddings, but in principle the
curriculum of other models can be optimized in a
similar way. Second, to the best of our knowledge,
this study is the first to analyze the impact of distri-
butional and linguistic properties of training texts
on the quality of task-specific word embeddings.

2 Curriculum Learning Model

We are considering the problem of maximizing a
performance of an NLP task through sequentially
optimizing the curriculum of training data of word
vector representations that are used as features in
the task.

Let X = {z1,x9,...,z,} be the training cor-
pus with n lines (sentences or paragraphs). The
curriculum of word representations is quantified
by scoring each of the paragraphs according to the
linear function wT¢(X), where ¢(X) € R*>*1isa
real-valued vector containing /¢ linguistic features
extracted for each paragraph, and w € R®*! de-
note the weights learned for these features. The
feature values ¢(X') are z-normalized across all
paragraphs. These scores are used to specify the
order of the paragraphs in the corpus—the curricu-
lum: we sort the paragraphs by their scores.

After the paragraphs are curriculum-ordered,
the reordered training corpus is used to generate
word representations. These word representations
are then used as features in a subsequent NLP task.
We define the objective function eval : X — R,
which is the quality estimation metric for this NLP
task performed on a held-out dataset (e.g., corre-

lation, accuracy, F} score, BLEU). Our goal is to
define the features ¢(X) and to find the optimal
weights w that maximize eval.

We optimize the feature weights using Bayesian
optimization; we detail the model in §2.1. Distri-
butional and linguistic features inspired by prior
research in language acquisition and second lan-
guage learning are described in §2.2. Figure 1
shows the computation flow diagram.

evaly
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X optimization training & eval
w
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Figure 1: Curriculum optimization framework.

2.1 Bayesian Optimization for Curriculum
Learning

As no assumptions are made regarding the form
of eval(w), gradient-based methods cannot be ap-
plied, and performing a grid search over param-
eterizations of w would require a exponentially
growing number of parameterizations to be tra-
versed. Thus, we propose to use Bayesian Op-
timization (BayesOpt) as the means to maximize
eval(w). BayesOpt is a methodology to globally
optimize expensive, multimodal black-box func-
tions (Shahriari et al., 2016; Bergstra et al., 2011;
Snoek et al., 2012). It can be viewed as a se-
quential approach to performing a regression from
high-level model parameters (e.g., learning rate,
number of layers in a neural network, and in our
model—curriculum weights w) to the loss function
or the performance measure (eval).

An arbitrary objective function, eval, is treated
as a black-box, and BayesOpt uses Bayesian infer-
ence to characterize a posterior distribution over
functions that approximate eval. This model of
eval is called the surrogate model. Then, the
BayesOpt exploits this model to make decisions
about eval, e.g., where is the expected maximum
of the function, and what is the expected improve-
ment that can be obtained over the best iteration so
far. The strategy function, estimating the next set



of parameters to explore given the current beliefs
about eval is called the acquisition function. The
surrogate model and the acquisition function are
the two key components in the BayesOpt frame-
work; their interaction is shown in Algorithm 1.

The surrogate model allows us to cheaply ap-
proximate the quality of a set of parameters w
without running eval(w), and the acquisition
function uses this surrogate to choose a new value
of w. However, a trade-off must be made: should
the acquisition function move w into a region
where the surrogate believes an optimal value will
be found, or should it explore regions of the space
that reveal more about how ewval behaves, per-
haps discovering even better values? That is,
acquisition functions balance a tradeoff between
exploration—by selecting w in the regions where
the uncertainty of the surrogate model is high, and
exploitation—by querying the regions where the
model prediction is high.

Popular choices for the surrogate model are
Gaussian Processes (Rasmussen, 2006; Snoek et
al., 2012, GP), providing convenient and powerful
prior distribution on functions, and tree-structured
Parzen estimators (Bergstra et al., 2011, TPE),
tailored to handle conditional spaces. Choices
of the acquisition functions include probability of
improvement (Kushner, 1964), expected improve-
ment (EI) (Mockus et al., 1978; Jones, 2001), GP
upper confidence bound (Srinivas et al., 2010),
Thompson sampling (Thompson, 1933), entropy
search (Hennig and Schuler, 2012), and dynamic
combinations of the above functions (Hoffman et
al., 2011); see Shahriari et al. (2016) for an ex-
tensive comparison. Yogatama et al. (2015) found
that the combination of EI as the acquisition func-
tion and TPE as the surrogate model performed
favorably in Bayesian optimization of text repre-
sentations; we follow this choice in our model.

2.2 Distributional and Linguistic Features

To characterize and quantify a curriculum, we de-
fine three categories of features, focusing on vari-
ous distributional, syntactic, and semantic aspects
of training data. We now detail the feature cate-
gories along with motivations for feature selection.

DIVERSITY. Diversity measures capture the dis-
tributions of types in data. Entropy is the best-
known measure of diversity in statistical research,
but there are many others (Tang et al., 2006; Gim-
pel et al., 2013). Common measures of diversity
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Algorithm 1 Bayesian optimization

L H—0 > Initialize observation history
A— EI > Initialize acquisition function
So — TPE > Initialize surrogate model

fort<— 1toT do
w; «— argmaxy, A(w;Si—1, H) > Predict
w; by optimizing acquisition function
eval(wy) > Evaluate w; on extrinsic task
H — HU(wy, eval(wy)) > Update obser-
vation history
Estimate S; given H
end for
return

A

10:

are used in many contrasting fields, from ecol-
ogy and biology (Rosenzweig, 1995; Magurran,
2013), to economics and social studies (Stirling,
2007). Diversity has been shown effective in re-
lated research on curriculum learning in language
modeling, vision, and multimedia analysis (Ben-
gio et al., 2009; Jiang et al., 2014).

Let p; and p; correspond to empirical frequen-
cies of word types t; and ¢; in the training data. Let
d;; correspond to their semantic similarity, calcu-
lated as the cosine similarity between embeddings
of ¢; and ¢; learned from the training data. We an-
notate each paragraph with the following diversity
features:

Number of word types: #types

#types
F#tokens

Entropy: —>_; piln(p)
Simpson’s index (Simpson, 1949): 3. pi2
Quadratic entropy (Rao, 1982):! ZZ j d;jpip;

Type-token ratio:

SIMPLICITY. Spitkovsky et al. (2010) have val-
idated the utility of syntactic simplicity in curricu-
lum learning for unsupervised grammar induction
by showing that training on sentences in order of
increasing lengths outperformed other orderings.
We explore the simplicity hypothesis, albeit with-
out prior assumptions on specific ordering of data,
and extend it to additional simplicity/complexity
measures of training data. Our features are in-
spired by prior research in second language acqui-
sition, text simplification, and readability assess-
ment (Schwarm and Ostendorf, 2005; Heilman et
al., 2007; Pitler and Nenkova, 2008; Vajjala and

'Intuitively, this feature promotes paragraphs that contain
semantically similar high-probability words.



Meurers, 2012). We use an off-the-shelf syntac-
tic parser’ (Zhang and Clark, 2011) to parse our
training corpus. Then, the following features are
used to measure phonological, lexical, and syntac-
tic complexity of training paragraphs:

e Language model score

e Character language model score

e Average sentence length

e Verb-token ratio

e Noun-token ratio

e Parse tree depth

e Number of noun phrases: # N Ps

e Number of verb phrases: #V Bs

e Number of prepositional phrases: #PPs

PROTOTYPICALITY. This is a group of seman-
tic features that use insights from cognitive lin-
guistics and child language acquisition. The goal
is to characterize the curriculum of representation
learning in terms of the curriculum of human lan-
guage learning. We resort to the Prototype the-
ory (Rosch, 1978), which posits that semantic cat-
egories include more central (or prototypical) as
well as less prototypical words. For example, in
the ANIMAL category, dog is more prototypical
than sloth (because dog is more frequent); dog
is more prototypical than canine (because dog is
more concrete); and dog is more prototypical than
bull terrier (because dog is less specific). Accord-
ing to the theory, more prototypical words are ac-
quired earlier. We use lexical semantic databases
to operationalize insights from the prototype the-
ory in the following semantic features; the features
are computed on token level and averaged over
paragraphs:

e Age of acquisition (AoA) of words was ex-
tracted from the crowd-sourced database, con-
taining over 50 thousand English words (Kuper-
man et al., 2012). For example, the AoA of run
is 4.47 (years), of flee is 8.33, and of abscond is
13.36. If a word was not found in the database
it was assigned the maximal age of 25.

e Concreteness ratings on the scale of 1-5 (1 is
most abstract) for 40 thousand English lemmas
(Brysbaert et al., 2014). For example, cookie is
rated as 5, and spirituality as 1.07.

http://http://people.sutd.edu.sg/
~yue_zhang/doc

e Imageability ratings are taken from the MRC
psycholinguistic database (Wilson, 1988). Fol-
lowing Tsvetkov et al. (2014), we used the MRC
annotations as seed, and propagated the ratings
to all vocabulary words using the word embed-
dings as features in an ¢5-regularized logistic re-
gression classifier.

e Conventionalization features count the num-
ber of “conventional” words and phrases in a
paragraph. Assuming that a Wikipedia title
is a proxy to a conventionalized concept, we
counted the number of existing titles (from a
database of over 4.5 million titles) in the para-
graph.

e Number of syllables scores are also extracted
from the AoA database; out-of-database words
were annotated as 5-syllable words.

e Relative frequency in a supersense was com-
puted by marginalizing the word frequencies in
the training corpus over coarse semantic cate-
gories defined in the WordNet (Fellbaum, 1998;
Ciaramita and Altun, 2006). There are 41 super-
sense types: 26 for nouns and 15 for verbs, e.g.,
NOUN.ANIMAL and VERB.MOTION. For exam-
ple, in NOUN.ANIMAL the relative frequency of
human is 0.06, of dog is 0.01, of bird is 0.01, of
cattle is 0.009, and of bumblebee is 0.0002.

e Relative frequency in a synset was calculated
similarly to the previous feature category, but
word frequencies were marginalized over Word-
Net synsets (more fine-grained synonym sets).
For example, in the synset {vet, warhorse, vet-
eran, oldtimer, seasoned stager}, veteran is the
most prototypical word, scoring 0.87.

3 Evaluation Benchmarks

We evaluate the utility of the pretrained word em-
beddings as features in downstream NLP tasks.
We choose the following off-the-shelf models that
utilize pretrained word embeddings as features:

Sentiment Analysis (Senti). Socher et al.
(2013) created a treebank of sentences anno-
tated with fine-grained sentiment labels on phrases
and sentences from movie review excerpts. The
coarse-grained treebank of positive and negative
classes has been split into training, development,
and test datasets containing 6,920, 872, and 1,821
sentences, respectively. We use the average of the
word vectors of a given sentence as a feature vec-
tor for classification (Faruqui et al., 2015; Sedoc



et al., 2016). The {s-regularized logistic regres-
sion classifier is tuned on the development set and
accuracy is reported on the test set.

Named Entity Recognition (NER). Named en-
tity recognition is the task of identifying proper
names in a sentence, such as names of persons, lo-
cations etc. We use the recently proposed LSTM-
CRF NER model (Lample et al., 2016) which
trains a forward-backward LSTM on a given se-
quence of words (represented as word vectors),
the hidden units of which are then used as (the
only) features in a CRF model (Lafferty et al.,
2001) to predict the output label sequence. We
use the CoNLL 2003 English NER dataset (Tjong
Kim Sang and De Meulder, 2003) to train our
models and present results on the test set.

Part of Speech Tagging (POS). For POS tag-
ging, we again use the LSTM-CRF model (Lam-
ple et al., 2016), but instead of predicting the
named entity tag for every word in a sentence,
we train the tagger to predict the POS tag of the
word. The tagger is trained and evaluated with
the standard Penn TreeBank (PTB) (Marcus et al.,
1993) training, development and test set splits as
described in Collins (2002).

Dependency Parsing (Parse). Dependency
parsing is the task of identifying syntactic re-
lations between the words of a sentence. For
dependency parsing, we train the stack-LSTM
parser of Dyer et al. (2015) for English on the
universal dependencies v1.1 treebank (Agi¢
et al., 2015) with the standard development
and test splits, reporting unlabeled attachment
scores (UAS) on the test data. We remove all
part-of-speech and morphology features from the
data, and prevent the model from optimizing the
word embeddings used to represent each word
in the corpus, thereby forcing the parser to rely
completely on the pretrained embeddings.

4 Experiments

Data. All models were trained on Wikipedia ar-
ticles, split to paragraph-per-line. Texts were
cleaned, tokenized, numbers were normalized by
replacing each digit with “DG”, all types that oc-
cur less than 10 times were replaces by the “UNK”
token, the data was not lowercased. We list data
sizes in table 1.
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# tokens
100,872,713

# paragraphs
2,532,361

# types
156,663

Table 1: Training data sizes.

Setup. 100-dimensional word embeddings were
trained using the cbow model implemented in the
word2vec toolkit (Mikolov et al., 2013).3 All
training data was used, either shuffled or ordered
by a curriculum. As described in §3, we modified
the extrinsic tasks to learn solely from word em-
beddings, without additional features. All models
were learned under same conditions, across cur-
ricula: in Parse, NER, and POS we limited the
number of training iterations to 3, 3, and 1, re-
spectively. This setup allowed us to evaluate the
effect of curriculum without additional interacting
factors.

Experiments. In all the experiments we first
train word embedding models, then the word em-
beddings are used as features in four extrinsic
tasks (§3). We tune the tasks on development data,
and report results on the test data. The only com-
ponent that varies across the experiments is order
of paragraphs in the training corpus—the curricu-
lum. We compare the following experimental se-
tups:

e Shuffled baselines: the curriculum is defined by
random shuffling the training data. We shuffled
the data 10 times, and trained 10 word embed-
dings models, each model was then evaluated
on downstream tasks. Following Bengio et al.
(2009), we report test results for the system that
is closest to the median in dev scores. To evalu-
ate variability and a range of scores that can be
obtained from shuffling the data, we also report
test results for systems that obtained the highest
dev scores.

Sorted baselines: the curriculum is defined
by sorting the training data by sentence length
in increasing/decreasing order, similarly to
(Spitkovsky et al., 2010).

Coherent baselines: the curriculum is defined
by just concatenating Wikipedia articles. The
goal of this experiment is to evaluate the im-
portance of semantic coherence in training data.

3To evaluate the impact of curriculum learning, we en-
forced sequential processing of data organized in a pre-
defined order of training examples. To control for sequen-
tial processing, word embedding were learned by running the
cbow using a single thread for one iteration.



Our intuition is that a coherent curriculum
can improve models, since words with simi-
lar meanings and similar contexts are grouped
when presented to the learner.

Optimized curriculum models: the curriculum
is optimized using the BayesOpt. We evaluate
and compare models optimized using features
from one of the three feature groups (§2.2). As
in the shuffled baselines, we fix the number of
trials (here, BayesOpt iterations) to 10, and we
report test results of systems that obtained best
dev scores.

Results. Experimental results are listed in ta-
ble 2. Most systems trained with curriculum sub-
stantially outperform the strongest of all baselines.
These results are encouraging, given that all word
embedding models were trained on the same set
of examples, only in different order, and display
the indirect influence of the data curriculum on
downstream tasks. These results support our as-
sumption that curriculum matters. Albeit not as
pronounced as with optimized curriculum, sorting
paragraphs by length can also lead to substantial
improvements over random baselines, but there is
no clear recipe on whether the models prefer cur-
ricula sorted in an increasing or decreasing order.
These results also support the advantage of a task-
specific optimization framework over a general,
intuition-guided recipe. An interesting result, also,
that shuffling is not essential: systems trained on
coherent data are on par (or better) than the shuf-
fled systems.* In the next section, we analyze
these results qualitatively.

5 Analysis

What are task-specific curriculum prefer-
ences? We manually inspect learned features
and curriculum-sorted corpora, and find that best
systems are obtained when their embeddings are

“Note that in the shuffled NER baselines, best dev re-
sults yield lower performance on the test data. This implies
that in the standard development/test splits the development
and test sets are not fully compatible or not large enough.
We also observe this problem in the curriculum-optimized
Parse-prototypicality and Senti-diversity systems. The dev
scores for the Parse systems are 76.99, 76.47, 76.47 for di-
versity, prototypicality, and simplicity, respectively, but the
prototypicality-sorted parser performs poorly on test data.
Similarly in the sentiment analysis task, the dev scores are
69.15, 69.04, 69.49 for diversity, prototypicality, and sim-
plicity feature groups. Senti-diversity scores, however, are
lower on the test data, although the dev results are better than
in Senti-simplicity. This limitation of the standard dev/test
splits is beyond the scope of this paper.
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learned from curricula appropriate to the down-
stream tasks. We discuss below several examples.

POS and Parse systems converge to the same set
of weights, when trained on features that provide
various measures of syntactic simplicity. The fea-
tures with highest coefficients (and thus the most
important features in sorting) are #N Ps, Parse
tree depth, #V Ps, and # P Ps (in this order). The
sign in the # N Ps feature weight, however, is the
opposite from the other three feature weights (i.e.,
sorted in different order). # N Ps is sorted in the
increasing order of the number of noun phrases in
a paragraph, and the other features are sorted in
the decreasing order. Since Wikipedia corpus con-
tains a lot of partial phrases (titles and headings),
such curriculum promotes more complex, full sen-
tences, and demotes partial sentences.

Best Senti system is sorted by prototypicality
features. Most important features (with the highest
coefficients) are Concreteness, Relative frequency
in a supersense, and the Number of syllables. First
two are sorted in decreasing order (i.e. paragraphs
are sorted from more to less concrete, and from
more to less prototypical words), and the Num-
ber of syllables is sorted in increasing order (this
also promotes simpler, shorter words which are
more prototypical). We hypothesize that this sor-
ing reflects the type of data that Sentiment analysis
task is trained on: it is trained on movie reviews,
that are usually written in a simple, colloquial lan-
guage.

Unlike POS, Parse, and Senti systems, all NER
systems prefer curricula in which texts are sorted
from short to long paragraphs. The most impor-
tant features in the best (simplicity-sorted) system
are # P Ps and Verb-token ratio, both sorted from
less to more occurrences of prepositional and verb
phrases. Interestingly, most of the top lines in the
NER system curricula contain named entities, al-
though none of our features mark named entities
explicitly. We show top lines in the simplicity-
optimized system in figure 2.

Finally, in all systems sorted by prototypical-
ity, the last line is indeed not a prototypical
word Donaudampfschiffahrtselektrizititenhaupt-
betriebswerkbauunterbeamtengesellschaft, which
is an actual word in German, frequently used as an
example of compounding in synthetic languages,
but rarely (or never?) used by German speakers.

Weighting examples according to curriculum.
Another way to integrate curriculum in word em-



Senti NER POS Parse

median 66.01 | 85.88 | 96.35 | 75.08

Shuffled best 66.61 | 85.50 | 96.38 | 76.40
Sorted long—short 66.78 | 85.22 | 96.47 | 75.85
short—long 66.12 | 8549 | 96.20 | 75.31

Coherent original order 66.23 | 85.99 | 96.47 | 76.08
Optimized diversity' . 66.06 | 86.09 | 96.59 | 76.63
curriculum prototypicality 67.44 | 85.96 | 96.53 | 75.81
simplicity 67.11 | 86.42 | 96.62 | 76.54

Table 2: Evaluation of the impact of the curriculum of word embeddings on the downstream tasks.

Trimingham “ Golf ” ball .
Adélie penguin

“ Atriplex " leaf UNK UNK
Héng Linh mountain

Anneli Jaatteenmaki UNK cabinet
Gavle goat

Early telescope observations .
Scioptric ball

Matryoshka doll
Luxembourgian passport
Australian Cashmere goat
Plumbeous water redstart
Dagebiill lighthouse

Vecom FollowUs . tv
Syracuse Junction railroad .
San Clemente Island goat
Tychonoff plank

Figure 2: Most of the top lines in best-scoring
NER system contain named entities, although our
features do not annotate named entities explicitly.

bedding training is to weight training examples
according to curriculum during word represen-
tation training. We modify the cbow objective
Zthl log p(w¢|wy_c..wy ) as follows:

T

1
Z(l | o—weight(we) + A) log p(we|wi—c..wisc)
t=1

Here, weight(w;) denotes the score attributed to
the token w;, which is the z-normalized score of
the paragraph; A=0.5 is determined empirically.
log p(wy)|wi—¢..wi4c) computes the probability of
predicting word wy, using the context of ¢ words
to the left and right of w;. Notice that this quan-
tity is no longer a proper probability, as we are not

5The modified word2vec tool is located at https://
github.com/wlinl2/wang2vec.

normalizing over the weights weight(w;) over all
tokens. However, the optimization in word2vec is
performed using stochastic gradient descent, op-
timizing for a single token at each iteration. This
yields a normalizer of 1 for each iteration, yielding
the same gradient as the original cbow model.
We retrain our best curriculum-sorted systems
with the modified objective, also controlling for
curriculum. The results are shown in table 3.
We find that the benefit of integrating curricu-
lum in training objective of word representations
is not evident across tasks: Senti and NER systems
trained on vectors with the modified objective sub-
stantially outperform best results in table 2; POS
and Parse perform better than the baselines but
worse than the systems with the original objective.

‘ Senti NER POS Parse
curriculum 67.44 86.42 96.62 76.63
cbow+curric | 68.26 86.49 9648 76.54

Table 3: Evaluation of the impact of curriculum
integrated in the cbow objective.

Are we learning task-specific curricula? One
way to assess whether we learn meaningful task-
specific curriculum preferences is to compare cur-
ricula learned by one downstream task across dif-
ferent feature groups. If learned curricula are sim-
ilar in, say, NER system, despite being optimized
once using diversity features and once using proto-
typicality features—two disjoint feature sets—we
can infer that the NER task prefers word embed-
dings learned from examples presented in a cer-
tain order, regardless of specific optimization fea-
tures. For each downstream task, we thus measure
Spearman’s rank correlation between the curricula
optimized using diversity (D), or prototypicality
(P), or simplicity (S) feature sets. Prior to measur-
ing correlations, we remove duplicate lines from
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the training corpora. Correlation results across
tasks and across feature sets are shown in table 4.

The general pattern of results is that if two sys-
tems score higher than baselines, training sen-
tences of their feature embeddings have similar
curricula (i.e., the Spearman’s p is positive), and if
two systems disagree (one is above and one is be-
low the baseline), then their curricula also disagree
(i.e., the Spearman’s p is negative or close to zero).
NER systems all outperform the baselines and
their curricula have high correlations. Moreover,
NER sorted by diversity and simplicity have bet-
ter scores than NER sorted by prototypicality, and
in line with these results p(S,D)xygr > p(P,S)NER
and p(S,.D)NgRr > p(D,P)NER. Similar pattern of
results is in POS correlations. In Parse systems,
also, diversity and simplicity features yielded best
parsing results, and p(S,D)pgrse has high positive
correlation. The prototypicality-optimized parser
performed poorly, and its correlations with better
systems are negative. The best parser was trained
using the diversity-optimized curriculum, and thus
p(D,P) parse 18 the lowest. Senti results follow sim-
ilar pattern of curricula correlations.

‘ Senti NER POS Parse
p(D,P) | -0.68 076 0.66 -0.76
p(P, S) 033 075 075 -0.45
p(s,D) | -0.16 0.81 0.51 0.67

Table 4: Curricula correlations across feature
groups.

Curriculum learning vs. data selection. We
compare the task of curriculum learning to the task
of data selection (reducing the set of training in-
stances to more important or cleaner examples).
We reduce the training data to the subset of 10% of
tokens, and train downstream tasks on the reduced
training sets. We compare system performance
trained using the top 10% of tokens in the best
curriculum-sorted systems (Senti-prototypicality,
NER-implicity, POS-simplicity, Parse-diversity)
to the systems trained using the top 10% of tokens
in a corpus with randomly shuffled paragraphs.®
The results are listed in table 5.

The curriculum-based systems are better in POS

Top n% tokens are used rather than top n% paragraphs
because in all tasks except NER curriculum-sorted corpora
begin with longer paragraphs. Thus, with top n% paragraphs
our systems would have an advantage over random systems
due to larger vocabulary sizes and not necessarily due to a
better subset of data.
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| Senti  NER POS Parse
6397 8235 9622 69.11
64.47 7696 96.55 72.93

random
curriculum

Table 5: Data selection results.

and in Parse systems, mainly because these tasks
prefer vectors trained on curricula that promote
well-formed sentences (as discussed above). Con-
versely, NER prefers vectors trained on corpora
that begin with named entities, so most of the to-
kens in the reduced training data are constituents
in short noun phrases. These results suggest that
the tasks of data selection and curriculum learning
are different. Curriculum is about strong initializa-
tion of the models and time-course learning, which
is not necessarily sufficient for data reduction.

6 Related Work

Two prior studies on curriculum learning in NLP
are discussed in the paper (Bengio et al., 2009;
Spitkovsky et al., 2010). Curriculum learning and
related research on self-paced learning has been
explored more deeply in computer vision (Bengio
et al., 2009; Kumar et al., 2010; Lee and Grauman,
2011) and in multimedia analysis (Jiang et al.,
2015). Bayesian optimization has also received
little attention in NLP. GPs were used in the task
of machine translation quality estimation (Cohn
and Specia, 2013) and in temporal analysis of so-
cial media texts (Preotiuc-Pietro and Cohn, 2013);
TPEs were used by Yogatama et al. (2015) for
optimizing choices of feature representations—n-
gram size, regularization choice, etc.—in super-
vised classifiers.

7 Conclusion

We used Bayesian optimization to optimize curric-
ula for training dense distributed word representa-
tions, which, in turn, were used as the sole features
in NLP tasks. Our experiments confirmed that bet-
ter curricula yield stronger models. We also con-
ducted an extensive analysis, which sheds better
light on understanding of text properties that are
beneficial for model initialization. The proposed
novel technique for finding an optimal curriculum
is general, and can be used with other datasets and
models.
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