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Abstract

We propose a framework for lexical sub-
stitution that is able to perform transfer
learning across languages. Datasets for
this task are available in at least three
languages (English, Italian, and German).
Previous work has addressed each of these
tasks in isolation. In contrast, we regard
the union of three shared tasks as a com-
bined multilingual dataset. We show that
a supervised system can be trained effec-
tively, even if training and evaluation data
are from different languages. Successful
transfer learning between languages sug-
gests that the learned model is in fact in-
dependent of the underlying language. We
combine state-of-the-art unsupervised fea-
tures obtained from syntactic word em-
beddings and distributional thesauri in a
supervised delexicalized ranking system.
Our system improves over state of the art
in the full lexical substitution task in all
three languages.

1 Introduction

The lexical substitution task is defined as replac-
ing a target word in a sentence context with a
synonym, which does not alter the meaning of
the utterance. Although this appears easy to hu-
mans, automatically performing such a substitu-
tion is challenging, as it implicitly addresses the
problem of both determining semantically simi-
lar substitutes, as well as resolving the ambiguity
of polysemous words. In fact, lexical substitution
was originally conceived as an extrinsic evaluation
of Word Sense Disambiguation (WSD) when first
proposed by McCarthy & Navigli (2007). How-
ever, a system capable of replacing words by ap-
propriate meaning-preserving substitutes can be

utilized in downstream tasks that require para-
phrasing of input text. Examples of such use cases
include text simplification, text shortening, and
summarization. Furthermore, lexical substitution
can be regarded as an alternative to WSD in down-
stream tasks requiring word disambiguation. For
example, it was successfully applied in Semantic
Textual Similarity (Bär et al., 2012). A given list
of substitution words can be regarded as a vector
representation modeling the meaning of a word in
context. As opposed to WSD systems, this is not
reliant on a predefined sense inventory, and there-
fore does not have to deal with issues of cover-
age, or sense granularity. On the other hand, per-
forming lexical substitution is more complex than
WSD, as a system has to both generate and rank a
list of substitution candidates per instance.

Over the last decade, a number of shared tasks
in lexical substitution has been organized and a
wide range of methods have been proposed. Al-
though many approaches are in fact language-
independent, most existing work is tailored to a
single language and dataset. In this work, we
investigate lexical substitution as a multilingual
task, and report experimental results for English,
German and Italian datasets. We consider a su-
pervised approach to lexical substitution, which
casts the task as a ranking problem (Szarvas et al.,
2013b). We adapt state-of-the-art unsupervised
features (Biemann and Riedl, 2013; Melamud
et al., 2015a) in a delexicalized ranking frame-
work and perform transfer learning experiments
by training a ranker model from a different lan-
guage. Finally, we demonstrate the utility of ag-
gregating data from different languages and train
our model on this single multilingual dataset. We
are able to improve the state of the art for the full
task on all datasets.

The remainder of this paper is structured as fol-
lows. In Section 2 we elaborate on the lexical sub-
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stitution task and datasets. Section 3 shows related
work of systems addressing each of these tasks.
In Section 4 we describe our method for building
a supervised system capable of transfer learning.
Section 5 shows our experimental results and dis-
cussion. Finally in Section 6 we give a conclusion
and outlook to future work.

2 Lexical substitution datasets and
evaluation

The lexical substitution task was first defined
at SemEval 2007 (McCarthy and Navigli, 2007,
"SE07"). A lexical sample of target word is se-
lected from different word classes (nouns, verbs,
and adjectives). Through annotation, a set of valid
substitutes was collected for 10-20 contexts per
target. Whereas in the original SE07 task, anno-
tators were free to provide “up to three, but all
equally good” substitutes, later tasks dropped this
restriction. Substitutes were subsequently aggre-
gated by annotator frequency, creating a ranking
of substitutes. The use of SE07 has become a
de-facto standard for system comparison, however
equivalent datasets have been produced for other
languages. Evalita 2009 posed a lexical substitu-
tion task for Italian (Toral, 2009, "EL09"). Par-
ticipants were free to obtain a list of substitution
candidates in any way, most commonly Italian
WordNet1 was used. A WeightedSense baseline
provided by the organizers proved very strong, as
all systems scored below it. This baseline is ob-
tained by aggregating differently weighted seman-
tic relations from multiple human-created lexical
resources (Ruimy et al., 2002). A German ver-
sion of the lexical substitution task was organized
at GermEval 2015 (Cholakov et al., 2014; Miller
et al., 2015, "GE15"). Likewise, WeightedSense
was able to beat both of two participating systems
in oot evaluations (Miller et al., 2015).

A variation for cross-lingual lexical substitution
was proposed by Mihalcea et al. (2010), in which
substitute words are required in a different lan-
guage than the source sentence. The sentence con-
text as well as the target word were given in En-
glish, whereas the substitute words should be pro-
vided in Spanish (annotators were fluent in both
languages). This variant is motivated by direct ap-
plication in Machine Translation systems, or as an
aid for human-based translation. There also ex-

1Italian WordNet has later been migrated into MultiWord-
Net (MWN), which is used in this work.

ists a larger crowd-sourced dataset of 1012 nouns
(Biemann, 2013, "TWSI"), as well as an all-words
dataset in which all words in each sentence are
annotated with lexical expansions (Kremer et al.,
2014). Evaluation of lexical substitution adheres
to metrics defined by SE07 (McCarthy and Nav-
igli, 2007), who provide two evaluation settings2;
best evaluating only a system’s “best guess” of a
single target substitute and oot, an unordered eval-
uation of up to ten substitutes. Thater et. al (2009)
proposed to use Generalized Average Precision
(GAP), to compare an output ranking rather than
unordered sets of substitutes.

Dataset comparison The proposed lexical
substitution datasets (SE07, EL09, GE15) differ
in their degree of ambiguity of target items. If a
dataset contains mostly target words that are un-
ambiguous, substitution lists of different instances
of the same target are similar, despite occurring in
different context. We can quantify this degree of
variation by measuring the overlap of gold substi-
tutes of each target across all contexts. For this,
we adapt the pairwise agreement (PA) metric de-
fined by McCarthy & Navigli (2009). Instead of
inter-annotator agreement we measure agreement
across different context instances. Let T be a set
of lexical target words, and D dataset of instances
(ti,Si)∈D, in which target ti ∈ T is annotated with
a set of substitutes Si. Then we regard for each tar-
get word t the substitute sets St ⊂ D for t. We de-
fine a substitute agreement as SA(t) as the mean
pairwise dice coefficient between all s1,s2 ∈ St

where s1 6= s2. For each dataset D we list the sub-
stitute variance SV = 1− 1

|T | ∑t∈T SA(t). Table 1
shows this metric for the three datasets, as well as
for subsets of the dataset according to target part
of speech. It can be seen that the variance in gold
substitutes differs substantially between datasets,
but not much between target word type within a
dataset. EL09 has the highest degree of variance,
suggesting that targets tend to be more ambiguous,
whereas GE15 has the lowest degree of variance,
suggesting less ambiguity.

3 Related Work

Lexical substitution has been addressed exten-
sively in recent years. Early systems, having
only very few training instances available, use un-

2The original SE07 task had a third evaluation setting
MWE, in which systems had to correctly identify which tar-
get words were part of a multiword expression.
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dataset
substitute variance (SV )

noun verb adj adv all

SemEval-2007 0.78 0.79 0.72 0.66 0.75

Evalita-2009 0.84 0.82 0.83 0.82 0.83

GermEval-2015 0.59 0.67 0.60 - 0.66

all 0.75 0.72 0.73 0.69 0.73

Table 1: Degree of variation in gold answers

supervised approaches for determining appropri-
ate substitutes. For the English SE07 task, sys-
tems mostly consider substitution candidates from
WordNet (Fellbaum, 1998) and cast lexical sub-
stitution into a ranking task. Experiments may
also be performed by pooling the set of candi-
dates from the gold data, evaluating a pure rank-
ing variant. Early approaches use a contextual-
ized word instance representation and rank can-
didates according to their similarity to this repre-
sentation. Effective representations are syntactic
vector space models (Erk and Padó, 2008; Thater
et al., 2011), which use distributional sparse vec-
tor representations based on the syntactic context
of words. Performance improvement could be
shown for different models, including the use of
graph centrality algorithms on directional word
similarity graphs (Sinha and Mihalcea, 2011), and
clustering approaches on word instance represen-
tations (Erk and Padó, 2010). Multiple systems
have built upon the distributional approach. Ex-
tensions include the use of LDA topic models
(Ó Séaghdha and Korhonen, 2014), and proba-
bilistic graphical models (Moon and Erk, 2013).
The current state of the art combines a distri-
butional model with the use of n-gram language
models (Melamud et al., 2015a). They define the
context vector of each word in a background cor-
pus as a substitute vector, which is a vector of suit-
able filler words for the current n-gram context.
They then obtain a contextualized paraphrase vec-
tor by computing a weighted average of substitute
vectors in the background corpus, based on their
similarity to the current target instance. In con-
trast to traditional sparse vector representations
obtained through distributional methods, a recent
trend is the use of low-dimensional dense vector
representations. The use of such vector repre-
sentations or word embeddings has been popular-
ized by the continuous bag-of-words (CBOW) and
Skip-gram model (Mikolov et al., 2013a). Mela-
mud et al. (2015b) show a simple and knowledge-

lean model for lexical substitution based solely on
syntactic word embeddings. As we leverage this
model as a feature in our approach, we will elab-
orate on this in Section 4. Another approach for
applying word embeddings to lexical substitution
is their direct extension with multiple word senses,
which can be weighted according to target context
(Neelakantan et al., 2014).

Biemann (2013) first showed that the lexical
substitution task can be solved very well when suf-
ficient amount of training data is collected per tar-
get. An approach based on crowdsourcing human
judgments achieved the best performance on the
S07 dataset to day. However, judgments had to
be collected for each lexical item, and as a conse-
quence the approach can not scale to an open vo-
cabulary. As an alternative to per-word supervised
systems trained on target instances per lexeme, all-
words systems aim to generalize over all lexical
items. Szarvas et al. (2013a) proposed such a sys-
tem by using delexicalization: features are gener-
alized in such a way that they are independent of
lexical items, and thus generalize beyond the train-
ing set and across targets. Originally, a maximum
entropy classifier was trained on target-substitute
instances and used for pointwise ranking of sub-
stitution candidates. In a follow-up work it was
shown that learning-to-rank methods could dras-
tically improve this approach, achieving state-of-
the-art performance with a LambdaMART ranker
(Szarvas et al., 2013b). In this work we will build
upon this model and further generalize not only
across lexical items but across different languages.

For both EL09 and GE15, existing approaches
have been adapted. For the Italian dataset, a
distributional method was combined with LSA
(De Cao and Basili, 2009). The best perform-
ing system applied a WSD system and language
models (Basile and Semeraro, 2009). For the Ger-
man dataset, Hintz and Biemann (2015) adapted
the supervised approach by (Szarvas et al., 2013a),
achieving best performance for nouns and adjec-
tives. Jackov (2015) used a deep semantic analy-
sis framework employing an internal dependency
relation knowledge base, which achieved the best
performance for verbs.

4 Method description

We subdivide lexical substitution into two sub-
tasks; candidate selection and ranking. For a
given target t, we consider a list of possible substi-
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tutes s ∈ Ct , where Ct is a static per-target candi-
date list. Our method is agnostic to the creation of
this static resource, which can be obtained either
by an unsupervised similarity-based approach, or
from a lexical resource. In particular, candidates
obtained at this stage do not disambiguate possible
multiple senses of t, and are filtered and ordered in
the ranking stage by a supervised model.

In modeling a supervised system, we have ex-
perimented with two learning setups. The first
is applying a standard classification / regression
learner. Here, lexical substitution is cast into
a pointwise ranking task by training on target-
substitute pairs generated from the gold standard.
For each sentence context c, target word t and sub-
stitute s, we regard the tuple (c, t,s) as a training
instance. We obtain these training instances for
each lexsub instance (c, t) by considering all sub-
stitutes s ∈ Gt ∪Ct where Gt are all candidates for
target t pooled from the gold data and Ct are ob-
tained from lexical resources. We then experiment
with two labeling alternatives for a binary classi-
fication and a regression setup, respectively. For
binary classification we label each instance (c, t,s)
as positive if s has been suggested as a substitute
for t by at least one annotator, and as negative oth-
erwise. For regression, we normalize the annota-
tion counts for each substitute to obtain a score in
(0,1] if a substitute s occurs in the gold data, 0
otherwise. The ranking of substitutes per target is
obtained by considering the posterior likelihood of
the positive label as yielded by a classifier model.
We have tried multiple classifiers but have found
no significant improvement over a maximum en-
tropy baseline3. Our second setup is a learning-
to-rank framework, adapted from (Szarvas et al.,
2013b). Here, we are not restricted to a pointwise
ranking model, but consider pairwise and listwise
models4.

We base our feature model on existing research.
In addition to basic syntactic and frequency-based
features, we obtained sophisticated features from
trigram and syntactic thesauri, motivated by the
findings of Biemann and Riedl (2013), as well as
syntactic embedding features motivated by Mela-
mud et al. (2015b).

3For classification setup we use Mallet: http://
mallet.cs.umass.edu/

4For learning-to-rank we use RankLib: http://
mallet.cs.umass.edu/

dataset
maximum recall

w/ MWE w/o MWE

SemEval-2007 0.459 0.404

Evalita-2009 0.369 0.337

GermEval-2015 0.192 0.178

all 0.242 0.223

Table 2: Upper bound for substitute recall based
on lexical resources WordNet, MultiWordNet, Ger-
maNet

4.1 Candidate selection

We confirm earlier research (Sinha and Mihalcea,
2009) on the high quality of selecting candidates
from lexical resources. We thus base our candidate
selection on prevalently used resources: WordNet
(Fellbaum, 1998) for English, GermaNet (Hamp
and Feldweg, 1997) for German and MultiWord-
Net (Pianta et al., 2002) for Italian. For all re-
sources, we consider all possible senses for a given
target word and obtain all synonyms, hypernyms
and hyponyms and their transitive hull. Thus, for
the hypernymy and hyponymy relation, we follow
the respective edges in the graph collecting all
nodes (synsets) along the path. For each synset,
we extract all lemmas as substitution candidates.
Although restricting candidates incurs a relatively
low upper bound on system recall, we still obtain
best results using this rather conservative filter. Ta-
ble 2 shows the upper bound for system recall for
each of the datasets, evaluated with and without re-
moving all multiword expressions from both can-
didate lists and gold data. A higher coverage of
WordNet is a plausible explanation for the much
higher recall on the English data.

4.2 Supervised ranking

Learning-to-rank methods train a supervised
model for ranking a list of items by relevance. A
basic pointwise approach applies regression tech-
niques to obtain a relevance scores for each item
in isolation. More advanced models are based on
pairwise preference information for instance pairs,
and listwise approaches, which are optimized on a
global metric of a given ranking output. An ex-
tensive overview of learning-to-rank models can
be found in (Burges, 2010). For lexical substi-
tution, LambdaMART (Wu et al., 2010) has been
found to be particularly effective. LambdaMART
is a listwise method based on gradient boosting of
regression trees. Its two main hyperparameters are

121



the number of leaves in each regression tree and
the number of iterations and trees. We have not
performed extensive tuning of these hyperparame-
ters and used default settings, an ensemble of 1000
trees with 10 leaves.

4.3 Delexicalized features

The idea of delexicalization has been proposed,
for instance, by Bergsma et al. (2007). They
propose to use statistical measures based solely
on the frequency of different expansions of the
same target term. Their feature set has motivated
a large subset of the feature model, which we
adapt in this work. The idea of generalizing fea-
tures for lexical substitution in such a way that
they work across lexical items has been shown
by Moon and Erk (2013), and made explicit by
Szarvas et al. (2013a). Instances are characterized
using non-lexical features from heterogeneous ev-
idence. The intuition of this feature model is to
exploit redundant signals of substitutability from
different sources and methods.

In cases where background corpora are re-
quired, the following data is used throughout all
features: For English, a newspaper corpus com-
piled from 105 million sentences from the Leipzig
Corpora Collection (Richter et al., 2006) and the
Gigaword corpus (Parker et al., 2011) was used.
For German a 70M sentence newswire corpus
(Biemann et al., 2007) was used. For Italian, a
subset of 40M sentences of itWac, a large web-
crawl, was used (Baroni et al., 2009).

Shallow syntactic features We apply a part-
of-speech tagger trained on universal POS tags
(Petrov et al., 2012), which we simplify into the
classes noun, verb, adjective and adverb. Using
these simplified tags we construct an n-gram slid-
ing window, with n ∈ [1..5], of POS around the
target. We could also reduce window sizes drasti-
cally to n = 1,2 without sacrificing performance.

Frequency features We use language models
for each of the languages to obtain frequency ratio
features. An n-gram sliding window around a tar-
get t is used to generate a set of features freq(cl ,s,cr)

freq(cl ,t,cr)
,

where cl and cr are the left and right context words
around t. Here, we normalize the frequency of the
substitute with the frequency of the n-gram with
original target t. As a variant, we further normal-
ize frequencies by the set of all substitutes, to ob-
tain frequencies features freq(cl ,s,cr)

∑s′∈Ct freq(cl ,s′,cr)
where Ct

is the set of candidate substitutes for t. In our ex-
periments we used sliding windows of size [1..5].
We obtain 5-gram counts from web1t (Brants and
Franz, 2009).

Conjunction ratio features Based on the n-
gram resources above, we further define a con-
junctive phrase ratio feature, which measures how
often the construct (cl, t,conjunction,s,cr) occurs
in a background corpus; i.e. how often t and s co-
occur with a conjunction word (“and”, “or”, “,”),
within the context of the sentence. As there is a
different set of conjunction words for each lan-
guage, we first aggregate the mean over all con-
junction words:

conjl,r (t,s)=
1

|CONJ| ∑
con∈CONJ

freq(cl, t,con,s,cr)

where l and r is the size of the left and right con-
text window, and CONJ is a set of conjunction
words per-language5. For left and right context
size l = r = 0 this feature also captures a context-
independent conjunction co-occurrence between
only t and s. Again, we normalize this feature over
the set of all candidates:

conjl,r (t,s)

∑s′∈Ct conjl,r (t,s)

Distributional features We construct a distri-
butional thesaurus (DT) for each of the lan-
guages by following Biemann and Riedl (2013)
and obtain first-order word-to-context measures,
as well as second-order word-to-word similarity
measures. As context features we have experi-
mented with both syntactic dependencies as well
as left and right neighboring words, and have
found them to perform equivalently. As a salience
measure we use Lexicographer’s Mutual Informa-
tion (Bordag, 2008) and prune the data, keep-
ing only the 1000 most salient features per word.
Word similarity is obtained from an overlap count
in the pruned context features. We model features
for the contextualized distributional similarity be-
tween t and s as

• percentage of shared context features for the
top-k context features of t and s, globally and
restricted to sentence context (k =5, 20, 50,
100, 200)

5Conjunction words used are and, or, (comma), for En-
glish; und, oder, (comma) for German and e, ed, o, od,
(comma) for Italian.
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• percentage of shared words for the top-k sim-
ilar words of t and s (k =200)

• sum of salience score of context features of s
overlapping with the sentence context

• binary occurrence of s in top-k similar words
of t (k =100, 200)

With the exception of the last feature, these mea-
sures are scaled to [0,1] over the set of all substi-
tute candidates.

Syntactic word embeddings We adapt the un-
supervised approach by (Melamud et al., 2015a)
as a set of features. We follow (Levy and Gold-
berg, 2014) to construct dependency-based word
embeddings; we obtain syntactic contexts by run-
ning a syntactic dependency parser6, and comput-
ing word embeddings using dependency edges as
context features7. The resulting dense vector rep-
resentations for words and context live within the
same vector space. We compute the semantic sim-
ilarity between a target and a substitute word from
the cosine similarity in the word embedding space,
as well as the first-order target-to-context similar-
ity. For a given target word t and substitute s, let
Ct be the syntactic context of t and c ∈Ct a single
context – i.e. a dependency edge attached to t; let
vt , vs be the vector representations of t and s in the
word embedding space, and vc the vector represen-
tation of c in the context embedding space. Then
Sim1 = cos(vs,vc) and Sim2 = cos(vs,vt) are the
first-order and second-order substitutability mea-
sures considered by Melamud et al. (2015a). In
contrast to their approach, we do not just consider
an unsupervised combination of these two mea-
sures, but instead use both Sim1 and Sim2 as sin-
gle features. We also use their combinations of a
balanced / unbalanced, arithmetic / geometrical
mean, to obtain six numeric features in total. Im-
portantly, these features are independent of the un-
derlying embedding vectors and can therefore gen-
eralize across arbitrary embeddings between lan-
guages.

Semantic resource features To generalize
across multiple languages we minimize the

6We trained models for Mate (https://code.
google.com/p/mate-tools/) based on universal
dependencies (http://universaldependencies.
org/)

7We used word2vecf (https://bitbucket.org/
yoavgo/word2vecf) for computing syntactic word em-
beddings

complexity of features obtained from semantic
resources – which may differ notably in size
and structure. From the resources listed in
Section 4.1 we extract binary features for the
semantic relations synonymy, hypernymy and hy-
ponymy, occurring between t and s. We have also
experimented with graded variants for transitive
relations, such as encoding n-th level hypernymy,
but have not observed any gain from this feature
variation.

4.4 Transfer learning

Transfer learning is made feasible by a fully
lexeme-independent and language-independent
feature space. Language-specific knowledge re-
sides only within the respective resources for each
language, and gets abstracted in feature extraction.
Figure 1 illustrates this process at the example of
two entirely unrelated sentences in different lan-
guages (English and German). A further mediator
for transfer learning is a model based on boosted
decision trees. As opposed to linear models, which
could not be reasonably learned across languages,
a LambdaMART ranker is able to learn feature in-
teraction across languages. To give an example
of what the resulting model can pick up on, we
can regard conditionally strong features. Consider
the n-gram pair frequency ratio feature of win-
dow size (l,r) = (1,0), which compares the fre-
quency ratio of the target and substitute including
a single left context word. Depending on the POS
window, this feature can be highly informative in
some cases, where it is less informative in others.
For adjective-noun pairs, in which the noun is the
substitution target, the model can learn that this
frequency ratio is strongly positively correlated;
in this case, the substitute frequently occurs with
the same adjective than the original target. For
other POS windows, for example determiner-noun
pairs, the same frequency ratio may be less indica-
tive, as most nouns frequently occur with a deter-
miner. This property works across languages, as
long as as attributive adjectives are prepositioned.
In our subset of languages, this is the case for En-
glish and German, but not for Italian, which uses
postpositive adjectives. Nevertheless, we are able
to learn such universal feature interactions.

5 Results and discussion

Evaluation of lexical substitution requires spe-
cial care, as different evaluation settings are used
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Figure 1: Visualization of feature extraction and delexicalization. Two unrelated sentences in English
and German (translation: “the strain has to be limited”) are shown. Language-specific knowledge is
obtained from resources for each language respectively. The resulting feature space is delexicalized and
language independent.

throughout previous work and comparability is not
always guaranteed. We follow the convention of
reporting the full lexical substitution task (both
generating and ranking candidates) with the met-
rics P-best and P-oot and report the ranking-only
task (candidates pooled from the gold standard)
with the GAP score. We further observe that pre-
vious work commonly discards multiword expres-
sions from both the candidate lists as well as the
gold data8. We follow this convention, but note
that our system is in fact capable of successfully
ranking multiword expansions out of the box. Sys-
tem performance slightly decreases when includ-
ing MWE, as there is virtually no overlap between
those provided by the system and those in the gold
standard.

For ranking we experiment with different point-
wise classifiers as provided by Mallet (MaxEnt
classification and regression) as well learning-to-
rank models provided by RankLib (RankBoost,
RankNet, LambdaMART). In line with findings in
(Szarvas et al., 2013b), we observe that learning-
to-rank approaches work better than a pointwise
classification / regression setup throughout all lan-
guages and feature subsets. Among different
rankers, we confirm LambdaMART to yield the
best performance, and will only report numbers
using this model. As optimization metric we have
explored both NDCG@10 and MAP. The NDCG
metric can incorporate different scoring weights

8The omission of MWE by multiple authors has been con-
firmed by the authors of (Melamud et al., 2015a).

Open evaluation (best-P / oot-P)

Training English German Italian

English 16.63 48.16 7.43 26.79 8.57 31.94

German 13.20 44.61 11.97 38.45 7.05 28.75

Italian 13.91 39.72 4.25 22.66 15.19 40.37

others 17.19 46.79 8.15 27.33 10.04 30.82

all 17.23 48.83 12.94 41.32 16.15 41.29
SOA9 15.94 36.37 11.20 20.14 10.86 41.46

Table 3: Transfer learning results for the open can-
didate task (candidates from lexical resources)

Ranking evaluation (GAP)

Training English German Italian

English 51.0 26.9 44.5

German 44.3 56.2 42.9

Italian 36.7 22.2 48.0

others 43.7 26.7 43.9

all 51.9 51.3 50.0

Table 4: Transfer learning results on the ranking-
only task (candidates pooled from gold)

based on annotator overlap, however MAP di-
rectly correlates with evaluation score. We have
found optimizing on MAP to yield slightly bet-
ter results, even if this disregards the relative score
weights between gold substitutes. For the ranking-
only task, we also extended the pooled train-
ing data with additional negative examples (i.e.
adding all candidates as for the full task) but ob-
served a minor decrease in system performance.
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We report transfer learning results across all
three datasets. Table 3 shows a transfer-learning
matrix for the full lexical substitution task,
whereas Table 4 shows results for the ranking-only
task. For evaluation, we consistently use the com-
plete datasets, which are roughly equal in size for
all languages (~ 2000 instances). For the identity
entries in this matrix, as well as training on the
complete dataset (“all”) we follow previous super-
vised work and perform 10-fold cross-validation.
Splits are based on the target lexeme, so that no
two instances for the same target word are in dif-
ferent sets. Tables 3 and 4 suggest the feasibil-
ity of transfer learning. Although models trained
on the original language (identity entries of the
matrix) perform best, training on a different lan-
guage still yields reasonable results. Training only
on a single other language, not surprisingly, yields
worse results for each dataset, however combining
the data from the two remaining languages (“oth-
ers”) can mitigate this issue to some degree. Im-
portantly, adding the data from two additional lan-
guages consistently improves system performance
throughout all datasets for the open candidate task
(Table 3). It is interesting to note that in case of
SE07, training on only other languages performs
surprisingly well for the best-P score, beating even
a model trained on English. A possible explana-
tion for this is that the SE07 dataset appears to be
somewhere in the middle between EL09 and GE15
in terms of substitute variance. For the ranking-
only task, transfer learning seems to work a lit-
tle less effectively. In case of German, adding
foreign language data in fact hurts GAP perfor-
mance. This potentially originates from a much
smaller set of training instances and inconsistency
of the amount and overlap of pooled candidates
across different tasks (as described in Table 1). We
also observe that a learning-to-rank model is es-
sential for performing transfer learning. In case
of LambdaMART, an ensemble of decision trees
is constructed, which is well suited to exploit re-
dundant signals across multiple features. Linear
models resulted in worse performance for trans-
fer learning, as the resulting weights seem to be
language-specific.

Feature ablation experiments are performed for
various feature groups in the full and ranking-only
task (Table 5). The ablation groups correspond to

9State of the art baseline, according to previous reported
results, c.f. Table 6

the feature categories defined in Section 4.3. The
frequency group includes plain frequency features
as well as conjunction ratio features. We consider
only our universal model trained on all language
data (with 10-fold CV for each dataset). In case
of English, the full system performs best and all
feature groups improve overall performance. For
other languages these results are mixed. In case
of the German data, embedding features and se-
mantic relation features seem to work well on their
own, so that results for other ablation groups are
slightly better. For ranking-only, embedding fea-
tures seem to be largely subsumed by the combi-
nation of the other groups. Ablation of embed-
dings differs vastly between the full and ranking-
only task; they seem to more more crucial for the
full task. For all languages, semantic relations are
the best feature in the full task, acting as a strong
filter for candidates; in ranking-only they are more
dispensable.

In summary, we observe that delexicalized
transfer learning for lexical substitution is possi-
ble. Existing supervised approaches can be ex-
tended to generalize across multiple languages
without much effort. Training a supervised sys-
tem on different language data emphasizes that
the learned model is sufficiently generic to be
language independent. Our feature space con-
structed from heterogeneous evidence consists of
many features that perform relatively weakly on
their own. The resulting ranking model captures
redundancy between these signals. Finally, Ta-
ble 6 shows our results in comparison to previ-
ous work. Note that we omit some participating
systems from the original SE07 task. The rea-
son we did not list IRST2 (Giuliano et al., 2007)
is that for out-of-ten results, the system outputs
the same substitute multiple times and the eval-
uation scheme gives credit for each copy of the
substitute. Our (and other) systems do not tam-
per with the metric in this way, and only yield
a set of substitutes. UNT (Hassan et al., 2007)
uses a much richer set of knowledge bases, not all
of them easily available, to achieve slightly better
oot scores. From our experiments, we list both a
model trained per language, as well as a universal
model trained on all data. The latter beats nearly
all other approaches on the full lexical substitu-
tion task, despite not being optimized for a single
language. Although omission of MWEs is com-
mon practice for SE07, it is unclear if this was
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English German Italian

best-P GAP best-P GAP best-P GAP

w/o syntax 15.35 49.5 12.33 42.1 15.70 50.3

w/o frequency 17.04 48.6 13.30 54.6 15.78 51.5

w/o DT 16.88 48.8 12.18 54.6 17.65 51.8

w/o sem. relation 11.51 49.9 6.82 33.9 8.06 49.7

w/o embedding 10.05 51.5 11.51 47.1 7.17 54.4

full system 17.23 51.9 12.94 51.3 16.15 50.0

Table 5: Feature ablation results for the full and
ranking-only task (universal model trained on all
data)

done for EL09 and GE15. However, re-inclusion
of MWE does not drastically alter results10. In
the ranking-only variant, we are not able to beat
the learning-to-rank approach by Szarvas et. al
(2013b), we note however that they have per-
formed extensive hyperparameter optimization of
their ranker, which we have omitted. We are also
not able to achieve GAP scores reported by Mela-
mud at al. (2015b). Although we used their ex-
act embeddings, we could not reproduce their re-
sults11.

6 Conclusion

We are the first to model lexical substitution as
a language-independent task by considering not
just a single-language dataset, but by merging data
from distinct tasks in English, German and Ital-
ian. We have shown that a supervised, delex-
icalized approach can successfully learn a sin-
gle model across languages – and thus perform
transfer learning for lexical substitution. We ob-
serve that a listwise ranker model such as Lamb-
daMART facilitates this transfer learning. We
have further shown that incorporating more data
helps training a more robust model and can consis-
tently improve system performance by adding for-
eign language training data. We extended an exist-
ing supervised learning-to-rank approach for lexi-
cal substitution (Szarvas et al., 2013b) with state-
of-the-art embedding features (Melamud et al.,
2015b). In our experiments, a single model trained
on all data performed best on each language. In all

10For comparison, our scores including MWE for the “all
data” model are as follows (best-P, oot-P, GAP). EL09:
15.12, 33.92, 45.8; GE15: 12.20, 41.15, 50.0

11Our evaluation of (Melamud et al., 2015b), balAdd
yields a GAP score of 48.8, which is likely related to different
evaluation settings.

12baseline by task organizer

SemEval ’07

method best-P oot-P GAP
(Erk and Padó, 2010) - - 38.6

(Thater et al., 2011) - - 51.7

(Szarvas et al., 2013a) 15.94 - 52.4

(Szarvas et al., 2013b) - - 55.0

(Melamud et al., 2015b) 08.09 27.65 52.9

(Melamud et al., 2015a) 12.72 36.37 55.2
our method (English only) 16.63 48.16 51.0

our method (all data) 17.23 48.83 51.9

Evalita ’09

method best-P oot-P GAP
(Basile and Semeraro, 2009) 08.16 41.46 -

(Toral, 2009)12 10.86 27.52 -

our method (Italian only) 15.19 40.37 48.0

our method (all data) 16.15 31.18 50.0
GermEval ’15

method best-P oot-P GAP
(Hintz and Biemann, 2015) 11.20 19.49 -

(Jackov, 2015) 06.73 20.14 -

our method (German only) 11.97 38.45 56.2

our method (all data) 12.94 41.32 51.3

Table 6: Experimental results of our method com-
pared to related work for all three lexical substitu-
tion tasks

three datasets we were able to improve the current
state of the art for the full lexical substitution task.
The resulting model can be regarded as language-
independent; given an unannotated background
corpus for computing language-specific resources
and a source of substitution candidates, the sys-
tem can be used almost out of the box. For obtain-
ing substitution candidates, we still rely on lexi-
cal resources such as WordNet, which have to be
available for each language. As future work we
aim to make our approach completely knowledge-
free by eliminating this dependency. We can con-
sider substitution candidates based on their dis-
tributional similarity. First experiments confirm
that this already yields a much better coverage,
i.e. upper bound on recall, while introducing more
noise. The remaining key challenge is to bet-
ter characterize possible substitutes from bad sub-
stitutes in ranked lists of distributionally similar
words, which frequently contain antonyms and co-
hyponyms. We will explore unsupervised acquisi-
tion of relational similarity (Mikolov et al., 2013b)
for this task.
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