Structured Belief Propagation for NLP

Matthew R. Gormley

Jason Eisner

Department of Computer Science
Johns Hopkins University, Baltimore, MD
{mrg, jason}@cs. jhu.edu

1 Tutorial Overview

Statistical natural language processing relies on
probabilistic models of linguistic structure. More
complex models can help capture our intuitions
about language, by adding linguistically meaning-
ful interactions and latent variables. However, in-
ference and learning in the models we want often
poses a serious computational challenge.

Belief propagation (BP) and its variants pro-
vide an attractive approximate solution, especially
using recent training methods. These approaches
can handle joint models of interacting compo-
nents, are computationally efficient, and have ex-
tended the state-of-the-art on a number of com-
mon NLP tasks, including dependency parsing,
modeling of morphological paradigms, CCG pars-
ing, phrase extraction, semantic role labeling, and
information extraction (Smith and Eisner, 2008;
Dreyer and Eisner, 2009; Auli and Lopez, 2011;
Burkett and Klein, 2012; Naradowsky et al., 2012;
Stoyanov and Eisner, 2012).

This tutorial delves into BP with an emphasis on
recent advances that enable state-of-the-art perfor-
mance in a variety of tasks. Our goal is to eluci-
date how these approaches can easily be applied
to new problems. We also cover the theory under-
lying them. Our target audience is researchers in
human language technologies; we do not assume
familiarity with BP.

In the first three sections, we discuss applica-
tions of BP to NLP problems, the basics of mod-
eling with factor graphs and message passing, and
the theoretical underpinnings of “what BP is do-
ing” and how it relates to other inference tech-
niques. In the second three sections, we cover
key extensions to the standard BP algorithm to en-
able modeling of linguistic structure, efficient in-
ference, and approximation-aware training. We
survey a variety of software tools and introduce
a new software framework that incorporates many
of the modern approaches covered in this tutorial.
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2  Outline

1. Probabilistic Modeling [15 min., Eisner]

e Intro: Modeling with factor graphs
Constituency and dependency parsing
Joint CCG Parsing and supertagging
Transliteration; Morphology
Alignment; Phrase extraction
Joint models for NLP; Semantic role label-
ing; Targeted sentiment

e Variable-centric view of the world
2. Belief Propagation Basics [40 min., Eisner]

e Messages and beliefs

e Sum-product algorithm

e Relation to the forward-backward and

Viterbi algorithms

e BP as dynamic programming

e Acyclic vs. loopy graphs
3. Theory [25 min., Gormley]

e From sum-product to max-product

e From arc consistency to BP

e From Gibbs sampling to particle BP to BP

e Convergence properties

e Bethe free energy
4. Incorporating Structure into Factors and Vari-

ables [30 min., Gormley]

e Embedding dynamic programs

inside-outside) within factors

e String-valued variables and finite state ma-

chines
5. Message approximation and scheduling [20

(e.g.

min., Eisner|
e Computing fewer messages
e Pruning messages
e Expectation Propagation and Penalized EP
6. Approximation-aware Training [30 min., Gorm-
ley]
e Empirical risk minimization under approx-
imations (ERMA)
e BP as a computational expression graph
e Automatic differentiation (AD)
7. Software [10 min., Gormley]
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3 Instructors

Matt Gormley is a PhD student at Johns Hopkins
University working with Mark Dredze and Jason
Eisner. His current research focuses on joint mod-
eling of multiple linguistic strata in learning set-
tings where supervised resources are scarce. He
has authored papers in a variety of areas including
topic modeling, global optimization, semantic role
labeling, relation extraction, and grammar induc-
tion.

Jason Fisner is a Professor in Computer Sci-
ence and Cognitive Science at Johns Hopkins Uni-
versity, where he has received two school-wide
awards for excellence in teaching. His 90+ pa-
pers have presented many models and algorithms
spanning numerous areas of NLP. His goal is to
develop the probabilistic modeling, inference, and
learning techniques needed for a unified model of
all kinds of linguistic structure. In particular, he
and his students introduced structured belief prop-
agation (which incorporates classical NLP models
and their associated dynamic programming algo-
rithms), as well as loss-calibrated training for use
with belief propagation.
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