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Abstract

We describe the design, development, and API
of ODIN (Open Domain INformer), a domain-
independent, rule-based event extraction (EE)
framework. The proposed EE approach is:
simple (most events are captured with simple
lexico-syntactic patterns), powerful (the lan-
guage can capture complex constructs, such
as events taking other events as arguments,
and regular expressions over syntactic graphs),
robust (to recover from syntactic parsing er-
rors, syntactic patterns can be freely mixed
with surface, token-based patterns), and fast
(the runtime environment processes 110 sen-
tences/second in a real-world domain with a
grammar of over 200 rules). We used this
framework to develop a grammar for the bio-
chemical domain, which approached human
performance. Our EE framework is accom-
panied by a web-based user interface for the
rapid development of event grammars and vi-
sualization of matches. The ODIN framework
and the domain-specific grammars are avail-
able as open-source code.

1 Introduction
Rule-based information extraction (IE) has long en-
joyed wide adoption throughout industry, though it has
remained largely ignored in academia, in favor of ma-
chine learning (ML) methods (Chiticariu et al., 2013).
However, rule-based systems have several advantages
over pure ML systems, including: (a) the rules are
interpretable and thus suitable for rapid development
and domain transfer; and (b) humans and machines can
contribute to the same model. Why then have such sys-
tems failed to hold the attention of the academic com-
munity? One argument raised by Chiticariu et al. is
that, despite notable efforts (Appelt and Onyshkevych,
1998; Levy and Andrew, 2006; Hunter et al., 2008;
Cunningham et al., 2011; Chang and Manning, 2014),
there is not a standard language for this task, or a “stan-
dard way to express rules”, which raises the entry cost

for new rule-based systems.
Here we aim to address this issue with a novel event

extraction (EE) language and framework called ODIN
(Open Domain INformer). We follow the simplicity
principles promoted by other natural language process-
ing toolkits, such as Stanford’s CoreNLP, which aim to
“avoid over-design”, “do one thing well”, and have a
user “up and running in ten minutes or less” (Manning
et al., 2014). In particular, our approach is:

Simple: Taking advantage of a syntactic dependency1

representation (de Marneffe and Manning, 2008), our
EE language has a simple, declarative syntax (see Ex-
amples 1 & 2) for n-ary events, which captures single
or multi-word event predicates (trigger) with lexi-
cal and morphological constraints, and event arguments
(e.g., theme) with (generally) simple syntactic patterns
and semantic constraints.

Powerful: Despite its simplicity, our EE framework
can capture complex constructs when necessary, such
as: (a) recursive events2, (b) complex regular expres-
sions over syntactic patterns for event arguments. In-
spired by Stanford’s Semgrex3, we have extended a
standard regular expression language to describe pat-
terns over directed graphs4, e.g., we introduce new <

and > operators to specify the direction of edge traver-
sal in the dependency graph. Finally, we allow for (c)
optional arguments5 and multiple arguments with the
same name.

Robust: To recover from unavoidable syntactic errors,
SD patterns (such as the ones in Examples 1 and 2)
can be can be freely mixed with surface, token-based
patterns, using a language inspired by the Allen Insti-

1Hereafter abbreviated as SD.
2Events that take other events as arguments (see Figure 1

and the corresponding Example (2) for such an event in the
biochemical domain. The Positive Regulation takes
a Phosphorylation event as the Controlled argu-
ment)

3nlp.stanford.edu/software/tregex.
shtml

4Here we use syntactic dependencies.
5cause in Example 1.
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Figure 1: An example sentence containing a recursive event.

tute of Artificial Intelligence’s Tagger6. These patterns
match against information extracted in our text process-
ing pipeline7 , namely a token’s part of speech, lem-
matized form, named entity label, and the immediate
incoming and outgoing edges in the SD graph. Exam-
ple 3 shows an equivalent rule to the one in Example 1
using surface patterns (i.e. a pattern that is independent
of a token sequence’s underlying syntactic structure).

Fast: Our EE runtime is fast because our rules use
event trigger phrases, captured with shallow lexico-
morphological patterns, as starting points. Only when
event triggers are detected is the matching of more
complex syntactic patterns for arguments attempted.
This guarantees quick executions. For example, in
the biochemical domain (discussed in Section 2), our
framework processes an average of 110 sentences/sec-
ond8 with a grammar of 211 rules on a laptop with an
i7 CPU and 16GB of RAM.

2 Building a Domain from Scratch
We next describe how to use the proposed framework
to build an event extractor for the biochemical domain
(Ohta et al., 2013) from scratch.

Rule-based systems have been shown to perform at
the state-of-the-art for event extraction in the biology
domain (Peng et al., 2014; Bui et al., 2013). The do-
main, however, is not without its challenges. For exam-
ple, it is not uncommon for biochemical events to con-
tain other events as arguments. Consider the example
sentence in Figure 1. The sentence contains two events,
one event referring to the biochemical process known
as phosphorylation, and a recursive event describing
a biochemical regulation that controls the mentioned
phosphorylation. We will introduce a minimal set of
rules that capture these two events. Here, we will as-
sume the simple entities (denoted in bold in Figure 1)
have already been detected through a named entity rec-
ognizer.9

When a rule matches, the extracted token spans
for trigger and arguments, together with the corre-
sponding event and argument labels (here the event

6https://github.com/allenai/taggers
7https://github.com/sistanlp/

processors
8after the initial text processing pipeline
9Though the discussion focuses on event extraction, our

framework can also be applied to the task of entity recogni-
tion.

1 - name: Phosphorylation_1
2 priority: 2
3 label: [Phosphorylation, Event]
4 pattern: |
5 trigger = [lemma="phosphorylation"]
6 theme:PhysicalEntity = prep_of
7 (nn|conj|cc)*
8 cause:PhysicalEntity? = prep_by
9 (nn|conj|cc)*

Example 1: An example of a rule using syntactic
structure. For the phosphorylation event, our
selected event trigger (LINE 5) is a nominal
predicate with the lemma phosphorylation. This
trigger serves as the starting point for the syntactic
patterns that extract event arguments. When
searching for a theme to the Phosphorylation
event, we begin at the specified trigger and
look for an incoming dependent that is the object
of the preposition of. The pattern fragment
(nn|conj and|cc)* targets entities that appear as
modifiers in noun phrases (e.g., . . . of the cyclin-D1
protein), or a series of arguments in a coordinated
phrase. The entity mention associated with our
theme must be a named entity with the label
PhysicalEntity (LINE 7), a hypernym of several
more specialized types identified in an earlier
iteration. The cause argument is marked as
optional (denoted by the ? symbol).

label is Phosphorylation, and the argument labels
are theme & cause) are dispatched to a labeling
action. By default, these actions simply create an
EventMention Scala object with the corresponding
event label, and the extracted named arguments. Exam-
ple 5 summarizes the EventMention class. Custom
actions may be defined as Scala code, and be attached
to specific rules. For example, a custom action may
trigger coreference resolution when a rule matches a
common noun, e.g., the protein, instead of the expected
named entity.

The second rule, shown in Example 2, captures the
recursive event in Figure 1. Importantly, this rule takes
other events as arguments, e.g., the controlled ar-
gument must be an event mention, here generated by
the rule in Example 1. To guarantee correct execution,
the runtime repeatedly applies the given EE grammar
on each sentence until no rule matches. For example,
here the rule in Example 2 would not match in the first
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1 - name: Positive_regulation_1
2 label: [Positive_regulation, Event]
3 priority: 3
4 pattern: |
5 trigger =

[lemma=/promot|induc|increas
6 |stimul|lead|enhanc|up-regulat/
7 & tag=/ˆV|RB/]
8 controller:PhysicalEntity = nsubj

nn*
9 controlled:Event = dobj nn*

Example 2: An example of a rule designed to
capture a recursive event. The rule detects a relevant
verbal or adverbial trigger and expects its arguments
to be in a SUBJECT↔ DIRECT OBJECT relationship.
The controlled argument must be the mention of
another event.

1 - name: Phosphorylation_surface_1
2 priority: 2
3 type: token
4 label: [Phosphorylation, Event]
5 pattern: |
6 (?<trigger>
7 [lemma="phosphorylation"]) of []*?
8 @theme:PhysicalEntity []*?
9 (by @cause:PhysicalEntity)?

Example 3: An alternative rule to Example 1
that uses a surface pattern. Surface patterns
match event triggers and arguments over sequences
of tokens and other mentions (e.g., the theme

matches over an entire named entity of type
PhysicalEntity). Event triggers (trigger)
match the whole sequence of tokens encompassed
in parentheses. Argument names preceded by the
@ symbol, e.g., @theme, require the specification of
an event type (denoted by :type). This pattern is
shorthand for matching the span of an entire named
entity with the specified type.

iteration because no event mentions have been created
yet, but would match in the second iteration. This pro-
cess can optionally be optimized with rule priorities
(as shown in the figure). For example, the priorities
assigned to Examples 1 and 2 enforce that the second
rule is executed only in an iteration following the first
rule. Utilizing rule priorities allows for a derivational
construction of complex events or complete grammars
from their components.

Once the grammar has been defined, the entire sys-
tem can be run in less than 10 lines of code, as shown
in Example 4. The output of this code is a collection of
event mentions, i.e., instances of the EventMention

class outlined in Example 5.

3 Visualization

We accompany the above EE system with an interactive
web-based tool for event grammar development and re-

1 class SimpleExample extends App {
2 // read rules from file
3 val rules = Source.fromFile(
4 "rules.yml").mkString
5 // make extractor engine
6 val engine = new ExtractorEngine(rules)
7 // create text processor for biomedical
8 // domain: POS, NER, and syntax
9 val processor = new BioNLPProcessor

10 // make document from free text;
11 // the document includes POS, NER, and
12 // syntactic annotations
13 val text = "TopBP1 promotes the

phosphorylation of cyclin-D1 by ATR."
14 val doc = processor.annotate(text)
15 // run the actual EE grammar
16 val mentions = engine.extractFrom(doc)
17 }

Example 4: The minimal Scala code required
to run the system. The input (LINE 13) is raw
text. The output is a list of event mentions of
the type EventMention. Here we show the
use of a text processor specific to the biomedical
domain. The framework also includes an open-
domain text processor that includes POS tagging,
named entity recognition, syntactic parsing, and
coreference resolution. Additional processors for
domain-specific tasks can easily be added.

sults visualization. Figure 2 shows the input fields for
the user interface. The UI accepts free text to match
against, and can be configured to run either a predefined
domain grammar or one provided on-the-fly through a
text box, allowing for the rapid development and tuning
of rules.

Figure 2: Our interactive environment for rapid de-
velopment of event grammars.The UI supports the
input of rules and free text.

Figure 3 shows the output of the visualization tool
on the example sentence from Figure 1 using the gram-
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1 class EventMention(
2 /** The ontological labels associated with
3 * the event (specified in the rule) */
4 val label: Seq[String],
5 /** The starting point of our pattern */
6 val trigger: TextBoundMention,
7 /** A mapping of argument names to the
8 * Mentions that contain them */
9 val arguments: Map[String, Seq[Mention]],

10 /** The name of the corresponding rule */
11 val foundBy: String
12 /** The span of the Mention
13 * in the original document*/
14 val tokenInterval: Interval)

Example 5: Example 4 produces a set of
mentions. Here we focus on mentions of events
(EventMention). This code block shows relevant
fields in the EventMention class, which stores
each event mention detected and assembled by
the system. The arguments field captures the
fact that the mapping from names to arguments is
one-to-many (e.g., there may be multiple theme

arguments). Interval stores a token span in the
input text. TextBoundMention stores a simple
mention, minimally a label and a token span.

mar discussed in the previous section. The web inter-
face is implemented as a client-server Grails10 web ap-
plication which runs the EE system on the server and
displays the results on the client side. The applica-
tion’s client-side code displays both entity and event
mentions, as well as the output of the text preprocessor
(to help with debugging) using Brat (Stenetorp et al.,
2012).

4 Results

We extended the grammar introduced previously to
capture 10 different biochemical events, with an av-
erage of 11 rules per event type. Using this grammar
we participated in a recent evaluation by DARPA’s Big
Mechanism program11, where systems had to perform
deep reading of two research papers on cancer biology.
Table 1 summarizes our results.

Our system was ranked above the median, with re-
spect to overall F1 score. We find these results en-
couraging for two reasons. First, inter-annotator agree-
ment on the task was below 60%, which indicates that
our system roughly approaches human performance,
especially for precision. Second, the lower recall is
partially explained by the fact that annotators marked
also indirect biological relations (e.g., A activates B),
which do not correspond to actual biochemical reac-
tions but, instead, summarize sequences of biochemi-
cal reactions. Our grammar currently recognizes only
direct biochemical reactions.

10https://grails.org
11http://www.darpa.mil/Our_Work/I2O/

Programs/Big_Mechanism.aspx

System Precision Recall F1
Submitted run 54% 29% 37.3%

Ceiling system 82.1% 81.8% 82%

Table 1: Results from the January 2015 DARPA
Big Mechanism Dry Run evaluation on reading
biomedical papers, against a known biochemical
model. In addition to event extraction, this eval-
uation required participants to identify if the ex-
tracted information corroborates, contradicts, or ex-
tends the given model. Here, extending the model
means proposing a biochemical reaction that is not
contained in the model, but it involves at least a bio-
chemical entity from the model. The ceiling system
indicates idealized performance of the rule-based
framework, after a post-hoc analysis.

More importantly, this evaluation offers a good plat-
form to analyze the potential of the proposed rule-based
framework, by estimating the ceiling performance of
our EE system, when all addressable issues are fixed.
We performed this analysis after the evaluation dead-
line, and we manually:

1. Removed the keys that do not encode direct bio-
chemical reactions.

2. Corrected three rules, to better model one event
and one entity type.

3. Fixed system bugs, including XML parsing errors,
which caused some meta data to appear in text and
be misinterpreted as biological entities, and a syn-
tax error in one rule, which caused several false
positives.

The results of this ceiling system are listed in the sec-
ond row in Table 1. This analysis highlights an encour-
aging finding: the current rule framework is expressive:
it can capture approximately 80% of the events in this
complex domain. The remaining 20% require corefer-
ence resolution and complex syntactic patterns, which
were not correctly captured by the parser.

5 Related Work
Despite the dominant focus on machine learning mod-
els for IE in the literature, previous work includes sev-
eral notable rule-based efforts. For example, GATE
(Cunningham et al., 2011), and the Common Pat-
tern Specification Language (Appelt and Onyshkevych,
1998) introduce a rule-based framework for IE, imple-
mented as a cascade of grammars defined using surface
patterns. The ICE system offers an active-learning sys-
tem that learns named entity and binary relation pat-
terns built on top of syntactic dependencies (He and
Grishman, 2011). Stanford’s Semgrex12 and Tregex
(Levy and Andrew, 2006) model syntactic patterns,

12http://nlp.stanford.edu/software/
tregex.shtml
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Figure 3: A Brat-based visualization of the event mentions created from the example sentence in Figure 1.
Not shown but included in the visualization: a table with token information (lemmas, PoS tags, NE labels, and
character spans).

while a separate tool from the same group, Token-
sRegex (Chang and Manning, 2014), defines surface
patterns over token sequences. Chiticariu et al. (2011)
demonstrated that a rule-based NER system can match
or outperform results achieved with machine learning
approaches, but also showed that rule-writing is a la-
bor intensive process even with a language specifically
designed for the task.

In addition to the above domain-independent frame-
works, multiple previous works focused on rule-based
systems built around specific domains. For exam-
ple, in bioinformatics, several dedicated rule-based sys-
tems obtained state-of-the-art performance in the ex-
traction of protein-protein interactions (PPI) (Hunter
et al., 2008; Huang et al., 2004).

Our work complements and extends the above ef-
forts with a relatively simple EE platform that: (a)
hybridizes syntactic dependency patterns with surface
patterns, (b) offers support for the extraction of recur-
sive events; (c) is coupled with a fast runtime environ-
ment; and (d) is easily customizable to new domains.

6 Conclusion

We have described a domain-independent, rule-based
event extraction framework and rapid development en-
vironment that is simple, fast, powerful, and robust. It
is our hope that this framework reduces the entry cost
in the development of rule-based event extraction sys-
tems.

We demonstrated how to build a biomedical domain
from scratch, including rule examples and simple Scala
code sufficient to run the domain grammar over free
text. We recently extended this grammar to participate
in the DARPA Big Mechanism evaluation, in which our
system achieved an F1 of 37%. By modeling the under-
lying syntactic representation of events, our grammar
for this task used an average of only 11 rules per event;
this indicates that the syntactic structures of events are

largely generalizable to a small set of predicate frames
and that domain grammars can be constructed with rel-
atively low effort. Our post-hoc analysis demonstrated
that the system’s true ceiling is 82%. This important
result demonstrates that the proposed event extraction
framework is expressive enough to capture most com-
plex events annotated by domain experts.

Finally, to improve the user experience by aiding in
the construction of event grammars, our framework is
accompanied by a web-based interface for testing rules
and visualizing matched events.

This whole effort is available as open-
source code at: https://github.com/
sistanlp/processors. See also: https:
//github.com/sistanlp/processors/
wiki/ODIN-(Open-Domain-INformer), for
ODIN documentation.
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