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Abstract

Neural Machine Translation (NMT) has
obtained state-of-the art performance for
several language pairs, while only us-
ing parallel data for training. Target-
side monolingual data plays an impor-
tant role in boosting fluency for phrase-
based statistical machine translation, and
we investigate the use of monolingual data
for NMT. In contrast to previous work,
which combines NMT models with sep-
arately trained language models, we note
that encoder-decoder NMT architectures
already have the capacity to learn the same
information as a language model, and we
explore strategies to train with monolin-
gual data without changing the neural net-
work architecture. By pairing monolin-
gual training data with an automatic back-
translation, we can treat it as additional
parallel training data, and we obtain sub-
stantial improvements on the WMT 15
task English↔German (+2.8–3.7 BLEU),
and for the low-resourced IWSLT 14 task
Turkish→English (+2.1–3.4 BLEU), ob-
taining new state-of-the-art results. We
also show that fine-tuning on in-domain
monolingual and parallel data gives sub-
stantial improvements for the IWSLT 15
task English→German.

1 Introduction

Neural Machine Translation (NMT) has obtained
state-of-the art performance for several language
pairs, while only using parallel data for training.
Target-side monolingual data plays an important
role in boosting fluency for phrase-based statisti-
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cal machine translation, and we investigate the use
of monolingual data for NMT.

Language models trained on monolingual data
have played a central role in statistical machine
translation since the first IBM models (Brown et
al., 1990). There are two major reasons for their
importance. Firstly, word-based and phrase-based
translation models make strong independence as-
sumptions, with the probability of translation units
estimated independently from context, and lan-
guage models, by making different independence
assumptions, can model how well these translation
units fit together. Secondly, the amount of avail-
able monolingual data in the target language typi-
cally far exceeds the amount of parallel data, and
models typically improve when trained on more
data, or data more similar to the translation task.

In (attentional) encoder-decoder architectures
for neural machine translation (Sutskever et al.,
2014; Bahdanau et al., 2015), the decoder is es-
sentially an RNN language model that is also con-
ditioned on source context, so the first rationale,
adding a language model to compensate for the in-
dependence assumptions of the translation model,
does not apply. However, the data argument is still
valid in NMT, and we expect monolingual data to
be especially helpful if parallel data is sparse, or
a poor fit for the translation task, for instance be-
cause of a domain mismatch.

In contrast to previous work, which integrates
a separately trained RNN language model into the
NMT model (Gülçehre et al., 2015), we explore
strategies to include monolingual training data in
the training process without changing the neural
network architecture. This makes our approach
applicable to different NMT architectures.

The main contributions of this paper are as fol-
lows:

• we show that we can improve the machine
translation quality of NMT systems by mix-
ing monolingual target sentences into the
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training set.

• we investigate two different methods to fill
the source side of monolingual training in-
stances: using a dummy source sentence, and
using a source sentence obtained via back-
translation, which we call synthetic. We find
that the latter is more effective.

• we successfully adapt NMT models to a new
domain by fine-tuning with either monolin-
gual or parallel in-domain data.

2 Neural Machine Translation

We follow the neural machine translation archi-
tecture by Bahdanau et al. (2015), which we will
briefly summarize here. However, we note that our
approach is not specific to this architecture.

The neural machine translation system is imple-
mented as an encoder-decoder network with recur-
rent neural networks.

The encoder is a bidirectional neural network
with gated recurrent units (Cho et al., 2014)
that reads an input sequence x = (x1, ..., xm)
and calculates a forward sequence of hidden
states (

−→
h 1, ...,

−→
h m), and a backward sequence

(
←−
h 1, ...,

←−
h m). The hidden states

−→
h j and

←−
h j are

concatenated to obtain the annotation vector hj .
The decoder is a recurrent neural network that

predicts a target sequence y = (y1, ..., yn). Each
word yi is predicted based on a recurrent hidden
state si, the previously predicted word yi−1, and
a context vector ci. ci is computed as a weighted
sum of the annotations hj . The weight of each
annotation hj is computed through an alignment
model αij , which models the probability that yi is
aligned to xj . The alignment model is a single-
layer feedforward neural network that is learned
jointly with the rest of the network through back-
propagation.

A detailed description can be found in (Bah-
danau et al., 2015). Training is performed on a
parallel corpus with stochastic gradient descent.
For translation, a beam search with small beam
size is employed.

3 NMT Training with Monolingual
Training Data

In machine translation, more monolingual data
(or monolingual data more similar to the test set)

serves to improve the estimate of the prior prob-
ability p(T ) of the target sentence T , before tak-
ing the source sentence S into account. In con-
trast to (Gülçehre et al., 2015), who train separate
language models on monolingual training data and
incorporate them into the neural network through
shallow or deep fusion, we propose techniques
to train the main NMT model with monolingual
data, exploiting the fact that encoder-decoder neu-
ral networks already condition the probability dis-
tribution of the next target word on the previous
target words. We describe two strategies to do this:
providing monolingual training examples with an
empty (or dummy) source sentence, or providing
monolingual training data with a synthetic source
sentence that is obtained from automatically trans-
lating the target sentence into the source language,
which we will refer to as back-translation.

3.1 Dummy Source Sentences

The first technique we employ is to treat monolin-
gual training examples as parallel examples with
empty source side, essentially adding training ex-
amples whose context vector ci is uninformative,
and for which the network has to fully rely on
the previous target words for its prediction. This
could be conceived as a form of dropout (Hinton
et al., 2012), with the difference that the train-
ing instances that have the context vector dropped
out constitute novel training data. We can also
conceive of this setup as multi-task learning, with
the two tasks being translation when the source
is known, and language modelling when it is un-
known.

During training, we use both parallel and mono-
lingual training examples in the ratio 1-to-1, and
randomly shuffle them. We define an epoch as one
iteration through the parallel data set, and resam-
ple from the monolingual data set for every epoch.
We pair monolingual sentences with a single-word
dummy source side <null> to allow processing of
both parallel and monolingual training examples
with the same network graph.1 For monolingual
minibatches2, we freeze the network parameters
of the encoder and the attention model.

One problem with this integration of monolin-

1One could force the context vector ci to be 0 for monolin-
gual training instances, but we found that this does not solve
the main problem with this approach, discussed below.

2For efficiency, Bahdanau et al. (2015) sort sets of 20
minibatches according to length. This also groups monolin-
gual training instances together.

87



gual data is that we cannot arbitrarily increase the
ratio of monolingual training instances, or fine-
tune a model with only monolingual training data,
because different output layer parameters are opti-
mal for the two tasks, and the network ‘unlearns’
its conditioning on the source context if the ratio
of monolingual training instances is too high.

3.2 Synthetic Source Sentences

To ensure that the output layer remains sensitive to
the source context, and that good parameters are
not unlearned from monolingual data, we propose
to pair monolingual training instances with a syn-
thetic source sentence from which a context vec-
tor can be approximated. We obtain these through
back-translation, i.e. an automatic translation of
the monolingual target text into the source lan-
guage.

During training, we mix synthetic parallel text
into the original (human-translated) parallel text
and do not distinguish between the two: no net-
work parameters are frozen. Importantly, only the
source side of these additional training examples
is synthetic, and the target side comes from the
monolingual corpus.

4 Evaluation

We evaluate NMT training on parallel text,
and with additional monolingual data, on
English↔German and Turkish→English,
using training and test data from WMT
15 for English↔German, IWSLT 15 for
English→German, and IWSLT 14 for
Turkish→English.

4.1 Data and Methods

We use Groundhog3 as the implementation of the
NMT system for all experiments (Bahdanau et al.,
2015; Jean et al., 2015a). We generally follow the
settings and training procedure described by Sen-
nrich et al. (2016).

For English↔German, we report case-sensitive
BLEU on detokenized text with mteval-v13a.pl for
comparison to official WMT and IWSLT results.
For Turkish→English, we report case-sensitive
BLEU on tokenized text with multi-bleu.perl for
comparison to results by Gülçehre et al. (2015).

Gülçehre et al. (2015) determine the network
vocabulary based on the parallel training data,

3github.com/sebastien-j/LV_groundhog

dataset sentences
WMTparallel 4 200 000
WITparallel 200 000
WMTmono_de 160 000 000
WMTsynth_de 3 600 000
WMTmono_en 118 000 000
WMTsynth_en 4 200 000

Table 1: English↔German training data.

and replace out-of-vocabulary words with a spe-
cial UNK symbol. They remove monolingual sen-
tences with more than 10% UNK symbols. In con-
trast, we represent unseen words as sequences of
subword units (Sennrich et al., 2016), and can rep-
resent any additional training data with the exist-
ing network vocabulary that was learned on the
parallel data. In all experiments, the network vo-
cabulary remains fixed.

4.1.1 English↔German
We use all parallel training data provided by WMT
2015 (Bojar et al., 2015)4. We use the News Crawl
corpora as additional training data for the exper-
iments with monolingual data. The amount of
training data is shown in Table 1.

Baseline models are trained for a week. Ensem-
bles are sampled from the last 4 saved models of
training (saved at 12h-intervals). Each model is
fine-tuned with fixed embeddings for 12 hours.

For the experiments with synthetic parallel
data, we back-translate a random sample of
3 600 000 sentences from the German monolin-
gual data set into English. The German→English
system used for this is the baseline system
(parallel). Translation took about a week on
an NVIDIA Titan Black GPU. For experiments
in German→English, we back-translate 4 200 000
monolingual English sentences into German, us-
ing the English→German system +synthetic.
Note that we always use single models for back-
translation, not ensembles. We leave it to fu-
ture work to explore how sensitive NMT training
with synthetic data is to the quality of the back-
translation.

We tokenize and truecase the training data, and
represent rare words via BPE (Sennrich et al.,
2016). Specifically, we follow Sennrich et al.
(2016) in performing BPE on the joint vocabulary
with 89 500 merge operations. The network vo-

4http://www.statmt.org/wmt15/
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dataset sentences
WIT 160 000
SETimes 160 000
Gigawordmono 177 000 000
Gigawordsynth 3 200 000

Table 2: Turkish→English training data.

cabulary size is 90 000.
We also perform experiments on the IWSLT

15 test sets to investigate a cross-domain setting.5

The test sets consist of TED talk transcripts. As in-
domain training data, IWSLT provides the WIT3

parallel corpus (Cettolo et al., 2012), which also
consists of TED talks.

4.1.2 Turkish→English

We use data provided for the IWSLT 14 machine
translation track (Cettolo et al., 2014), namely the
WIT3 parallel corpus (Cettolo et al., 2012), which
consists of TED talks, and the SETimes corpus
(Tyers and Alperen, 2010).6 After removal of
sentence pairs which contain empty lines or lines
with a length ratio above 9, we retain 320 000 sen-
tence pairs of training data. For the experiments
with monolingual training data, we use the En-
glish LDC Gigaword corpus (Fifth Edition). The
amount of training data is shown in Table 2. With
only 320 000 sentences of parallel data available
for training, this is a much lower-resourced trans-
lation setting than English↔German.

Gülçehre et al. (2015) segment the Turkish text
with the morphology tool Zemberek, followed by
a disambiguation of the morphological analysis
(Sak et al., 2007), and removal of non-surface to-
kens produced by the analysis. We use the same
preprocessing7. For both Turkish and English, we
represent rare words (or morphemes in the case of
Turkish) as character bigram sequences (Sennrich
et al., 2016). The 20 000 most frequent words
(morphemes) are left unsegmented. The networks
have a vocabulary size of 23 000 symbols.

To obtain a synthetic parallel training
set, we back-translate a random sample of
3 200 000 sentences from Gigaword. We use an
English→Turkish NMT system trained with the
same settings as the Turkish→English baseline
system.

5http://workshop2015.iwslt.org/
6http://workshop2014.iwslt.org/
7github.com/orhanf/zemberekMorphTR

We found overfitting to be a bigger problem
than with the larger English↔German data set,
and follow Gülçehre et al. (2015) in using Gaus-
sian noise (stddev 0.01) (Graves, 2011), and
dropout on the output layer (p=0.5) (Hinton et al.,
2012). We also use early stopping, based on BLEU

measured every three hours on tst2010, which we
treat as development set. For Turkish→English,
we use gradient clipping with threshold 5, follow-
ing Gülçehre et al. (2015), in contrast to the thresh-
old 1 that we use for English↔German, following
Jean et al. (2015a).

4.2 Results

4.2.1 English→German WMT 15
Table 3 shows English→German results with
WMT training and test data. We find that mixing
parallel training data with monolingual data with a
dummy source side in a ratio of 1-1 improves qual-
ity by 0.4–0.5 BLEU for the single system, 1 BLEU

for the ensemble. We train the system for twice
as long as the baseline to provide the training al-
gorithm with a similar amount of parallel training
instances. To ensure that the quality improvement
is due to the monolingual training instances, and
not just increased training time, we also continued
training our baseline system for another week, but
saw no improvements in BLEU.

Including synthetic data during training is very
effective, and yields an improvement over our
baseline by 2.8–3.4 BLEU. Our best ensemble
system also outperforms a syntax-based baseline
(Sennrich and Haddow, 2015) by 1.2–2.1 BLEU.
We also substantially outperform NMT results re-
ported by Jean et al. (2015a) and Luong et al.
(2015), who previously reported SOTA result.8

We note that the difference is particularly large
for single systems, since our ensemble is not as
diverse as that of Luong et al. (2015), who used
8 independently trained ensemble components,
whereas we sampled 4 ensemble components from
the same training run.

4.2.2 English→German IWSLT 15
Table 4 shows English→German results on
IWSLT test sets. IWSLT test sets consist of TED
talks, and are thus very dissimilar from the WMT

8Luong et al. (2015) report 20.9 BLEU (tokenized) on
newstest2014 with a single model, and 23.0 BLEU with an
ensemble of 8 models. Our best single system achieves a to-
kenized BLEU (as opposed to untokenized scores reported in
Table 3) of 23.8, and our ensemble reaches 25.0 BLEU.
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BLEU

name training instances newstest2014 newstest2015
single ens-4 single ens-4

syntax-based (Sennrich and Haddow, 2015) 22.6 - 24.4 -
Neural MT (Jean et al., 2015b) - - 22.4 -
parallel 37m (parallel) 19.9 20.4 22.8 23.6
+monolingual 49m (parallel) / 49m (monolingual) 20.4 21.4 23.2 24.6
+synthetic 44m (parallel) / 36m (synthetic) 22.7 23.8 25.7 26.5

Table 3: English→German translation performance (BLEU) on WMT training/test sets. Ens-4: ensemble
of 4 models. Number of training instances varies due to differences in training time and speed.

name fine-tuning BLEU

data instances tst2013 tst2014 tst2015
NMT (Luong and Manning, 2015) (single model) 29.4 - -
NMT (Luong and Manning, 2015) (ensemble of 8) 31.4 27.6 30.1

1 parallel - - 25.2 22.6 24.0
2 +synthetic - - 26.5 23.5 25.5
3 2+WITmono_de WMTparallel / WITmono 200k/200k 26.6 23.6 25.4
4 2+WITsynth_de WITsynth 200k 28.2 24.4 26.7
5 2+WITparallel WIT 200k 30.4 25.9 28.4

Table 4: English→German translation performance (BLEU) on IWSLT test sets (TED talks). Single
models.

test sets, which are news texts. We investigate if
monolingual training data is especially valuable if
it can be used to adapt a model to a new genre or
domain, specifically adapting a system trained on
WMT data to translating TED talks.

Systems 1 and 2 correspond to systems in Table
3, trained only on WMT data. System 2, trained on
parallel and synthetic WMT data, obtains a BLEU

score of 25.5 on tst2015. We observe that even a
small amount of fine-tuning9, i.e. continued train-
ing of an existing model, on WIT data can adapt
a system trained on WMT data to the TED do-
main. By back-translating the monolingual WIT
corpus (using a German→English system trained
on WMT data, i.e. without in-domain knowledge),
we obtain the synthetic data set WITsynth. A sin-
gle epoch of fine-tuning on WITsynth (system 4) re-
sults in a BLEU score of 26.7 on tst2015, or an im-
provement of 1.2 BLEU. We observed no improve-
ment from fine-tuning on WITmono, the monolin-
gual TED corpus with dummy input (system 3).

These adaptation experiments with monolin-
gual data are slightly artificial in that parallel train-
ing data is available. System 5, which is fine-
tuned with the original WIT training data, obtains
a BLEU of 28.4 on tst2015, which is an improve-

9We leave the word embeddings fixed for fine-tuning.

BLEU

name 2014 2015
PBSMT (Haddow et al., 2015) 28.8 29.3
NMT (Gülçehre et al., 2015) 23.6 -
+shallow fusion 23.7 -
+deep fusion 24.0 -
parallel 25.9 26.7
+synthetic 29.5 30.4
+synthetic (ensemble of 4) 30.8 31.6

Table 5: German→English translation perfor-
mance (BLEU) on WMT training/test sets (new-
stest2014; newstest2015).

ment of 2.9 BLEU. While it is unsurprising that
in-domain parallel data is most valuable, we find
it encouraging that NMT domain adaptation with
monolingual data is also possible, and effective,
since there are settings where only monolingual
in-domain data is available.

The best results published on this dataset are
by Luong and Manning (2015), obtained with an
ensemble of 8 independently trained models. In
a comparison of single-model results, we outper-
form their model on tst2013 by 1 BLEU.
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4.2.3 German→English WMT 15
Results for German→English on the WMT 15
data sets are shown in Table 5. Like for the re-
verse translation direction, we see substantial im-
provements (3.6–3.7 BLEU) from adding mono-
lingual training data with synthetic source sen-
tences, which is substantially bigger than the im-
provement observed with deep fusion (Gülçehre et
al., 2015); our ensemble outperforms the previous
state of the art on newstest2015 by 2.3 BLEU.

4.2.4 Turkish→English IWSLT 14
Table 6 shows results for Turkish→English. On
average, we see an improvement of 0.6 BLEU on
the test sets from adding monolingual data with a
dummy source side in a 1-1 ratio10, although we
note a high variance between different test sets.

With synthetic training data (Gigawordsynth), we
outperform the baseline by 2.7 BLEU on average,
and also outperform results obtained via shallow
or deep fusion by Gülçehre et al. (2015) by 0.5
BLEU on average. To compare to what extent syn-
thetic data has a regularization effect, even without
novel training data, we also back-translate the tar-
get side of the parallel training text to obtain the
training corpus parallelsynth. Mixing the original
parallel corpus with parallelsynth (ratio 1-1) gives
some improvement over the baseline (1.7 BLEU

on average), but the novel monolingual training
data (Gigawordmono) gives higher improvements,
despite being out-of-domain in relation to the test
sets. We speculate that novel in-domain monolin-
gual data would lead to even higher improvements.

4.2.5 Back-translation Quality for Synthetic
Data

One question that our previous experiments leave
open is how the quality of the automatic back-
translation affects training with synthetic data. To
investigate this question, we back-translate the
same German monolingual corpus with three dif-
ferent German→English systems:

• with our baseline system and greedy decod-
ing

• with our baseline system and beam search
(beam size 12). This is the same system used
for the experiments in Table 3.

10We also experimented with higher ratios of monolingual
data, but this led to decreased BLEU scores.

BLEU

DE→EN EN→DE
back-translation 2015 2014 2015
none - 20.4 23.6
parallel (greedy) 22.3 23.2 26.0
parallel (beam 12) 25.0 23.8 26.5
synthetic (beam 12) 28.3 23.9 26.6
ensemble of 3 - 24.2 27.0
ensemble of 12 - 24.7 27.6

Table 7: English→German translation perfor-
mance (BLEU) on WMT training/test sets (new-
stest2014; newstest2015). Systems differ in how
the synthetic training data is obtained. Ensembles
of 4 models (unless specified otherwise).

• with the German→English system that was
itself trained with synthetic data (beam size
12).

BLEU scores of the German→English sys-
tems, and of the resulting English→German sys-
tems that are trained on the different back-
translations, are shown in Table 7. The quality
of the German→English back-translation differs
substantially, with a difference of 6 BLEU on new-
stest2015. Regarding the English→German sys-
tems trained on the different synthetic corpora, we
find that the 6 BLEU difference in back-translation
quality leads to a 0.6–0.7 BLEU difference in
translation quality. This is balanced by the fact
that we can increase the speed of back-translation
by trading off some quality, for instance by reduc-
ing beam size, and we leave it to future research
to explore how much the amount of synthetic data
affects translation quality.

We also show results for an ensemble of 3 mod-
els (the best single model of each training run),
and 12 models (all 4 models of each training run).
Thanks to the increased diversity of the ensemble
components, these ensembles outperform the en-
sembles of 4 models that were all sampled from
the same training run, and we obtain another im-
provement of 0.8–1.0 BLEU.

4.3 Contrast to Phrase-based SMT
The back-translation of monolingual target data
into the source language to produce synthetic par-
allel text has been previously explored for phrase-
based SMT (Bertoldi and Federico, 2009; Lambert
et al., 2011). While our approach is technically
similar, synthetic parallel data fulfills novel roles
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name training BLEU

data instances tst2011 tst2012 tst2013 tst2014
baseline (Gülçehre et al., 2015) 18.4 18.8 19.9 18.7
deep fusion (Gülçehre et al., 2015) 20.2 20.2 21.3 20.6
baseline parallel 7.2m 18.6 18.2 18.4 18.3
parallelsynth parallel/parallelsynth 6m/6m 19.9 20.4 20.1 20.0
Gigawordmono parallel/Gigawordmono 7.6m/7.6m 18.8 19.6 19.4 18.2
Gigawordsynth parallel/Gigawordsynth 8.4m/8.4m 21.2 21.1 21.8 20.4

Table 6: Turkish→English translation performance (tokenized BLEU) on IWSLT test sets (TED talks).
Single models. Number of training instances varies due to early stopping.

system BLEU

WMT IWSLT
parallel 20.1 21.5
+synthetic 20.8 21.6
PBSMT gain +0.7 +0.1
NMT gain +2.9 +1.2

Table 8: Phrase-based SMT results
(English→German) on WMT test sets (aver-
age of newstest201{4,5}), and IWSLT test sets
(average of tst201{3,4,5}), and average BLEU

gain from adding synthetic data for both PBSMT
and NMT.

in NMT.
To explore the relative effectiveness of back-

translated data for phrase-based SMT and
NMT, we train two phrase-based SMT systems
with Moses (Koehn et al., 2007), using only
WMTparallel, or both WMTparallel and WMTsynth_de
for training the translation and reordering model.
Both systems contain the same language model,
a 5-gram Kneser-Ney model trained on all avail-
able WMT data. We use the baseline features
described by Haddow et al. (2015).

Results are shown in Table 8. In phrase-based
SMT, we find that the use of back-translated train-
ing data has a moderate positive effect on the
WMT test sets (+0.7 BLEU), but not on the IWSLT
test sets. This is in line with the expectation that
the main effect of back-translated data for phrase-
based SMT is domain adaptation (Bertoldi and
Federico, 2009). Both the WMT test sets and the
News Crawl corpora which we used as monolin-
gual data come from the same source, a web crawl
of newspaper articles.11 In contrast, News Crawl
is out-of-domain for the IWSLT test sets.

In contrast to phrase-based SMT, which can

11The WMT test sets are held-out from News Crawl.
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Figure 1: Turkish→English training and develop-
ment set (tst2010) cross-entropy as a function of
training time (number of training instances) for
different systems.

make use of monolingual data via the language
model, NMT has so far not been able to use mono-
lingual data to great effect, and without requir-
ing architectural changes. We find that the effect
of synthetic parallel data is not limited to domain
adaptation, and that even out-of-domain synthetic
data improves NMT quality, as in our evaluation
on IWSLT. The fact that the synthetic data is more
effective on the WMT test sets (+2.9 BLEU) than
on the IWSLT test sets (+1.2 BLEU) supports the
hypothesis that domain adaptation contributes to
the effectiveness of adding synthetic data to NMT
training.

It is an important finding that back-translated
data, which is mainly effective for domain adapta-
tion in phrase-based SMT, is more generally use-
ful in NMT, and has positive effects that go beyond
domain adaptation. In the next section, we will in-
vestigate further reasons for its effectiveness.
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Figure 2: English→German training and develop-
ment set (newstest2013) cross-entropy as a func-
tion of training time (number of training instances)
for different systems.

4.4 Analysis

We previously indicated that overfitting is a con-
cern with our baseline system, especially on small
data sets of several hundred thousand training
sentences, despite the regularization employed.
This overfitting is illustrated in Figure 1, which
plots training and development set cross-entropy
by training time for Turkish→English models.
For comparability, we measure training set cross-
entropy for all models on the same random sam-
ple of the parallel training set. We can see
that the model trained on only parallel train-
ing data quickly overfits, while all three mono-
lingual data sets (parallelsynth, Gigawordmono, or
Gigawordsynth) delay overfitting, and give bet-
ter perplexity on the development set. The
best development set cross-entropy is reached by
Gigawordsynth.

Figure 2 shows cross-entropy for
English→German, comparing the system trained
on only parallel data and the system that includes
synthetic training data. Since more training data is
available for English→German, there is no indi-
cation that overfitting happens during the first 40
million training instances (or 7 days of training);
while both systems obtain comparable training
set cross-entropies, the system with synthetic data
reaches a lower cross-entropy on the development
set. One explanation for this is the domain effect
discussed in the previous section.

A central theoretical expectation is that mono-
lingual target-side data improves the model’s flu-

system produced attested natural
parallel 1078 53.4% 74.9%
+mono 994 61.6% 84.6%
+synthetic 1217 56.4% 82.5%

Table 9: Number of words in system out-
put that do not occur in parallel training data
(countref = 1168), and proportion that is attested
in data, or natural according to native speaker.
English→German; newstest2015; ensemble sys-
tems.

ency, its ability to produce natural target-language
sentences. As a proxy to sentence-level flu-
ency, we investigate word-level fluency, specif-
ically words produced as sequences of subword
units, and whether NMT systems trained with ad-
ditional monolingual data produce more natural
words. For instance, the English→German sys-
tems translate the English phrase civil rights pro-
tections as a single compound, composed of three
subword units: Bürger|rechts|schutzes12, and we
analyze how many of these multi-unit words that
the translation systems produce are well-formed
German words.

We compare the number of words in the system
output for the newstest2015 test set which are pro-
duced via subword units, and that do not occur in
the parallel training corpus. We also count how
many of them are attested in the full monolingual
corpus or the reference translation, which we all
consider ‘natural’. Additionally, the main authors,
a native speaker of German, annotated a random
subset (n = 100) of unattested words of each sys-
tem according to their naturalness13, distinguish-
ing between natural German words (or names)
such as Literatur|klassen ‘literature classes’, and
nonsensical ones such as *As|best|atten (a miss-
spelling of Astbestmatten ‘asbestos mats’).

In the results (Table 9), we see that the sys-
tems trained with additional monolingual or syn-
thetic data have a higher proportion of novel words
attested in the non-parallel data, and a higher
proportion that is deemed natural by our annota-
tor. This supports our expectation that additional
monolingual data improves the (word-level) flu-
ency of the NMT system.

12Subword boundaries are marked with ‘|’.
13For the annotation, the words were blinded regarding the

system that produced them.
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5 Related Work

To our knowledge, the integration of monolingual
data for pure neural machine translation architec-
tures was first investigated by (Gülçehre et al.,
2015), who train monolingual language models in-
dependently, and then integrate them during de-
coding through rescoring of the beam (shallow fu-
sion), or by adding the recurrent hidden state of
the language model to the decoder state of the
encoder-decoder network, with an additional con-
troller mechanism that controls the magnitude of
the LM signal (deep fusion). In deep fusion, the
controller parameters and output parameters are
tuned on further parallel training data, but the lan-
guage model parameters are fixed during the fine-
tuning stage. Jean et al. (2015b) also report on
experiments with reranking of NMT output with
a 5-gram language model, but improvements are
small (between 0.1–0.5 BLEU).

The production of synthetic parallel texts bears
resemblance to data augmentation techniques used
in computer vision, where datasets are often aug-
mented with rotated, scaled, or otherwise distorted
variants of the (limited) training set (Rowley et al.,
1996).

Another similar avenue of research is self-
training (McClosky et al., 2006; Schwenk, 2008).
The main difference is that self-training typically
refers to scenario where the training set is en-
hanced with training instances with artificially
produced output labels, whereas we start with
human-produced output (i.e. the translation), and
artificially produce an input. We expect that this
is more robust towards noise in the automatic
translation. Improving NMT with monolingual
source data, following similar work on phrase-
based SMT (Schwenk, 2008), remains possible fu-
ture work.

Domain adaptation of neural networks via con-
tinued training has been shown to be effective for
neural language models by (Ter-Sarkisov et al.,
2015), and in work parallel to ours, for neural
translation models (Luong and Manning, 2015).
We are the first to show that we can effectively
adapt neural translation models with monolingual
data.

6 Conclusion

In this paper, we propose two simple methods to
use monolingual training data during training of
NMT systems, with no changes to the network

architecture. Providing training examples with
dummy source context was successful to some ex-
tent, but we achieve substantial gains in all tasks,
and new SOTA results, via back-translation of
monolingual target data into the source language,
and treating this synthetic data as additional train-
ing data. We also show that small amounts of in-
domain monolingual data, back-translated into the
source language, can be effectively used for do-
main adaptation. In our analysis, we identified do-
main adaptation effects, a reduction of overfitting,
and improved fluency as reasons for the effective-
ness of using monolingual data for training.

While our experiments did make use of mono-
lingual training data, we only used a small ran-
dom sample of the available data, especially for
the experiments with synthetic parallel data. It is
conceivable that larger synthetic data sets, or data
sets obtained via data selection, will provide big-
ger performance benefits.

Because we do not change the neural net-
work architecture to integrate monolingual train-
ing data, our approach can be easily applied to
other NMT systems. We expect that the effective-
ness of our approach not only varies with the qual-
ity of the MT system used for back-translation, but
also depends on the amount (and similarity to the
test set) of available parallel and monolingual data,
and the extent of overfitting of the baseline model.
Future work will explore the effectiveness of our
approach in more settings.
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